Contents & Goals

Last Lecture:

- RTC-Rules: Discard, Dispatch, Commence.

This Lecture:

- **Educational Objectives:** Capabilities for following tasks/questions.
 - What does this State Machine mean? What happens if I inject this event?
 - Can you please model the following behaviour.
 - What is: initial state.
 - What does this **hierarchical** State Machine mean? What **may happen** if I inject this event?
 - What is: AND-State, OR-State, pseudo-state, entry/exit/do, final state, . . .

- **Content:**
 - Step, RTC, Divergence
 - Putting It All Together
 - Rhapsody Demo
 - Hierarchical State Machines Syntax
Step and Run-to-completion Step
Notions of Steps: The Step

Note: we call one evolution \((\sigma, \varepsilon) \xrightarrow{(\text{cons}, \text{Snd})}{u} (\sigma', \varepsilon')\) a **step**.

Thus in our setting, a step directly corresponds to **one object** (namely \(u\)) takes a **single transition** between regular states. (We have to extend the concept of “single transition” for hierarchical state machines.)

That is: We’re going for an interleaving semantics without true parallelism.
Notions of Steps: The Run-to-Completion Step

What is a run-to-completion step...?

- **Intuition**: a maximal sequence of steps, where the first step is a dispatch step and all later steps are commence steps.
- **Note**: one step corresponds to one transition in the state machine.

A run-to-completion step is in general not syntactically definable — one transition may be taken multiple times during an RTC-step.

Example:

\[
\sigma: \begin{array}{c} C \\ x = 2 \\ \sigma_1 = s_0 \end{array} \quad \varepsilon: \begin{array}{c} E \text{ for } u \\ s_0 = \text{stable} \end{array} \]

\[
[x > 0]/ \quad [x := x - 1]
\]

\[
\begin{array}{c}
\vdots
\end{array}
\]
Proposal: Let

\[(\sigma_0, \epsilon_0) \xrightarrow{(\text{cons}_0, Snd_0)} u_0 \xrightarrow{(\text{cons}_{n-1}, Snd_{n-1})} u_{n-1} \to (\sigma_n, \epsilon_n), \quad n > 0,\]

be a finite (!), non-empty, maximal, consecutive sequence such that

- object \(u\) is alive in \(\sigma_0\),
- \(u_0 = u\) and \((\text{cons}_0, Snd_0)\) indicates dispatching to \(u\), i.e. \(\text{cons} = \{(u, \vec{v} \to \vec{d})\}\),
- there are no receptions by \(u\) in between, i.e.
 \[\text{cons}_i \cap \{u\} \times \text{Evs}(\mathcal{E}, \mathcal{D}) = \emptyset, \quad i > 1,\]
- \(u_{n-1} = u\) and \(u\) is stable only in \(\sigma_0\) and \(\sigma_n\), i.e.
 \[\sigma_0(u)(\text{stable}) = \sigma_n(u)(\text{stable}) = 1 \text{ and } \sigma_i(u)(\text{stable}) = 0 \text{ for } 0 < i < n,\]

Let \(0 = k_1 < k_2 < \cdots < k_N = n\) be the maximal sequence of indices such that \(u_{k_i} = u\) for \(1 \leq i \leq N\). Then we call the sequence

\[(\sigma_0(u) =) \quad \sigma_{k_1}(u), \sigma_{k_2}(u) \ldots, \sigma_{k_N}(u) \quad (= \sigma_{n-1}(u))\]

a (!) run-to-completion computation of \(u\) (from (local) configuration \(\sigma_0(u)\)).
Divergence

We say, object \(u \) can diverge on reception \(cons \) from (local) configuration \(\sigma_0(u) \) if and only if there is an infinite, consecutive sequence

\[
(\sigma_0, \varepsilon_0) \xrightarrow{(cons_0,Snd_0)} (\sigma_1, \varepsilon_1) \xrightarrow{(cons_1,Snd_1)} \ldots
\]

such that \(u \) doesn’t become stable again.

- **Note**: disappearance of object not considered in the definitions.
 By the current definitions, it’s neither divergence nor an RTC-step.
Run-to-Completion Step: Discussion.

What people may dislike on our definition of RTC-step is that it takes a global and non-compositional view. That is:

- In the projection onto a single object we still see the effect of interaction with other objects.
- Adding classes (or even objects) may change the divergence behaviour of existing ones.
- Compositional would be: the behaviour of a set of objects is determined by the behaviour of each object “in isolation”. Our semantics and notion of RTC-step doesn’t have this (often desired) property.

Can we give (syntactical) criteria such that any global run-to-completion step is an interleaving of local ones?

Maybe: **Strict interfaces.**

- (A): Refer to private features only via “self”.

 (Recall that other objects of the same class can modify private attributes.)
- (B): Let objects only communicate by events, i.e. don’t let them modify each other’s local state via links at all.

(Proof left as exercise…)
Putting It All Together
The Missing Piece: Initial States

Recall: a labelled transition system is \((S, \rightarrow, S_0)\). We have

- \(S\): system configurations \((\sigma, \varepsilon)\)
- \(\rightarrow\): labelled transition relation \((\sigma, \varepsilon) \xrightarrow{(\text{cons}, \text{Snd})} (\sigma', \varepsilon')\).

Wanted: initial states \(S_0\).

Proposal:
Require a (finite) set of object diagrams \(OD\) as part of a UML model

And set

\[S_0 = \{ (\sigma, \varepsilon) | \sigma \in G^{-1}(OD), OD \in \Theta \mathcal{D}, \varepsilon \text{ empty} \}. \]

Other Approach: (used by Rhapsody tool) multiplicity of classes. We can read that as an abbreviation for an object diagram.
The **semantics** of the **UML model**

\[M = (\mathcal{CD}, \mathcal{SM}, \mathcal{OD}) \]

where

- some classes in \(\mathcal{CD} \) are stereotyped as ‘signal’ (standard), some signals and attributes are stereotyped as ‘external’ (non-standard),
- there is a 1-to-1 relation between classes and state machines,
- \(\mathcal{OD} \) is a set of object diagrams over \(\mathcal{CD} \),

is the **transition system** \((S, \rightarrow, S_0)\) constructed on the previous slide.

The **computations of** \(M \) are the computations of \((S, \rightarrow, S_0)\).
Contemporary UML Modelling Tools
"I took the transition from S0 to S1."

Rhapsody

generate

C.h
D.h
C.cpp
D.cpp

...MainDefaultCompound.cpp

Build/Make (compiling)

Run

DefCmp.exe
References

