Contents & Goals

Last Lecture:
- LSC intuition
- LSC abstract syntax

This Lecture:
- Educational Objectives: Capabilities for following tasks/questions.
 - What does this LSC mean?
 - Are this UML model’s state machines consistent with the interactions?
 - Please provide a UML model which is consistent with this LSC.
 - What is: activation, hot/cold condition, pre-chart, etc.?

- Content:
 - Symbolic Büchi Automata (TBA) and its (accepted) language.
 - Words of a model.
 - LSC formal semantics.
Excursus: Symbolic Büchi Automata (over Signature)

Symbolic Büchi Automata

Definition. A **Symbolic Büchi Automaton** (TBA) is a tuple

\[B = (\text{Expr}_B(X), X, Q, q_{\text{ini}}, \rightarrow, Q_F) \]

where

- \(X \) is a set of logical variables,
- \(\text{Expr}_B(X) \) is a set of Boolean expressions over \(X \),
- \(Q \) is a finite set of **states**,
- \(q_{\text{ini}} \in Q \) is the initial state,
- \(\rightarrow \subseteq Q \times \text{Expr}_B(X) \times Q \) is the **transition relation**. Transitions \((q, \psi, q')\) from \(q \) to \(q' \) are labelled with an expression \(\psi \in \text{Expr}_B(X) \).
- \(Q_F \subseteq Q \) is the set of **fair** (or accepting) states.
Definition. Let X be a set of logical variables and let $\text{Expr}_B(X)$ be a set of Boolean expressions over X.

A set (Σ, \models) is called an alphabet for $\text{Expr}_B(X)$ if and only if

- for each $\sigma \in \Sigma$,
- for each expression $\text{expr} \in \text{Expr}_B$, and
- for each valuation $\beta : X \to \mathcal{D}(X)$ of logical variables to domain $\mathcal{D}(X)$,

either $\sigma \models_{\beta} \text{expr}$ or $\sigma \not\models_{\beta} \text{expr}$.

An infinite sequence

$$w = (\sigma_i)_{i \in \mathbb{N}_0} \in \Sigma^\omega$$

over (Σ, \models) is called word for $\text{Expr}_B(X)$.

$Q = \{ q_1, \ldots, q_6 \}$

$\forall \bar{x} = \bar{z}_1$

$Q_{\text{F}} = \{ q_5 \}$

$X = \{ x, y, z \}$

$\text{Expr}(X) = a(x, y) \lor \neg \text{expr} \lor \neg \text{expr}$

$\rightarrow = \{ (q_1, a(x, y), q_5), \ldots \}$
Word Example

\[w = (q_0, (x,y) \rightarrow 0, (x,y) \rightarrow 4, \ldots) \]
\[b_0' = \left(\begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} \right), \]
\[q_1' = \left(\begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} \right) \]

Run of TBA over Word

Definition. Let \(B = (\text{Expr}_B(X), X, Q, q_{\text{ini}}, \rightarrow, Q_F) \) be a TBA and
\[w = \sigma_1, \sigma_2, \sigma_3, \ldots \]
a word for \(\text{Expr}_B(X) \).

An infinite sequence
\[q = q_0, q_1, q_2, \ldots \in Q^\omega \]
is called a **run** of \(B \) over \(w \) under valuation \(\beta : X \rightarrow \mathcal{P}(X) \) if and only if
- \(q_0 = q_{\text{ini}}, \)
- for each \(i \in \mathbb{N}_0 \) there is a transition \((q_i, \psi_i, q_{i+1}) \in \rightarrow \) of \(B \) such that \(\sigma_i \models \beta \psi_i \).
Run Example

\[q = q_0, q_1, q_2, \ldots \in Q^\omega \text{ s.t. } \sigma_i \models \psi_i, i \in \mathbb{N}_0. \]

The Language of a TBA

Definition.

We say \(B \) **accepts** word \(w \) (under \(\beta \)) if and only if \(B \) **has a run**

\[q = (q_i)_{i \in \mathbb{N}_0} \]

over \(w \) such that fair (or accepting) states are **visited infinitely often** by \(q \), i.e., such that

\[\forall i \in \mathbb{N}_0 \exists j > i : q_j \in Q_F. \]

We call the set \(\mathcal{L}_\beta(B) \subseteq \Sigma^\omega \) of words for \(\text{Expr}_B(X) \) that are accepted by \(B \) the **language of** \(B \).
Language of the Example TBA

$L_\beta(B)$ consists of the words

$$w = (\sigma_i)_{i \in \mathbb{N}_0}$$

where for $0 \leq n < m < k < \ell$ we have

- for $0 \leq i < n$, $\sigma_i \models \beta_{E_x, y}$
- $\sigma_n \models \beta_{E_x, y}$
- for $n < i < m$, $\sigma_i \models \beta_{E_x, y}$
- $\sigma_m \models \beta_{E_x, y}$
- for $m < i < k$, $\sigma_i \models \beta_{F_y, x}$
- $\sigma_k \models \beta_{F_y, x}$
- for $k < i < \ell$, $\sigma_i \not\models \beta_{F_y, x}$
- ...

Course Map

UML

Mathematics

Model

Instances

G = (N, E, f)

OD

$\varphi \in \text{OCL}$

$\mathcal{P} = (\mathcal{F}, \varnothing, V, \text{attr})$, SM

EXPR

$\mathcal{M} = (\Sigma_{\mathcal{F}}, A_{\mathcal{F}}, \neg_{\text{SM}})$

$B = (Q_{\text{SD}}, q_0, A_{\mathcal{F}}, \neg_{\text{SD}}, F_{\text{SD}})$

$\pi = (\sigma_0, \epsilon_0, \text{cons}_0, \text{Snd}_0, \sigma_1, \epsilon_1, \text{cons}_1, \text{Snd}_1, \ldots, \sigma_n, \epsilon_n, \text{cons}_n, \text{Snd}_n)$

$w_i = ((\sigma_i, \text{cons}_i, \text{Snd}_i))_{i \in \mathbb{N}}$
Words over Signature

Definition. Let $\mathcal{S} = (\mathcal{F}, \mathcal{G}, V, atr, \mathcal{E})$ be a signature and \mathcal{D} a structure of \mathcal{S}. A word over \mathcal{S} and \mathcal{D} is an infinite sequence

$$(\sigma_i, cons_i, Snd_i)_{i \in \mathbb{N}_0} \in \left(\Sigma_{\mathcal{D}} \times 2^{\mathcal{G}(\mathcal{F})} \times \text{Ev}(\mathcal{F}, \mathcal{D}) \times \mathcal{D}(\mathcal{F}) \times 2^{\mathcal{G}(\mathcal{F})} \times \text{Ev}(\mathcal{F}, \mathcal{D}) \times \mathcal{D}(\mathcal{F}) \right) \omega.$$
The Language of a Model

Recall: A UML model \(\mathcal{M} = (\mathcal{C}, \mathcal{I}, \mathcal{O}, \mathcal{D}) \) and a structure \(\mathcal{D} \) denotes a set \([\mathcal{M}]\) of (initial and consecutive) **computations** of the form

\[
(\sigma_0, \varepsilon_0) \xrightarrow{a_0} (\sigma_1, \varepsilon_1) \xrightarrow{a_1} (\sigma_2, \varepsilon_2) \xrightarrow{a_2} \ldots
\]

where

\[
a_i = (cons_i, Snd_i, u_i) \in 2^{\mathcal{D}(\mathcal{E})} \times \mathcal{E}(\mathcal{D}) \times 2^{\mathcal{D}(\mathcal{E})} \times \mathcal{E}(\mathcal{D}) \times 2^{\mathcal{D}(\mathcal{E})}.
\]

For the connection between models and interactions, we **disregard** the configuration of the ether and who made the step, and define as follows:

Definition. Let \(\mathcal{M} = (\mathcal{C}, \mathcal{I}, \mathcal{O}, \mathcal{D}) \) be a UML model and \(\mathcal{D} \) a structure. Then

\[
\mathcal{L}(\mathcal{M}) := \{(\sigma_i, cons_i, Snd_i)_{i \in \mathbb{N}_0} \in (\Sigma^{\mathcal{D}} \times \hat{A})^\omega \mid \exists (\varepsilon_i, u_i)_{i \in \mathbb{N}_0} : (\sigma_0, \varepsilon_0) \xrightarrow{(cons_0, Snd_0)} u_0 (\sigma_1, \varepsilon_1) \ldots \in [\mathcal{M}]\}
\]

is the **language** of \(\mathcal{M} \).

Example: The Language of a Model

\[
\mathcal{L}(\mathcal{M}) := \{(\sigma_i, cons_i, Snd_i)_{i \in \mathbb{N}_0} \in (\Sigma^{\mathcal{D}} \times \hat{A})^\omega \mid \exists (\varepsilon_i, u_i)_{i \in \mathbb{N}_0} : (\sigma_0, \varepsilon_0) \xrightarrow{(cons_0, Snd_0)} u_0 (\sigma_1, \varepsilon_1) \ldots \in [\mathcal{M}]\}
\]
Signal and Attribute Expressions

- Let $\mathcal{S} = (\mathcal{S}, \mathcal{E}, V, atr, \mathcal{E})$ be a signature and X a set of logical variables.

- The signal and attribute expressions $Expr_{\mathcal{S}}(\mathcal{E}, X)$ are defined by the grammar:

$$\psi ::= \text{true} \mid expr \mid E_x \mid E_y \mid \neg \psi \mid \psi_1 \lor \psi_2,$$

where $expr : \text{Bool} \in Expr_{\mathcal{S}}, E \in \mathcal{E}, x, y \in X$.

Satisfaction of Signal and Attribute Expressions

- Let $(\sigma, cons, Snd) \in \Sigma_{\mathcal{S}} \times \mathcal{A}$ be a triple consisting of system state, consume set, and send set.

- Let $\beta : X \rightarrow \mathcal{S}(\mathcal{E})$ be a valuation of the logical variables.

Then

- $(\sigma, cons, Snd) \models_{\beta} \text{true}$
- $(\sigma, cons, Snd) \models_{\beta} \neg \psi$ if and only if not $(\sigma, cons, Snd) \models_{\beta} \psi$
- $(\sigma, cons, Snd) \models_{\beta} \psi_1 \lor \psi_2$ if and only if $(\sigma, cons, Snd) \models_{\beta} \psi_1$ or $(\sigma, cons, Snd) \models_{\beta} \psi_2$
- $(\sigma, cons, Snd) \models_{\beta} expr$ if and only if $I(expr)(\sigma, \beta) = 1$
- $(\sigma, cons, Snd) \models_{\beta} E_x \if \text{and only if } \exists \vec{d} \bullet (\beta(x), (E, \vec{d}), \beta(y)) \in Snd$
- $(\sigma, cons, Snd) \models_{\beta} E_y \if \text{and only if } \exists \vec{d} \bullet (\beta(x), (E, \vec{d}), \beta(y)) \in cons$

Observation: semantics of models keeps track of sender and receiver at sending and consumption time. We disregard the event identity.
Alternative: keep track of event identities.
TBA over Signature

Definition. A TBA

\[\mathcal{B} = (\text{Expr}_\mathcal{B}(X), X, Q, q_{\text{init}}, \rightarrow, Q_F) \]

where \(\text{Expr}_\mathcal{B}(X) \) is the set of **signal and attribute expressions** \(\text{Expr}_\mathcal{S}(\mathcal{S}, X) \) over signature \(\mathcal{S} \) is called **TBA over** \(\mathcal{S} \).

- Any word over \(\mathcal{S} \) and \(\mathcal{D} \) is then a word for \(\mathcal{B} \).
 (By the satisfaction relation defined on the previous slide; \(\mathcal{D}(X) = \mathcal{D}(\mathcal{S}) \).)

- Thus a TBA over \(\mathcal{S} \) accepts words of models with signature \(\mathcal{S} \).
 (By the previous definition of TBA.)

TBA over Signature Example

\[(\sigma, \text{cons}, \text{Snd}) \models_{\text{B}} \text{expr} \iff I[\text{expr}](\sigma, \beta) = 1; \]

\[(\sigma, \text{cons}, \text{Snd}) \models_{\text{B}} E_{x,y} \iff (\beta(x), (E, d), \beta(y)) \in \text{Snd} \]
Course Map

Mathematics

Live Sequence Charts Semantics
TBA-based Semantics of LSCs

Plan:
- Given an LSC L with body
 \[(I, (\mathcal{L}, \preceq), \sim, \mathcal{R}, \text{Msg, Cond, LocInv}),\]
- construct a TBA B_L, and
- define $\mathcal{L}(L)$ in terms of $\mathcal{L}(B_L)$,
 in particular taking activation condition and activation mode into account.
- Then $\mathcal{M} \models L$ (universal) if and only if $\mathcal{L}(\mathcal{M}) \subseteq \mathcal{L}(L)$.

Recall: Intuitive Semantics

(i) **Strictly After:**

(ii) **Simultaneously:** (simultaneous region)

(iii) **Explicitly Unordered:** (co-region)

Intuition: A computation path violates an LSC if the occurrence of some events doesn’t adhere to the partial order obtained as the transitive closure of (i) to (iii).
Examples: Semantics?

Formal LSC Semantics: It’s in the Cuts!

Definition.

Let \((I, (\mathcal{L}, \preceq), \sim, \mathcal{P}, \text{Msg}, \text{Cond}, \text{LocInv})\) be an LSC body. A non-empty set \(\emptyset \neq C \subseteq \mathcal{L}\) is called a cut of the LSC body iff

- it is **downward closed**, i.e.
 \[
 \forall l, l' : l', l \in C \wedge l \preceq l' \implies l \in C,
 \]

- it is **closed** under simultaneity, i.e.
 \[
 \forall l, l' : l, l' \in C \wedge l \sim l' \implies l \in C, \text{ and}
 \]

- it comprises at least **one location per instance line**, i.e.
 \[
 \forall i \in I \exists l \in C : i_l = i.
 \]

A cut \(C\) is called **hot**, denoted by \(\theta(C) = \text{hot}\), if and only if at least one of its maximal elements is hot, i.e. if

\[
\exists l \in C : \theta(l) = \text{hot} \wedge \not\exists l' \in C : l \prec l'
\]

Otherwise, \(C\) is called **cold**, denoted by \(\theta(C) = \text{cold}\).
Examples: Cut or Not Cut? Hot/Cold?

(i) non-empty set $\emptyset \neq C \subseteq \mathcal{L}$.
(ii) downward closed, i.e. $\forall l, l' \in C \land l \preceq l' \implies l \in C$.
(iii) closed under simultaneity, i.e. $\forall l, l' \in C \land l \sim l' \implies l \in C$.
(iv) at least one location per instance line, i.e. $\forall i \in I \exists l \in C : i_l = i$.

$C_0 = \emptyset$
$C_1 = \{l_1,0,l_2,0,l_3,0\}$
$C_2 = \{l_1,1,l_2,1,l_3,0\}$
$C_3 = \{l_1,0,l_1,1\}$
$C_4 = \{l_1,0,l_1,1,l_2,0,l_3,0\}$
$C_5 = \{l_1,0,l_1,1,l_2,0,l_2,1,l_3,0\}$
$C_6 = \mathcal{L} \setminus \{l_1,3,l_2,3\}$
$C_7 = \mathcal{L}$

A Successor Relation on Cuts

The partial order of (\mathcal{L}, \preceq) and the simultaneity relation "~" induce a **direct successor relation** on cuts of \mathcal{L} as follows:

Definition. Let $C, C' \subseteq \mathcal{L}$ be cuts of an LSC body with locations (\mathcal{L}, \preceq) and messages Msg.

C' is called **direct successor** of C via **fired-set** F, denoted by $C \xrightarrow{F} C'$, if and only if

- $F \neq \emptyset$,
- $C' \setminus C = F$,
- for each message reception in F, the corresponding sending is already in C,

 $\forall (l, E, l') \in \text{Msg} : l' \in F \implies l \in C$, and
- locations in F, that lie on the same instance line, are pairwise unordered, i.e.

 $\forall l, l' \in F : l \neq l' \land i_l = i_{l'} \implies l \not\preceq l' \land l' \not\preceq l$.
Properties of the Fired-set

\(C \sim_F C' \) if and only if
- \(F \neq \emptyset \),
- \(C' \setminus C = F \),
- \(\forall (l, E, l') \in \text{Msg} : l' \in F \implies l \in C \), and
- \(\forall l, l' \in F : l \neq l' \land i_l = i_{l'} \implies l \not{\leq} l' \land l' \not{\leq} l \)

Note: \(F \) is closed under simultaneity.

Note: locations in \(F \) are direct \(\preceq \)-successors of locations in \(C \), i.e.

\[\forall l' \in F \exists l \in C : l \prec l' \land \exists l'' \in C : l' \prec l'' \prec l \]

Successor Cut Examples

(i) \(F \neq \emptyset \), (ii) \(C' \setminus C = F \),
(iii) \(\forall (l, E, l') \in \text{Msg} : l' \in F \implies l \in C \), and
(iv) \(\forall l, l' \in F : l \neq l' \land i_l = i_{l'} \implies l \not{\leq} l' \land l' \not{\leq} l \)
Idea: Accept Timed Words by Advancing the Cut

- Let $w = (\sigma_0, \text{cons}_0, \text{Snd}_0), (\sigma_1, \text{cons}_1, \text{Snd}_1), (\sigma_2, \text{cons}_2, \text{Snd}_2), \ldots$ be a word of a UML model and β a valuation of $I \cup \{\text{self}\}$.

- Intuitively (and for now disregarding cold conditions), an LSC body $(I,(\mathcal{L},\preceq),\sim,\mathcal{P},\text{Msg},\text{Cond},\text{LocInv})$ is supposed to accept w if and only if there exists a sequence

 $$C_0 \xrightarrow{F_1} C_1 \xrightarrow{F_2} C_2 \cdots \xrightarrow{F_n} C_n$$

 and indices $0 = i_0 < i_1 < \cdots < i_n$ such that for all $0 \leq j < n$,

 - for all $i_j \leq k < i_{j+1}$, $(\sigma_k, \text{cons}_k, \text{Snd}_k), \beta$ satisfies the hold condition of C_j,
 - $(\sigma_{i_j}, \text{cons}_{i_j}, \text{Snd}_{i_j}), \beta$ satisfies the transition condition of F_j,
 - C_n is cold,
 - for all $i_n < k$, $(\sigma_k, \text{cons}_{i_j}, \text{Snd}_{i_j}), \beta$ satisfies the hold condition of C_n.

Language of LSC Body

The language of the body

$$(I,(\mathcal{L},\preceq),\sim,\mathcal{P},\text{Msg},\text{Cond},\text{LocInv})$$

of LSC L is the language of the TBA

$$B_L = (\text{Expr}_B(X),X,Q,q_{\text{ini}},\rightarrow,Q_F)$$

with

- $\text{Expr}_B(X) = \text{Expr}_B(\mathcal{P},X)$
- Q is the set of cuts of (\mathcal{L},\preceq), q_{ini} is the instance heads cut,
- $F = \{C \in Q \mid \theta(C) = \text{cold}\}$ is the set of cold cuts of (\mathcal{L},\preceq),
- \rightarrow as defined in the following, consisting of
 - loops (q,ψ,q),
 - progress transitions (q,ψ,q') corresponding to $q \xrightarrow{F} q'$, and
 - legal exits (q,ψ,\mathcal{L}).

Language of LSC Body: Intuition

$B_L = (\text{Expr}_B(X), X, Q, q_{\text{ini}}, \rightarrow, Q_F)$ with

- $\text{Expr}_B(X) = \text{Expr}_{\mathcal{B}}(\mathcal{A}, X)$
- Q is the set of cuts of (\mathcal{L}, \preceq), q_{ini} is the instance heads cut,
- $F = \{C \in Q \mid \theta(C) = \text{cold}\}$ is the set of cold cuts,
- \rightarrow consists of
 - loops (q, ψ, q),
 - progress transitions (q, ψ, q') corresponding to $q \rightarrow^F q'$, and
 - legal exits (q, ψ, \mathcal{L}).

Step I: Only Messages
Some Helper Functions

- **Message-expressions of a location**:
 \[
 \delta(l) := \{E_{i_j}^j, i_j | (l, E, l') \in \text{Msg} \} \cup \{E_{i_j}^j, i_j' | (l', E, l) \in \text{Msg} \},
 \]
 \[
 \delta([l_1, \ldots, l_n]) := \delta(l_1) \cup \ldots \cup \delta(l_n).
 \]

\[
\bigvee \emptyset := \text{true}; \bigvee \{E_{i_1}^{k_1}, \ldots F_{i_k}^{k_k} \} := \bigvee_{1 \leq j < k} E_{i_j} \bigvee_{k \leq j} F_{i_j}
\]

Loops

- How long may we legally stay at a cut \(q \)?
- **Intuition**: those \((\sigma_i, \text{cons}_i, \text{Snd}_i)\) are allowed to fire the self-loop \((q, \psi, q)\) where
 - \(\text{cons}_i \cup \text{Snd}_i\) comprises only irrelevant messages:
 - **weak mode**: no message from a direct successor cut is in,
 - **strict mode**: no message occurring in the LSC is in,
 - \(\sigma_i\) satisfies the local invariants active at \(q \)

And nothing else.

- **Formally**: Let \(F := F_1 \cup \ldots \cup F_n \) be the union of the firedsets of \(q \).\]
 \[
 \psi := \neg \left(\bigvee \delta(F) \right) \land \psi(q).
 \]
 \[
 = \text{true if } F = \emptyset
 \]
Progress

- When do we move from q to q'?

Intuition: those $(\sigma_i, \text{cons}_i, \text{Snd}_i)$ fire the progress transition (q, ψ, q') for which there exists a firedset F such that $q \xrightarrow{F} q'$ and

- $\text{cons}_i \cup \text{Snd}_i$ comprises exactly the messages that distinguish F from other firedsets of q (weak mode), and in addition no message occurring in the LSC is in $\text{cons}_i \cup \text{Snd}_i$ (strict mode),

- σ_i satisfies the local invariants and conditions relevant at q

Formally: Let F, F_1, \ldots, F_n be the firedsets of q and let $q \xrightarrow{F} q'$ (unique).

\[\psi := \bigwedge F \land \neg \bigvee F_1 \lor \cdots \lor F_n \land \bigwedge F \lor \psi(q, q'). \]

Step II: Conditions and Local Invariants
Some More Helper Functions

- **Constraints** relevant at cut q:

 $\psi(q) = \{ \psi \mid \exists l \in q, l' \notin q \mid (l, \psi, \theta, l') \in \text{LocInv} \lor (l', \psi, \theta, l) \in \text{LocInv} \}$,

 $\psi(q) = \psi_{\text{hot}}(q) \cup \psi_{\text{cold}}(q)$

 $\bigwedge \emptyset := \text{false}; \quad \bigwedge \{ \psi_1, \ldots, \psi_n \} := \bigwedge_{1 \leq i \leq n} \psi_i$

Loops with Conditions

- How long may we **legally** stay at a cut q?

- **Intuition**: those $(\sigma_i, \text{cons}_i, \text{Snd}_i)$ are allowed to fire the self-loop (q, ψ, q) where

 - $\text{cons}_i \cup \text{Snd}_i$ comprises only irrelevant messages:
 - **weak mode**: no message from a direct successor cut is in,
 - **strict mode**: no message occurring in the LSC is in,
 - σ_i satisfies the local invariants active at q

 And nothing else.

- **Formally**: Let $F := F_1 \cup \cdots \cup F_n$

 be the union of the firedsets of q.

 $\psi := \neg(\bigvee \delta(F)) \land \bigwedge \psi(q)$.

 = **true if $F = \emptyset$**
Even More Helper Functions

- **Constraints** relevant when moving from q to cut q':

 $$
 \psi_0(q, q') = \{ \psi \mid \exists L \subseteq \mathcal{L} \mid (L, \psi, \theta) \in \text{Cond} \land L \cap (q' \setminus q) \neq \emptyset \} \\
 \cup \psi_0(q') \\
 \setminus \{ \psi \mid \exists l \in q' \setminus q, t' \in \mathcal{L} \mid (l, o, \text{expr}, \theta, t') \in \text{LocInv} \lor (l', \text{expr}, \theta, o, t) \in \text{LocInv} \} \\
 \cup \{ \psi \mid \exists l \in q' \setminus q, t' \in \mathcal{L} \mid (l, \bullet, \text{expr}, \theta, l') \in \text{LocInv} \lor (l', \text{expr}, \theta, \bullet, l) \in \text{LocInv} \}
 $$

 $$
 \psi(q, q') = \psi_{\text{hot}}(q, q') \cup \psi_{\text{cold}}(q, q')
 $$

Progress with Conditions

- When do we move from q to q'?

 - **Intuition**: those $(\sigma_i, \text{cons}_i, \text{Snd}_i)$ fire the progress transition (q, ψ, q') for which there exists a firedset F such that $q \leadsto_F q'$ and

 - $\text{cons}_i \cup \text{Snd}_i$ comprises exactly the messages that distinguish F from other firedsets of q (weak mode), and in addition no message occurring in the LSC is in $\text{cons}_i \cup \text{Snd}_i$ (strict mode),
 - σ_i satisfies the local invariants and conditions relevant at q'.

 - **Formally**: Let F, F_1, \ldots, F_n be the firedsets of q and let $q \leadsto_F q'$ (unique).

 - $\psi := \bigwedge \mathcal{E}(F) \land \neg(\bigvee \{ \mathcal{E}(F_1) \cup \cdots \cup \mathcal{E}(F_n) \} \setminus \mathcal{E}(F)) \land \psi(q, q')$.

Step III: Cold Conditions and Cold Local Invariants

Legal Exits

- When do we take a legal exit from \(q \)?
- **Intuition**: those \((\sigma_i, \text{cons}_i, \text{Snd}_i) \) fire the legal exit transition \((q, \psi, \mathcal{L}) \)
 - for which there exists a firedset \(F \) and some \(q' \) such that \(q \rightsquigarrow_F q' \) and
 - \(\text{cons}_i \cup \text{Snd}_i \) comprises exactly the messages that distinguish \(F \) from other firedsets of \(q \) (weak mode), and in addition no message occurring in the LSC is in \(\text{cons}_i \cup \text{Snd}_i \) (strict mode) and
 - at least one cold condition or local invariant relevant when moving to \(q' \) is violated, or
 - for which there is no matching firedset and
 - at least one cold local invariant relevant at \(q \) is violated.
- **Formally**: Let \(F_1, \ldots, F_n \) be the firedsets of \(q \) with \(q \rightsquigarrow_F q' \).
 - \(\psi := \bigwedge_{i=1}^n \delta(F_i) \land \neg(\bigvee(\delta(F_1) \cup \cdots \cup \delta(F_n)) \setminus \delta(F_i)) \land \bigvee_{i=1}^n \psi_{\text{cold}}(q, q'_i) \land \neg(\bigvee\delta(F_i)) \land \bigvee\psi_{\text{cold}}(q) \)
Example

Finally: The LSC Semantics

A full LSC L consist of

- a **body** $(I, (L, \preceq), \sim, S, \text{Msg}, \text{Cond}, \text{LocInv})$,
- an **activation condition** (here: event) $ac = E_{i_1,i_2}^{r}, E \in S, i_1, i_2 \in I$,
- an **activation mode**, either **initial** or **invariant**,
- a **chart mode**, either **existential** (cold) or **universal** (hot).

A set W of words over S and D **satisfies** L, denoted $W \models L$, iff L

- **universal** (\(=\) hot), **initial**, and
 \[\forall w \in W \forall \beta : I \to \text{dom}(\sigma(w^0)) \bullet w \text{ activates } L \implies w \in L_\beta(B_L). \]
- **existential** (\(=\) cold), **initial**, and
 \[\exists w \in W \exists \beta : I \to \text{dom}(\sigma(w^0)) \bullet w \text{ activates } L \wedge w \in L_\beta(B_L). \]
- **universal** (\(=\) hot), **invariant**, and
 \[\forall w \in W \forall k \in \mathbb{N}_0 \forall \beta : I \to \text{dom}(\sigma(w^k)) \bullet w/k \text{ activates } L \implies w/k \in L_\beta(B_L). \]
- **existential** (\(=\) cold), **invariant**, and
 \[\exists w \in W \exists k \in \mathbb{N}_0 \exists \beta : I \to \text{dom}(\sigma(w^k)) \bullet w/k \text{ activates } L \wedge w/k \in L_\beta(B_L). \]
Model Consistency wrt. Interaction

- We assume that the set of interactions \(\mathcal{I} \) is partitioned into two (possibly empty) sets of \textit{universal} and \textit{existential} interactions, i.e.

\[
\mathcal{I} = \mathcal{I}_\forall \cup \mathcal{I}_\exists.
\]

Definition. A model

\[
\mathcal{M} = (\mathcal{C}, \mathcal{M}, \mathcal{D}, \mathcal{I})
\]

is called \textit{consistent} (more precise: the constructive description of behaviour is consistent with the reflective one) if and only if

\[
\forall \mathcal{I} \in \mathcal{I}_\forall : \mathcal{L}(\mathcal{M}) \subseteq \mathcal{L}(\mathcal{I})
\]

and

\[
\forall \mathcal{I} \in \mathcal{I}_\exists : \mathcal{L}(\mathcal{M}) \cap \mathcal{L}(\mathcal{I}) \neq \emptyset.
\]
In UML, reflective (temporal) descriptions are subsumed by interactions. A UML model $M = (CD, LM, OD, I)$ has a set of interactions I. An interaction $I \in I$ can be (OMG claim: equivalently) diagrammed as

- sequence diagram,
- timing diagram, or
- communication diagram (formerly known as collaboration diagram).
Interactions as Reflective Description

- In UML, reflective (temporal) descriptions are subsumed by interactions.
- A UML model $M = (O, M, OD, J)$ has a set of interactions J.
- An interaction $I \in J$ can be (OMG claim: equivalently) diagrammed as
 - sequence diagram,
 - timing diagram, or
 - communication diagram (formerly known as collaboration diagram).

Why Sequence Diagrams?

Most Prominent: Sequence Diagrams — with long history:
- Message Sequence Charts, standardized by the ITU in different versions, often accused to lack a formal semantics.
- Sequence Diagrams of UML 1.x

Most severe drawbacks of these formalisms:
- unclear interpretation: example scenario or invariant?
- unclear activation: what triggers the requirement?
- unclear progress requirement: must all messages be observed?
- conditions merely comments
- no means to express forbidden scenarios
Thus: Live Sequence Charts

- SDs of UML 2.x address some issues, yet the standard exhibits unclarities and even contradictions [Harel and Maoz, 2007, Störrle, 2003]
- For the lecture, we consider Live Sequence Charts (LSCs) [Damm and Harel, 2001, Klose, 2003, Harel and Marelly, 2003], who have a common fragment with UML 2.x SDs [Harel and Maoz, 2007]
- Modelling guideline: stick to that fragment.

Side Note: Protocol Statemachines

Same direction: call orders on operations
- “for each C instance, method f() shall only be called after g() but before h()”

Can be formalised with protocol state machines.
References

