— 20 — 2014-02-03 — main —

Software Design, Modelling and Analysis in UML

Lecture 20: Inheritance |

2014-02-03

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Contents & Goals

— 20 — 2014-02-03 — Sprelim —

Last Lecture:

Live Sequence Charts Semantics

This Lecture:

Educational Objectives: Capabilities for following tasks/questions.
What's the Liskov Substitution Principle?
What is late/early binding?
What is the subset, what the uplink semantics of inheritance?
What's the effect of inheritance on LSCs, State Machines, System States?

What's the idea of Meta-Modelling?

Content:
Quickly: Behavioural Features, Active vs. Passive
Inheritance in UML: concrete syntax
Liskov Substitution Principle — desired semantics

Two approaches to obtain desired semantics
The UML Meta Model

2/99

— 20 - 2014-02-03 — main —

Active and Passive Objedidarel and Gery, 1997]

3/99

What about non-Active Objects?

— 20 — 2014-02-03 — Sactpass —

Recall:

We're still working under the assumption that all classes in the class
diagram (and thus all objects) are active.

That is, each object has its own thread of control and is (if stable)
at any time ready to process an event from the ether.

But the world doesn’t consist of only active objects.

For instance, in the crossing controller from the exercises we could wish to have
the whole system live in one thread of control.

So we have to address questions like:
Can we send events to a non-active object?
And if so, when are these events processed?

etc.

4/99

Active and Passive Objects: Nomenclature

— 20 — 2014-02-03 — Sactpass —

[Harel and Gery, 1997] propose the following (orthogonal!) notions:

A class (and thus the instances of this class) is either active or passive
as declared in the class diagram.

An active object has (in the operating system sense) an own thread:
an own program counter, an own stack, etc.

A passive object doesn't.

A class is either reactive or non-reactive.
A reactive class has a (non-trivial) state machine.

A non-reactive one hasn't.

Which combinations do we understand?

active | passive
reactive vV L
non-reactive | (V) (v)

5/99

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Passive and Reactive

— 20 — 2014-02-03 — Sactpass —

So why don't we understand passive/reactive?

Assume passive objects u; and us, and active object u,
and that there are events in the ether for all three.

Which of them (can) start a run-to-completion step...?
Do run-to-completion steps still interleave...?

Reasonable Approaches:

Avoid — for instance, by
require that reactive implies active for model well-formedness.

requiring for model well-formedness that events are never sent to
instances of non-reactive classes.

Explain — here: (following [Harel and Gery, 1997])
Delegate all dispatching of events to the active objects.

6,99

Passive Reactive Classes

— 20 — 2014-02-03 — Sactpass —

Firstly, establish that each object u knows, via (implicit) link itsAct,
the active object u,.: which is responsible for dispatching events to w.

If w is an instance of an active class, then u, = u.

itsAct

dest

1

n

0.1

7| OHReachve [—Ticet ongiual CD
| T /
1
Cs >“ D i i itsAct
itsAct B 1
1 1
dest dest
((signal)) ((signal))
Ec, /7 Ep
added
[»\F&'o.‘
)93 Rlepso
(Luzy-c: Ls{'{('o " l,um[a«ce/

1/99

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Passive Reactive Classes

Firstly, establish that each object u knows, via (implicit) link itsAct,
the active object u,.: which is responsible for dispatching events to w.

If v is an instance of an active class, then u, = wu. &
/ — — — — — —
itsAct /
(] |

[mn

uy : Cq ug : Co Ug - D :‘ itsAct
(- itsAct
L AN
|
e :Ec (dest

Sending an event: Dispatching an event:

— 20 — 2014-02-03 — Sactpass —

Establish that of each signal we
have a version E¢- with an
association dest : Cp,1, C € €.

Then n!E in u; : C1 becomes:

Create an instance u. of Ec, and
set u.'s dest to uq := o(u1)(n).

Send to u, := o(o(u1)(n))(itsAct),
e, e =D (Ua, Ue).

Observation: the ether only has
W & . .
events for active objects.

Say u. is ready in the ether for u,.

Then u, asks o(ue)(dest) = ugq to
process 1. — and waits until
completion of corresponding RTC.

uq may in particular discard event.

1 /99

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

— 20 - 2014-02-03 — main —

And What About Methods?

8/99

And What About Methods?

— 20 — 2014-02-03 — Smethods —

In the current setting, the (local) state of objects is only modified by
actions of transitions, which we abstract to transformers.

In general, there are also methods.

UML follows an approach to separate
the interface declaration from
the implementation.
In C4++ lingo: distinguish declaration and definition of method.

In UML, the former is C
called behavioural feature
and can (roughly) be & F(Tityee o Tim) 71 Py
a call interface f(m,,...,7n,) : T §2 F(T2,1,- 3 T2my) 1 T2 Py
(stgnal)) E

a signal name FE

Note: The signal list is redundant as it can be looked up in the state machine
of the class. But: certainly useful for documentation.

0/99

Behavioural Features C

— 20 — 2014-02-03 — Smethods —

51 f(T]_,lj-"yT]_,’l’L]_) | P1
gg F(Tg,l,.. . ,TQ,nQ) . T2 P2
(signal)) F

Semantics:
The implementation of a behavioural feature can be provided by:

An operation.

In our setting, we simply assume a transformer like T%.

It is then, e.g. clear how to admit method calls as actions on transitions:
function composition of transformers (clear but tedious: non-termination).

E/x=0, [()
-, Ny

-

In a setting with Java as action language: operation is a method body. pt :=0F

! . [} - - 1 ’l;—-/ -—7
The class' state-machine (“triggered operation”). H
4
Calling F' with ngo parameters for a stable instance of C - oTE '

creates an auxiliary event F' and dispatches it (bypassing the ether).
Transition actions may fill in the return value.
On completion of the RTC step, the call returns.

For a non-stable instance, the caller blocks until stability is reached again.

10/99

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Behavioural Features: Visibility and Properties

— 20 — 2014-02-03 — Smethods —

C

& f(m, .
52 F(Tz,l, -

-,Tl,nl) . T1 P1

. ,TQ,n2) . T2 P2

/

(signal)) FE

Visibility:

7

d

oo Cf

Extend typing rules to sequences of actions such that
a well-typed action sequence only calls visible methods.

Useful properties:

concurrency
concurrent — is thread safe

guarded — some mechanism ensures/should ensure mutual exclusion

sequential — is not thread safe, users have to ensure mutual exclusion

isQuery — doesn't modify the state space (thus thread safe)

For simplicity, we leave the notion of steps untouched, we construct our

semantics around state machines.

Yet we could explain pre/post in OCL (if we wanted to).

11 /99

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

— 20 — 2014-02-03 — main

State Machines: Discussion.

12/99

Semantic Variation Points

Pessimistic view: They are legion...
For instance,

allow absence of initial pseudo-states
can then “be” in enclosing state without being in any substate; or assume
one of the children states non-deterministically

(implicitly) enforce determinism, e.g.
by considering the order in which things have been added to the CASE
tool's repository, or graphical order

allow true concurrency

Exercise: Search the standard for “semantical variation point”.

[Crane and Dingel, 2007], e.g., provide an in-depth comparison of
Statemate, UML, and Rhapsody state machines — the bottom line is:

the intersection is not empty
(i.e. there are pictures that mean the same thing to all three communities)

none is the subset of another
(i.e. for each pair of communities exist pictures meaning different things)

— 20 — 2014-02-03 — Ssemvar —

Optimistic view: tools exist with complete and consistent code generation.

13/99

Course Map

CD, SD S

l

<, 5D

i

B = (QSD;q(hAya _>SD7FSD

%D
(consp,Sndg)

™ = (0'0,50) 0'1751 N Wy = 027 Consg, Snd))zG]N
G = (N,E, f)
L]
OD

— 20 — 2014-02-03 — main

14/99

— 20 — 2014-02-03 — main

Inheritance: Syntax

15/99

bebavi owval

Rl ADSHract SYNtax i e wiid

— 20 — 2014-02-03 — Ssyntax —

qum‘k (X

T,6,V,atr, &).
- inhacitomce reldia,

S = (9,6,V, atr, &, F, mth, <)

Recall: a signature (with signals) is a tuple .¥

Now (finally): extend to

where F'/mth are methods, analogously to attributes and

q C [T (6 x &) u(C\E X E\E)

is a generalisation relation such that C' <™ C for no C' € € (“acyclic").

—

C <& D reads as

C' is a generalisation of D,

D is a specialisation of C),

D inherits from C,) C —
D is a sub-class of C, [g
C' is a super-class of D,

16/99

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

CRC,
D4AG i

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Recall: Reflexive, Transitive Closure of Generalisation

— 20 — 2014-02-03 — Ssyntax —

7

U

N

Definition. Given classes Cy, C, D € €, we say D inherits from
Cp via C; if and only if there are Cj,...C%,Cq,...CT € € such

that

Co <Cy<...Cra Cp <«C{<...C7" < D.

We use ‘=<' to denote the reflexive, transitive closure of ‘<.

In the following, we assume

that all attribute (method) names are of the form

C:w, CeFUE (C:f, CeF),

that we have C::v € atr(C) resp. C::f € mth(C) if and only if v (f)
appears in an attribute (method) compartment of C' in a class diagram.

We still want to accept “context C inv:v < 0", which v is meant? Later!

17 /99

— 20 — 2014-02-03 — main

Inheritance: Desired Semantics

18/99

— 20 — 2014-02-03 — Ssem —

__._;
—h

Q/ €! Sﬂ,:c‘a’\fofq

19/99

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Desired Semantics of Specialisation: Subtyping

— 20 — 2014-02-03 — Ssem —

There is a classical description of what one expects from sub-types,
which in the OO domain is closely related to inheritance:

The principle of type substitutability [Liskov, 1988, Liskov and Wing, 1994].
(Liskov Substitution Principle (LSP).)

“If for each object 0 of type S there is an object 05 of type 1" such that
for all programs P defined in terms of 1,
the behavior of P is unchanged when o7 is substituted for o5
then S is a subtype of T'."

S wh-tpe of T:&D Vo, eST0, e TV o [AJG,) =L R-[()

20/99

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Desired Semantics of Specialisation: Subtyping

— 20 — 2014-02-03 — Ssem —

There is a classical description of what one expects from sub-types,
which in the OO domain is closely related to inheritance:

The principle of type substitutability [Liskov, 1988, Liskov and Wing, 1994].
(Liskov Substitution Principle (LSP).)

“If for each object 0 of type S there is an object 05 of type 1" such that
for all programs P defined in terms of T’
the behavior of P is unchanged when o7 is substituted for o5
then S is a subtype of T'."

In other words: [Fischer and Wehrheim, 2000]

“An instance of the sub-type shall be usable whenever an instance
of the supertype was expected,
without a client being able to tell the difference.”

So, what's “usable”? Who's a “client” 7 And what's a “difference” ?

20/99

“...shall be usable..?

— 20 — 2014-02-03 — Ssem —

e AT

! A ’ x : Int d (signal)) E
. = . f(Int) : Int i
s L ‘// M\.%lsd N /\
Ui - C U D
D (signal)) F
wilue v O
TCPICs it ud) @7 ung b
s. G)TTEY (v, {‘q'l_wﬁ) but (*} ‘
OCL: wwst be dluel! Sequence Diagrams:
context C inv:x >0
:C : D
Actions: / S R
itsC.x =0) wwst deonld wjjﬁ)
itsC.£(0 b biad k\ .
itsC' | F well oS F inStwrces
vz as
Triggers:

21/99

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

“...aclient..”?

— 20 — 2014-02-03 — Ssem —

“An instance of the sub-type shall be usable whenever an instance of the supertype
was expected, without a client being able to tell the difference.”

Narrow interpretation: another object in the model.

Wide interpretation: another modeler.

C
x: Int
f(Int) : Int

AN

D

22/99

“...can't tell difference..”? -

— 20 — 2014-02-03 — Ssem —

x : Int {(signal)) FE
f(Int) : Int
~ /\
Ui - C U D
D (signal)) F
OCL:

I[context C inv : z > 0](o1,0) vs. I[context C inv : z > 0](02,)

23/99

“...can't tell difference..”? -

— 20 — 2014-02-03 — Ssem —

x : Int {(signal)) FE
f(Int) : Int A
/\
Ui - C U D
D (signal)) F

Triggers, Actions: if

(oo, <o) (consi’jndO)> (01 [2Eg) s 1)
SXD) /LSP

is possible, then Z_UZ/Ual [z /vy |
(consO,Sndo)\ LY*J
(00, €0) - > (01, €1)

should be possible — sub-type does less on inputs of super-type. j

[oe SPuL U1 eDCd) and o poogas o@ém'f‘ma of -[-/]

24 /99

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

“...can't tell difference..”? -

— 20 — 2014-02-03 — Ssem —

u1:C’ UQZD

x: Int

f(Int) : Int

AN

D

Sequence Diagram: w|i 5%

{(signal)) FE

(signal)) F

L.e L(Br) implies w € L(Bg).

[Uz/u&:l
7
W) BC)

25/99

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Motivations for Generalisation

— 20 — 2014-02-03 — Ssem —

Re-use,

Sharing,

Avoiding Redundancy,
Modularisation,
Separation of Concerns,
Abstraction,

Extensibility,

— See W on object-oriented analysis, development, programming.

26/99

westphal
Bleistift

What DoedFischer and Wehrheim, 2000 lean for UML?

— 20 — 2014-02-03 — Ssem —

“An instance of the sub-type shall be usable whenever an instance of the supertype
was expected, without a client being able to tell the difference.”

Wanted: sub-typing for UML.
With

C D,

we don’'t even have usability.

It would be nice, if the well-formedness rules and semantics of

C

AN

D1 D2

would ensure Dy is a sub-type of C:

that D; objects can be used interchangeably by everyone who is using C's,

is not able to tell the difference (i.e. see unexpected behaviour).

27 /99

— 20 — 2014-02-03 — main

“...shall be usable..” for UML

28/99

— 20 — 2014-02-03 — Sstatic —

(signal)) F

Easy: Static Typing ¢ G
"[,S(/‘l x: Int x: Int
v f(nt) : Int f(Int) : Int
o AN AN
: Dl D2
Given: ZZSD] x : Bool
f(Float) : Int

(signal)) F

Wanted:
x > 0 also well-typed for D,
assignment ¢tsC1 := itsD1 being well-typed

itsC1.x =0, itsC1.f(0), itsC1 | F
being well-typed (and doing the right thing).

Approach:
Simply define it as being well-typed,

adjust system state definition to do the right thing.

29/99

Static Typing Cont'd

— 20 — 2014-02-03 — Sstatic —

Ch Cy
x: Int x: Int
f(nt) : Int f(Int) : Int (signal)) E
/N AN /\
D1 D2
x : Bool {(signal)) F
f(Float) : Int

Notions (from category theory):
invariance,
covariance,

contravariance.
We could call, e.g. a method, sub-type preserving, if and only if it

accepts more general types as input (contravariant),

provides a more specialised type as output (covariant).

This is a notion used by many programming languages — and easily type-checked.
30/99

— 20 — 2014-02-03 — main

Excursus: Late Binding of Behavioural Features

31/99

Late Binding

— 20 — 2014-02-03 — Slatebind —

What transformer applies in what situation? (Early (compile time) binding.)

f not overridden in D [overridden in D

c ¢ value
someC fO: It of
| Q) : Int X someC/
Co ‘w) Zli D someD
fO : Int

someC -> £()

someD -> ()

someC —> £()

What one could want is something different: (Late binding.)

someC -> ()

someD -> £()

someC —-> £()

32/99

Late Binding in the Standard and Programming Lang.

— 20 — 2014-02-03 — Slatebind —

In the standard, Section 11.3.10, “CallOperationAction”:

“Semantic Variation Points
The mechanism for determining the method to be invoked as a
result of a call operation is unspecified.” [OMG, 2007b, 247]

In C++,
methods are by default “(early) compile time binding”,
can be declared to be “late binding” by keyword “virtual”,

the declaration applies to all inheriting classes.

In Java,
methods are “late binding”;

there are patterns to imitate the effect of “early binding”

Exercise: What could have driven the designers of C++ to take that approach?

33/99

Late Binding in the Standard and Programming Lang.

— 20 — 2014-02-03 — Slatebind —

In the standard, Section 11.3.10, “CallOperationAction”:

“Semantic Variation Points
The mechanism for determining the method to be invoked as a
result of a call operation is unspecified.” [OMG, 2007b, 247]

In C++,
methods are by default “(early) compile time binding”,
can be declared to be “late binding” by keyword “virtual”,

the declaration applies to all inheriting classes.

In Java,
methods are “late binding”;

there are patterns to imitate the effect of “early binding”

Exercise: What could have driven the designers of C++ to take that approach?

Note: late binding typically applies only to methods, not to attributes.
(But: getter/setter methods have been invented recently.)

33/99

— 20 - 2014-02-03 — main —

Back to the Main Track: “...tell the difference..” for UML

34 /99

With Only Early Binding...

— 20 — 2014-02-03 — Ssubtyping —

...we're done (if we realise it correctly in the framework).

Then

if we're calling method f of an object wu,

which is an instance of D with C' < D

via a C-link,

then we (by definition) only see and change the C-part.

We cannot tell whether w is a C or an D instance.

So we immediately also have behavioural /dynamic subtyping.

35/99

Difficult: Dynamic Subtyping

— 20 — 2014-02-03 — Ssubtyping —

C::f and D::f are type compatible,
but D is not necessarily a sub-type of C.

Examples: (C++)

int C::f(int) {
return O;

¥

VS.

f(Int) : Int

o>

f(Int) : Int

int D::f(int) {

I¥

return 1;

36,99

Difficult: Dynamic Subtyping

— 20 — 2014-02-03 — Ssubtyping —

C::f and D::f are type compatible,
but D is not necessarily a sub-type of C.

Examples: (C++)

int C::f(int) {
return O;

¥

int C::f(int) {
return (rand() % 2);

¥

VS.

VS.

f(Int) : Int

b

f(Int) : Int

int D::f(int) {

I¥

return 1;

int D::f(int x) {

}s

return (x % 2);

36,99

Sub-Typing Principles Cont’d

— 20 — 2014-02-03 — Ssubtyping —

In the standard, Section 7.3.36, “Operation”:

“Semantic Variation Points

[...] When operations are redefined in a specialization, rules regarding
invariance, covariance, or contravariance of types and preconditions
determine whether the specialized classifier is substitutable for its more
general parent. Such rules constitute semantic variation points with
respect to redefinition of operations.” [OMG, 2007a, 106]

3799

Sub-Typing Principles Cont’d

— 20 — 2014-02-03 — Ssubtyping —

In the standard, Section 7.3.36, “Operation”:

“Semantic Variation Points

[...] When operations are redefined in a specialization, rules regarding
invariance, covariance, or contravariance of types and preconditions
determine whether the specialized classifier is substitutable for its more
general parent. Such rules constitute semantic variation points with
respect to redefinition of operations.” [OMG, 2007a, 106]

So, better: call a method sub-type preserving, if and only if it
(i) accepts more input values (contravariant),
(i) on the old values, has fewer behaviour (covariant).

Note: Fhis (ii) is no longer a matter of simple type-checking!

3799

Sub-Typing Principles Cont’d

In the standard, Section 7.3.36, “Operation”:
“Semantic Variation Points
[...] When operations are redefined in a specialization, rules regarding
invariance, covariance, or contravariance of types and preconditions
determine whether the specialized classifier is substitutable for its more
general parent. Such rules constitute semantic variation points with
respect to redefinition of operations.” [OMG, 2007a, 106]

So, better: call a method sub-type preserving, if and only if it

(i) accepts more input values (contravariant),

(i) on the old values, has fewer behaviour (covariant).

Note: Fhis (ii) is no longer a matter of simple type-checking!

And not necessarily the end of the story:
One could, e.g. want to consider execution time.

Or, like [Fischer and Wehrheim, 2000], relax to “fewer observable
behaviour”, thus admitting the sub-type to do more work on inputs.

— 20 — 2014-02-03 — Ssubtyping —

Note: “testing” differences depends on the granularity of the semantics.

3799

Sub-Typing Principles Cont’d

In the standard, Section 7.3.36, “Operation”:
“Semantic Variation Points
[...] When operations are redefined in a specialization, rules regarding
invariance, covariance, or contravariance of types and preconditions
determine whether the specialized classifier is substitutable for its more
general parent. Such rules constitute semantic variation points with
respect to redefinition of operations.” [OMG, 2007a, 106]

So, better: call a method sub-type preserving, if and only if it

(i) accepts more input values (contravariant),

(i) on the old values, has fewer behaviour (covariant).

Note: Fhis (ii) is no longer a matter of simple type-checking!

And not necessarily the end of the story:
One could, e.g. want to consider execution time.

Or, like [Fischer and Wehrheim, 2000], relax to “fewer observable
behaviour”, thus admitting the sub-type to do more work on inputs.

Note: “testing” differences depends on the granularity of the semantics.

Related: “has a weaker pre-condition,” (contravariant),
“has a stronger post-condition.” (covariant).

— 20 — 2014-02-03 — Ssubtyping —

3799

Ensuring Sub-Typing for State Machines

— 20 — 2014-02-03 — Ssubtyping —

In the CASE tool we consider, multiple classes
in an inheritance hierarchy can have state machines.

O

38,99

Ensuring Sub-Typing for State Machines

— 20 — 2014-02-03 — Ssubtyping —

C
In the CASE tool we consider, multiple classes ﬁl
in an inheritance hierarchy can have state machines. 5

But the state machine of a sub-class cannot be drawn from scratch.

Instead, the state machine of a sub-class can only be obtained by
applying actions from a restricted set to a copy of the original one.

Roughly (cf. User Guide, p. 760, for details),

add things into (hierarchical) states,
add more states,

attach a transition to a different target (limited).

38,99

Ensuring Sub-Typing for State Machines

— 20 — 2014-02-03 — Ssubtyping —

C
In the CASE tool we consider, multiple classes ﬁl
in an inheritance hierarchy can have state machines. 5

But the state machine of a sub-class cannot be drawn from scratch.

Instead, the state machine of a sub-class can only be obtained by
applying actions from a restricted set to a copy of the original one.

Roughly (cf. User Guide, p. 760, for details),

add things into (hierarchical) states,
add more states,

attach a transition to a different target (limited).

They ensure, that the sub-class is a behavioural sub-type of the super
class. (But method implementations can still destroy that property.)

Technically, the idea is that (by late binding) only the state machine of the most
specialised classes are running.
By knowledge of the framework, the (code for) state machines of super-classes is still

accessible — but using it is hardly a good idea...
38,99

Towards System States

— 20 — 2014-02-03 — Ssubtyping —

Wanted: a formal representation of “if C' < D then D ‘is a' (", that is,
(i) D has the same attributes and behavioural features as C, and

(ii) D objects (identities) can replace C' objects.

39/99

Towards System States

— 20 — 2014-02-03 — Ssubtyping —

Wanted: a formal representation of “if C' < D then D ‘is a' (", that is,
(i) D has the same attributes and behavioural features as C, and

(ii) D objects (identities) can replace C' objects.

We'll discuss two approaches to semantics:

Domain-inclusion Semantics (more theoretical)

Uplink Semantics (more technical)

39/99

— 20 — 2014-02-03 — main

Domain Inclusion Semantics

40/99

Domain Inclusion Structure

— 20 — 2014-02-03 — Sdomincl —

Let . = (,6,V, atr, &, F, mth, <) be a signature.

Now a structure ¥
[as before] maps types, classes, associations to domains,

for completeness] methods to transformers,

[as before] indentities of instances of classes not (transitively) related by
generalisation are disjoint,

[changed] the indentities of a super-class comprise all identities of
sub-classes, i.e.

vCe€:2(C)2 |) 2(D)

C<D

Note: the old setting coincides with the special case << = ().

41 /99

Domain Inclusion System States

— 20 — 2014-02-03 — Sdomincl —

Now: a system state of . wrt. Z is a type-consistent mapping
0:9(€) + (V+ (2(T)UD(61)UD(¢.)))
that is, for all u € dom(o) N Z2(C),
[as before] o(u)(v) € (1) ifv:7, 7€ T or 7 € {Cs,Co1}.
[changed] dom (o (u)) = g, <c atr(Co),

Example:

0,1

x : Int

SH>

x : Int

y : Int

Note: the old setting still coincides with the special case < = ().

42 /99

Preliminaries:. Expression Normalisation

— 20 — 2014-02-03 — Sdomincl —

Recall:
we want to allow, e.g., “context D inv:v <0".
we assume fully qualified names, e.g. C::v.

Intuitively, v shall denote the
“most special more general” C::v according to <.

0,1

43/99

— 20 — 2014-02-03 — Sdomincl —

A
Preliminaries:. Expression Normalisation v Int
Recall: 4
we want to allow, e.g., “context D inv:v <0". 0,1 —]C;

we assume fully qualified names, e.g. C:v. "
Intuitively, v shall denote the T
“most special more general” C::v according to <. D

To keep this out of typing rules, we assume that the following normalisation
has been applied to all OCL expressions and all actions.

Given expression v (or f) in context of class D, as determined by, e.g.
by the (type of the) navigation expression prefix, or

by the class, the state-machine where the action occcurs belongs to,

similar for method bodies,
normalise v to (= replace by) C::v,

where C' is the greatest class wrt. “<" such that
C' < D and C:v € atr(C).

43/99

— 20 — 2014-02-03 — Sdomincl —

A
Preliminaries:. Expression Normalisation v Int
Recall: 4
we want to allow, e.g., “context D inv:v <0". 0,1 —]C;

we assume fully qualified names, e.g. C:v. "
Intuitively, v shall denote the T
“most special more general” C::v according to <. D

To keep this out of typing rules, we assume that the following normalisation
has been applied to all OCL expressions and all actions.

Given expression v (or f) in context of class D, as determined by, e.g.
by the (type of the) navigation expression prefix, or

by the class, the state-machine where the action occcurs belongs to,

similar for method bodies,

normalise v to (= replace by) C::v,

where C' is the greatest class wrt. “<" such that
C' < D and C:v € atr(C).

If no (unique) such class exists, the model is considered not well-formed; the

expression is ambiguous. Then: explicitly provide the qualified name. 43
/99

OCL Syntax and Typing

— 20 — 2014-02-03 — Sdomincl —

Recall (part of the) OCL syntax and typing: v,reV,C,De¥
expr = v(expry) :T1c — T(V), fv:re I
| r(expry) :7c — TD, if : Do

| r(expry) :7c — Set(tp), ifr:D,

The definition of the semantics remains (textually) the same.

44 /99

More Interesting: Well-Typed-ness

— 20 — 2014-02-03 — Sdomincl —

C

We want v: Int
context D inv:v <0

to be well-typed. ZF

Currently it isn't because D

v(expry) : ¢ — 7(v)
but A F self : mp.
(Because 7p and 7¢ are still different types, although dom(7p) C dom(7¢).)
So, add a (first) new typing rule

Al expr:mp

if C < D. Inh
Al—exp'r:T(;’l — (Inh)

Which is correct in the sense that, if ‘expr’ is of type 7p, then we can use it
everywhere, where a 7¢ is allowed.

The system state is prepared for that.

45 /99

Well-Typed-ness with Visibility Cont'd

— 20 — 2014-02-03 — Sdomincl

A, DF expr: o

= Pub
A, DF C:v(expr) : 7’ c=F (Pub)
A, DF expr: o
= Prot
A, Dt C:o(expr) : 7’ S = (Prot)
A, Dl expr: o _
=——, C=D P
A, DF C:v(expr) : 7’ . ’ (Priv)
(Cv 1€ v9, P) € atr(C).
C
Example: — 1 : Int
vo : Int
con.’rc]ext/ (nJvy <0 | (n)ve <0 | (n.)vs <0 AL
nv
c s
5 D
0,11 n
B
B

46,99

Satisfying OCL Constraints (Domain Inclusion)

— 20 — 2014-02-03 — Sdomincl

Let M = (9,09, S#,.%) be a UML model, and Z a structure.

We (continue to) say M = expr for context C' inv : expr, € Inv(M) iff

Vv
=expr

V= (O'z',gi)iE]N - [[./\/l]] VieI N VYuce dOl’Il(O'?;) M @(C) :
Teaprol(ow, {self —u}) =1

M is (still) consistent if and only if it satisfies all constraints in Inv(M).

Example:
0,1 ¢
x . Int
n
D

47 /99

Transformers (Domain Inclusion)

— 20 — 2014-02-03 — Sdomincl —

Transformers also remain the same, e.g. [VL 12, p. 18]
update(expry,v, expry) : (o,€) — (o', ¢)

with
o' = ofu — o(u)lv — Ifexpry](o)]]

where u = I[expr,](o).

48,99

Semantics of Method Calls

— 20 — 2014-02-03 — Sdomincl —

Non late-binding: clear, by normalisation.

Late-binding:
Construct a method call transformer, which is applied to all method calls.

49/99

Inheritance and State Machines: Triggers

— 20 — 2014-02-03 — Sdomincl —

Wanted: triggers shall also be sensitive for inherited events,
sub-class shall execute super-class’ state-machine (unless overridden).

(cons,Snd)

(0,€) - (o’ ") if

Ju € dom(o) N Z(C) Jug € Z(&) : up € ready(e,u)
w is stable and in state machine state s, i.e. o(u)(stable) =1 and o(u)(st) = s,

a transition is enabled, i.e.
3 (s, F, expr, act,s’) €= (SMc¢) : F = E A Iexpr](c) =1

where 6 = o[u.params g — u.].
and

(o',€") results from applying t..: to (o,€) and removing ug from the ether, i.e.
(O_//’ 8,) — ta,ct(5-7 £ @ UE),
o' = (0" [u.st — ', u.stable — b, u.params g — 0])|2(€)\ (up)

where b depends:

If u becomes stable in s’, then b = 1. It does become stable if and only if there
is no transition without trigger enabled for u in (¢’,&").

Otherwise b = 0.

Consumption of ug and the side effects of the action are observed, i.e.

cons = {(u, (F,o(ug)))}, Snd = Obst,., (6,6 O ug).

50/99

Domain Inclusion and Interactions

— 20 — 2014-02-03 — Sdomincl —

C D C E
o /\ /\
\
F C F
/

Similar to satisfaction of OCL expressions above:

An instance line stands for all instances of C' (exact or inheriting).

Satisfaction of event observation has to take inheritance
into account, too, so we have to fix, e.g.

g, cons, Snd =g E:'Uy
if and only if
B(x) sends an F-event to By where £ < F'.

Note: C-instance line also binds to C’-objects.

51,99

— 20 — 2014-02-03 — main

Uplink Semantics

52/99

Uplink Semantics

— 20 — 2014-02-03 — Suplink —

ldea:

Continue with the existing definition of structure, i.e. disjoint
domains for identities.

Have an implicit association from the child to each parent part
(similar to the implicit attribute for stability).

C

x: Int

VAN

D

Apply (a different) pre-processing to make appropriate use of that
association, e.g. rewrite (C++)

x = 0;
in D to

uplink, ->x = 0; 5390

Pre-Processing for the Uplink Semantics

— 20 — 2014-02-03 — Suplink —

For each pair C' < D, extend D by a (fresh) association
uplink : C' with p = [1,1], £ = +

(Exercise: public necessary?)

Given expression v (or f) in the context of class D,

let C' be the smallest class wrt. “<" such that
C < D, and
C:w € atr(D)

then there exists (by definition) C < Cy < ... < C), < D,
normalise v to (= replace by)

uplinko =>---=> uplinks, .C:v

Again: if no (unique) smallest class exists,

the model is considered not well-formed; the expression is ambiguous.

54 /99

Uplink Structure, System State, Typing

— 20 — 2014-02-03 — Suplink —

Definition of structure remains unchanged.
Definition of system state remains unchanged.

Typing and transformers remain unchanged —
the preprocessing has put everything in shape.

55/99

Satisfying OCL Constraints (Uplink)

— 20 — 2014-02-03 — Suplink —

Let M = (9,09, S#,.%) be a UML model, and Z a structure.

We (continue to) say

M = expr
for
context C' inv : expr, € Inv(M)
N —~—)
if and only if

V= (0i)ien € [M]
Vie N
Vu € dom(o;) N 2(C) :
I[expryl(o;, {self — u}) = 1.

M is (still) consistent if and only if it satisfies all constraints in /nv(M).

56,99

Transformers (Uplink)

— 20 — 2014-02-03 — Suplink —

What has to change is the create transformer:
create(C', expr, v)
Assume, (s inheritance relations are as follows.

01,1 <...< Cl,nl < O,

Cmi<...<Chpn, <C.

Then, we have to

create one fresh object for each part, e.g.

ul,l,...,ul,nl,...,um,l,...,um,nm,

set up the uplinks recursively, e.g.

o(u1,2)(uplinke,) = u1 1.

And, if we had constructors, be careful with their order.

57 /99

Late Binding (Uplink)

— 20 — 2014-02-03 — Suplink —

Employ something similar to the “mostspec” trick (in a minute!). But the result
is typically far from concise.

(Related to OCL's isKind0f () function, and RTTI in C4++.)

58,99

— 20 — 2014-02-03 — main

Domain Inclusion vs. Uplink Semantics

59/99

Cast-Transformers

— 20 — 2014-02-03 — Sdiff —

C c:
D d;
Identity upcast (C++):

Cx cp = &4, // assign address of ‘d’ to pointer ‘cp’

Identity downcast (C++):
Dx dp = (Dx*)cp; // assign address of ‘d’ to pointer ‘dp’

Value upcast (C++):

xC = xd; // copy attribute values of ‘d’ into ‘c’, or,
// more precise, the values of the C-part of ‘d’

60,99

Casts in Domain Inclusion and Uplink Semantics

— 20 — 2014-02-03 — Sdiff —

Domain Inclusion

Uplink

Cx cp easy: immediately compatible | easy: By pre-processing,
= &d; (in underlying system state) be- | Cx cp = d.uplink,;
cause &d yields an identity from
2(D) C 2(C).
Dk dp = easy: thevalueof cpisin Z(D)N | difficult: we need the identity
(Dx)cp; 2(C') because the pointed-to ob- | of the D whose C-slice is de-
jectisa D. noted by cp.
Otherwise, error condition. (See next slide.)
c=d; bit difficult: set (for all C' < D) | easy: By pre-processing,

(C)(-,) : ™D X X = Elur(o)
(u,0) = U(u)|atr(C)

Note: ¢’ = oluc — o(up)] is
not type-compatible!

c = *(d.uplink,);

61,99

ldentity Downcast with Uplink Semantics

— 20 — 2014-02-03 — Sdiff —

Recall (C+4): Dd; Cx cp=&d; Dx dp = (Dx)cp;
Problem: we need the identity of the D whose C-slice is denoted by cp.

One technical solution:

Give up disjointness of domains for one additional type comprising all
identities, i.e. have

alle 7, 9(a11)= |] 2(C)
ceE
In each <-minimal class have associations “mostspec” pointing to most
specialised slices, plus information of which type that slice is.

Then downcast means, depending on the mostspec type (only finitely
many possibilities), going down and then up as necessary, e.g.

switch(mostspec_type){
case C :
dp = cp ->mostspec ->uplink, ->...->uplink, ->uplinkp;

62/99

Domain Inclusion vs. Uplink Semantics: Differences

— 20 — 2014-02-03 — Sdiff —

Note: The uplink semantics views inheritance as an abbreviation:

We only need to touch transformers (create) — and if we had constructors, we
didn't even needed that (we could encode the recursive construction of the upper
slices by a transformation of the existing constructors.)

So:
Inheritance doesn’t add expressive power.

And it also doesn’t improve conciseness soo dramatically.

As long as we're “early binding”, that is...

63,99

Domain Inclusion vs. Uplink Semantics

: Motives

— 20 — 2014-02-03 — Sdiff —

o Exercise:

What's the point of

o having the tedious adjustments of the theory

if it can be approached technically?

e having the tedious technical pre-processing

if it can be approached cleanly in the theory?

64 /99

— 20 — 2014-02-03 — main

Meta-Modelling: Idea and Example

65/99

Meta-Modelling: Why and What

— 20 — 2014-02-03 — Smm —

Meta-Modelling is one major prerequisite for understanding
the standard documents [OMG, 2007a, OMG, 2007b], and
the MDA ideas of the OMG.

The idea is simple:
if a modelling language is about modelling things,
and if UML models are and comprise things,
then why not model those in a modelling language?

66,99

Meta-Modelling: Why and What

— 20 — 2014-02-03 — Smm —

Meta-Modelling is one major prerequisite for understanding
the standard documents [OMG, 2007a, OMG, 2007b], and
the MDA ideas of the OMG.

The idea is simple:
if a modelling language is about modelling things,
and if UML models are and comprise things,
then why not model those in a modelling language?

In other words:

Why not have a model My such that

the set of legal instances of My,

the set of well-formed (!) UML models.

66,99

Meta-Modelling: Example

— 20 — 2014-02-03 — Smm —

For example, let's consider a class.

A class has (on a superficial level)
a name,

any number of attributes,

any number of behavioural features.

Each of the latter two has
a name and
a visibility.
Behavioural features in addition have
a boolean attribute isQuery,
any number of parameters,

a return type.

Can we model this (in UML, for a start)?

67/99

UML Meta-Model: Extract

Comment

4 Element

AN

NamedElement

name

visibility

JZaN

Type

type

0..1

type

TypedElement

RedefElement

Classifier

Class

0..1

*

Feature

redefdElem

Namespace

StructFeature

BehavFeature

Operation

— 20 — 2014-02-03 — Sumlmm —

49— Parameter

0..1

68,99

Classesioma, 2007b, 32

— 20 — 2014-02-03 — Sumlmm -

Classifier

{redefines general}
t+ /superClass

Class

*

{subsets classifier,
subsets namespace,
subsets featuringClassifier}

* +subsettedProperty

StructuralFeature

Property

{subsets member, ordered}
+memberEnd

isDerived : Boolean
isReadOnly : Boolean

| . . ;
isDerivedUnion : Boolean

/default : String

{subsets attribute,

/IsComposite : Boolean

{subsets namespace,
subsets redefinitionContext}
+class

|

¥ class subsets ownedMember,
ordered}
+ownedAttribute
*
0..1

{subsets redefinedElement}
+ redefinedProperty

aggregation : AggregationKind

Relationship Classifier

+association

Association

2“*

{subsets memberEnd,
subsets feature, subsets

ownedMember, ordered}
+ownedEnd

{subsets association,|
subsets namespace,
subsets featuringClassifier}
+owningAssociation

0.1
isDerived : Boolean

subsets owner}
navigableOwnedEnd

-
0..1

*

{subsets owner}
+owningProperty

(subsets ownedElement}
+defaultValue

0.1

0.1

{subsets redefinitionContext,
subsets namespace,
subsets featuringClassifier}
+class

-

0.1

+/opposite
0.1
{subsets ownedMember, ordered}
+nestedClassifier
Classifier

*
{subsets feature, subsets
ownedMember, ordered}
+ownedOperation

Operation
*

Figure 7.12 - Classes diagram of the Kernel package

ValueSpecification
0..1 0.1
0.1
<<enumeration>>
AggregationKind
none
shared
composite

{readOnly, odered}
+/lendType

Type

69,99

Operations[omec, 2007b, 31]

— 20 — 2014-02-03 — Sumlmm -

RefhavioraiFeature
T {subsets namespace} {fredefines ownedParametert
- - operstion + ownedParameter Parameter
Operation) N
i=Cery - Boolean
fizCrdered ; Boolean {subsgts context} {subsets ownedRule}
st inicue - Boalzan + preEnnterP + precondition - pp——
Novaver ; Integer [0.11 0.1 *
Jupper ;- Unlimitediatural [0..1]
{subsets context} Teubsets ownedRulel
+ postConte:d + posteondition
0.1 =7
{subsets context} {eubsets ownedRule}
: + hodyContext + bodyCondition -
0.4 0.1 -
+ ype Type
-
* 0.1
redefines raisedExceptio
* 1 ¥ rali:'sec%gcn:e on
-
*

+ redefinedCperation
-

-‘,‘*

{eubsets redefinedElement}

Figure 7.11 - Operations diagram of the Kernel package

70/99

Operations[ome, 2007b, 30]

freadCnly, union}

Classifier

+ MesturingClassifier

freadOnly, union}
+ feature

| RoedefinableFlomont

Foature

*

JsStatic ;| Boolean

Fiy

MuitiplicityElomont

TypedEfonront

— 20 — 2014-02-03 — Sumlmm -

StructuraiFeatare

isRegdOnly . Boolean

Namespace

|

RefavioraiFeature

zenumeration:s

ParameterDirectionKind

MuftiplicityElomont

I

Parameter

in

inoLt

out

return

TypedEfemant
fsubsets o
ownedtemher, Idefault @ String
orcered}
0.4 + ownedParameter .

+ owvnerFormalParam
{subsets namespace’

+ raizedException

ol
%

direction : ParameterDirectionking

Figure 7.10 - Features diagram of the Kernel package

Type

*

{subsets ownert

0.1 |+ owningParameter

{subsets ownedElernent}

0.4 |+ defaultvalue

VaineSpecification

71/99

Classifiersijoma, 2007b, 29]

NamedEfomant I RedefinableElemont Namespace Type DirectedRelationship
‘T‘ ? {Subzetzl target} *
— + genersl
Classifior .
{readOnly, union} lsfl batract : Booleah 1 Generalization
+ fredefinitionContext - ' Tsubsets izSubstitutable | Boalean

; subsets source
RedefinableFlontont - 1 ! owhedElement

* *
isLeaf : Boolean TreadOnly, union} sybssp%gfﬁlgwner} + generalization
+ fredefinedElement 1 *

*

freadOnly, subsets member}
+ finheritediemier,

N - }! NamoedEfemant
*
{subsets redefinedElement}
IreadCnly, union, {subsets + redefinedClazsifier

subsets feature} redefinitionContext: *
Property + fattribte + classifier
* 0.1

. L '

+ fgeneral |*

Figure 7.9 - Classifiers diagram of the Kernel package

— 20 — 2014-02-03 — Sumlmm -

72/99

Namespacegma, 2007b, 26]

— 20 — 2014-02-03 — Sumlmm -

Element

<<enumeration>>
VisibilityKind
NamedElement
public
Name : String [O..l] private
visibility : VisibilityKind 0.1 protected
/qualifiedName : String [0.1] package
readOnly, union
{readOnly, subsets member} +§membery N) = :
i amedElemen
PackageableElement |fMPortedMember | Namespace | * 7
. * | +/ownedMember
{readOnly, union,
visibility : VisibilityKind subsets owner} {readOnly, union, subsets
+/namespace member, subsets ownedElement}
S
0.1 DirectedRelationship
{subsets source, subsets owner} subsets target}
+ importingNamespace + importedElement
*
Elementimport | <[packageableElement
1 +elementimport| yisibility : VisibilityKind | 1 1
{subsets alias : String [0..1]

ownedElement}

DirectedRelationship

{subsets source,

subsets owner} .

i i ' subsets target
+importingNamespace Packagelmport +{importedpa?;ka}ge
+packagelmport| visibility : VisibilityKind | | Package
{subsets ownedElement}

Figure 7.4 - Namespaces diagram of the Kernel package 73/99

Root Diagramiomg, 2007b, 25

— 20 — 2014-02-03 — Sumlmm -

Teubsets owner}: {subsets ownedElerment}

+ owveningElement + owynedCommernt
Flemrant '-:III 3 d -

~ |
| Comment I

LSRG e

*

\ ¥

+ fowvner

TreadCnly, union}

TreadCnly, union}

+ annotatedElement

IrelatedEl it Flament

Roelationsiip T Aareelectlement .

® 1..%

Treadonly, union,

subsets relatedElerment
INroctedRelationsiiip + farget —
* -1 “tf
+ fEOUNCE..
-

® 1..%

TreadCnly, uniorn,
subsets relatedElementt

Figure 7.3 - Root diagram of the Kernel package

*

Comment

body - String

74/99

Interesting. Declaration/Definitionome, 2007b, 424]

— 20 — 2014-02-03 — Sumlmm -

UML::Classes:: UML:Classes::
Kernel::Classifier Kemel:Class
BehavioredClassifier {subsets ownedBehavior} Behavior
+ clagsifierBehavior = _
isReentrant . Boalean
0.1 0.1
+ jcontext
{subsets redefinitionContext}
0.1 %
+ owynedBehavior
i =
0.1 *
{subsets ownedMembert
BehavioralFeattre o
Abetract - Boolean + specification + methad Tsubsets redefinedElerment
0.1 + redefinedBehavior
=
UML::Classes:: " 0.1 . "
Kernel::Parameter
+ owhnedParameter
{subsets ownedMember, .

orderedt

[

OpaqueBehavior
body : String 7]
language : String [*]

FunctionBehavior

Figure 13.6 - Common Behavior

75/99

UML Architectureomag, 2003, g]

— 20 — 2014-02-03 — Swhole —

Meta-modelling has already
been used for UML 1.x.

For UML 2.0, the request
for proposals (RFP) asked
for a separation of concerns:

Infrastructure and
Superstructure.

One reason:
sharing with MOF (see
later) and, e.g., CWM.

Infrastructure
(with semantics)

= =

Superstructure
(abstract syntax)

= =

Superstructure
(concrete syntax)

J L

Diagram
Interchange

---------- >

---------- >

Class, Object
Action, Filmstrip
Package, Snapshot

Class, State,
Transition,
Flow, ...

ClassBox, StateBox,

TransitionLine, ...

Node, Edge...

Figure0-1 Overview of architedure

Profiles

76,99

UML Superstructure Packagesvc, 2007a, 15]

— 20 — 2014-02-03 — Swhole —

1

UseCases

—

]

CommonBehaviors

/ I

StateMachines

Activities

Actions

1

Classes

1

Interactions

—_

CompositeStructures

1

Components

1

Deployments

Figure 7.5 - The top-level package structure of the UML 2.1.1 Superstructure

AuxiliaryConstruéts

17 /99

— 20 — 2014-02-03 — main

Meta-Modelling: Principle

78/99

Modelling vs. Meta-Modelling

— 20 — 2014-02-03 — Sprinciple —

Model
(M1)

s = ({4},
{C} {v},
{C — v},
D~ E?p

79/99

Modelling vs. Meta-Modelling

ciple

— 20 — 2014-02-03 — Sprin

- 7 = ({z}.
— {C} {v},
' {C —v}),
Model D s 32
(M1) P Pid
Instance lI instance-of //
(Mo) | /€
| /
:C 5= {u —
v =0 {v—0}}

Modelling vs. Meta-Modelling

ciple

— 20 — 2014-02-03 — Sprin

- 7 = (z},
7 :Class :Property ‘Type {C}, {’U},
i name = C name = v name = Z {C — ’U}),
Model D s 2
(M1) 1 Pd
Instance ll instance-of //
(MO) | /e
l /
:C 5= {u —
—0 {v—0}}

Modelling vs. Meta-Modelling

— 20 — 2014-02-03 — Sprinciple —

Class Property Type
Meta- name : Str name : Str name : Str
Model Tl f
(M2) T\ | T | f
\ | i ’ I
\ “ | ,' !
C \\ ‘ : ! II S = (2},
:Class l :Property : :Type {C}, {’U},
-7 | b ——— 1 | —
name = C name = v name = 7 {C — ’U}),
Model D s TD
(M1) f Pd
! /
Instance II instance-of /
/
(MO0) | ;€
l /
/
:C oc={ur—
v =0 {v— 0}}

79/99

Modelling vs. Meta-Modelling

— 20 — 2014-02-03 — Sprinciple —

Class Property Type
Meta- name : Str name : Str name : Str
Model Tl f
(M2) T\ | T 1 f
\\ || : ; II
| | |
e s = ({7},
:Class l :Property : :Type {C}, {’U},
L= | | ==
name = C name = v name = 7. {C — ’U}),
Model D s T2
(M1) e
Instan So, if we have a meta model My of UML, then the set /7
(I\/TO)Ce of UML models is the set of instances of M. // c
A UML model M can be represented as an object /
diagram (or system state) wrt. the meta-model My. = {U =

Other view: An object diagram wrt. meta-model My
can (alternatively) be rendered as the UML model M.

79/99

Well-Formedness as Constraints in the Meta-Model

— 20 — 2014-02-03 — Sprinciple —

The set of well-formed UML models can be defined as the set of object
diagrams satisfying all constraints of the meta-model.

For example,

“[2] Generalization hierarchies must be directed and acyclical. A classifier
cannot be both a transitively general and transitively specific classifier

of the same classifier.

not self . allParents() —=> includes(self)” [OMG, 2007b, 53]

80,99

Well-Formedness as Constraints in the Meta-Model

— 20 — 2014-02-03 — Sprinciple —

The set of well-formed UML models can be defined as the set of object
diagrams satisfying all constraints of the meta-model.

For example,

“[2] Generalization hierarchies must be directed and acyclical. A classifier
cannot be both a transitively general and transitively specific classifier

of the same classifier.

not self . allParents() —=> includes(self)” [OMG, 2007b, 53]

The other way round:

Given a UML model M, unfold it into an object diagram O; wrt. M.

If O, is a valid object diagram of My (i.e. satisfies all invariants from Inv(My)),
then M is a well-formed UML model.

80,99

Well-Formedness as Constraints in the Meta-Model

— 20 — 2014-02-03 — Sprinciple —

The set of well-formed UML models can be defined as the set of object
diagrams satisfying all constraints of the meta-model.

For example,

“[2] Generalization hierarchies must be directed and acyclical. A classifier
cannot be both a transitively general and transitively specific classifier
of the same classifier.

not self . allParents() —=> includes(self)” [OMG, 2007b, 53]

The other way round:

Given a UML model M, unfold it into an object diagram O; wrt. M.

If O, is a valid object diagram of My (i.e. satisfies all invariants from Inv(My)),
then M is a well-formed UML model.

That is, if we have an object diagram validity checker for of the meta-modelling
language, then we have a well-formedness checker for UML models.

80,99

Reading the Standard

— 20 — 2014-02-03 — Sreading —

Table of Contents

L SCOPE . 1
2. ConformancCe i e 1
2.1 Language Units 2
2.2 Compliance Levels 2
2.3 Meaning and Types of Compliance 6
2.4 Compliance Level Contentst 8
3. Normative References 10
4. Terms and Definitions 10
5. Symbols ... 10
6. Additional Information 10

6.1 Changes to Adopted OMG Specifications
6.2 Architectural Alignment and MDA Support

6.3 Onthe Run-Time Semanticsof UML,

6.3.1 The BASIC PIrEMISESeeiiiiiiiiiiiie ettt ettt sttt st neneas
6.3.2 The Semantics Architecture
6.3.3 The Basic Causality Model

6.3.4 Semantics Descriptions in the Specification

6.4 The UML Metamodel 13
6.4.1 Models and What They MOEIcoouiiiiiiiiie et 13
6.4.2 Semantic Levels and Namingccccooveiiiiieiiie e 14
6.5 How to Read this Specification i, 15
6.5.1 Specification format
6.5.2 DIagram fOrMALcoecuiiiiiiiiie it
6.6 Acknowledgements e
Part | - Structure 21
7. ClaSSES .ottt 23

UML Superstructure Specification, v2.1.2

81,99

Reading the Standard

— 20 — 2014-02-03 — Sreading —

7.1 OVEIVIEW . ottt e e e 23
Table of Contents 7.2 ADSHTACE SYNEAX . . ot ettt e e e e e 24
7.3 Class DesCriptionsot e

7.3.1 Abstraction (from DEPENENCIES)cueiviriiriieiieiierieeeete e
7.3.2 AggregationKind (from Kernel)

7.3.3 Association (from Kernel)
1. Scope 7.3.4 AssociationClass (from AssociationClasses) ...
7.3.5 BehavioralFeature (from Kernel)

2. Conformance 7.3.6 BehavioredClassifier (from INtEIACES)c.coveveeevirvereeiereeeeeeeeesreeeeesesesreeereseeneas
) 7.3.7 Class (fromM KEINEI)ooiiiiiiieee et
2.1 Language Units ... 7.3.8 Classifier (from Kernel, Dependencies, PowerTypes) ..

7.3.9 Comment (from KEMEI)c.uiiiiiiiie e

2.2 Compliance Levels . 7.3.10 Constraint (from Kernel)ccooiiioiiiiiiie e

2.3 Meaning and Types 7.3.11 DataType (from Kernel) : .
7.3.12 Dependency (from DEPEeNdENCIES)cc.ueeiuiiiiiraiiiieiieeeiee et seeeebee e seeeas
2.4 Compliance Level Cg 7.3.13 DirectedRelationship (from KEIMEI)cc.ceeveeeveeeeeeeeeereeeees e sree e seere s
. 7.3.14 Element (from Kernel)cccccoeeeeee.
3. Normative References 7.3.15 Elementimport (from Kernel) ..
L 7.3.16 Enumeration (from Kernel)
4. Terms and Definitions 7.3.17 EnumerationLiteral (from Kernel) ...
7.3.18 Expression (from Kernel)
5. Symbols 7.3.19 Feature (from Kermnel)c.ccoccovveeveerenene.
7.3.20 Generalization (from Kernel, PowerTypes) .
6. Additional Information 7.3.21 GeneralizationSet (from PowerTypes)

7.3.22 InstanceSpecification (from Kernel)
6.1 Changes to Adopted 7.3.23 InstanceValue (from Kernel)
. . 7.3.24 Interface (from Interfaces)c....... .
6.2 Architectural Alignme 7.3.25 InterfaceRealization (from INtErfaces)ceovieriiiiiiie e
6.3 On the Run-Time Se 7.3.26 LiteralBoolean (from Kernel)ccoooviiiiiiiiiiieecccsee e
. . 7.3.27 Literalinteger (from Kernel) .
6.3.1 The Basic Premis 7.3.28 LiteralNUIl (FrOM KEINEI) «......veeeeeeeee e en s seeeeen
6.3.2 The SemanncsA 7.3.29 LiteralSpecification (from Kernel)ocueeeiiiiiieiiiie e
6.3.3 The Basic Causa 7.3.30 LiteralString (from Kernel) .
6.3.4 Semantics Descr 7.3.31 LiteralUnlimitedNatural (from Kernel)cccccoooiiiiiiiieeneecee e
6.4 The UML Metamode 7.3.32 MultiplicityElement (from Kernel)ccccoviiiiiiiiiiii s
7.3.33 NamedElement (from Kernel, Dependencies) .. .

gj; '\Sﬂgi(:r?ti:nfe\(/\gll? 7.3.34 Namespace (fromKernel)ccccoeevieenieennnen.
o 7.3.35 OpaqueExpression (from Kernel)
6.5 How to Read this Sp 7.3.36 Operation (from Kernel, Interfaces) ..
7.3.37 Package (fromKernel)cc.ccce.e.e.
7.3.38 PackageableElement (from Kernel) ..
7.3.39 Packagelmport (from Kernel)
6.6 Acknowledgements 7.3.40 PackageMerge (from Kernel)cc.cccovvnvennenns
7.3.41 Parameter (from Kernel, ASSOCIatioNCIaSSES)ceervuvierieiiiieeeriieeniee s
7.3.42 ParameterDirectionKind (from Kernel)cccociioiiiiniiiiciiceccccce e
- 7.3.43 PrimitiveType (from Kernel)
Part | - Structure .. 7.3.44 Property (from Kernel, ASSOCIAtIONCIASSES)c.c..veviviirirerieeeeiieeeseieseensee
7.3.45 Realization (from DependenCies)uveeiiiiieeeeiiiiieeeiiiiieeeesiiee e e s stneeeessnaeee e
7.3.46 RedefinableElement (from Kernel) ...

6.5.1 Specification forny
6.5.2 Diagramformat ..

7. Classes

i UML Superstructure Specification, v2.1.2

UML Superstructure Specification, v2.1.2 L 1

81,99

Reading the Standar

— 20 — 2014-02-03 — Sreading —

Table of Contents

2.1 Language Units

2.2 Compliance Levels .

2.3 Meaning and Types

2.4 Compliance Level Cq
Normative References

Terms and Definitions

I

Additional Information
6.1 Changes to Adopted
6.2 Architectural Alignmg

6.3 On the Run-Time Se

6.3.1 The Basic Premis|
6.3.2 The Semantics Al
6.3.3 The Basic Causal
6.3.4 Semantics Descr

6.4 The UML Metamode

6.4.1 Models and Whatj
6.4.2 Semantic Levels

6.5 How to Read this Sp

6.5.1 Specification forny
6.5.2 Diagramformat ..

6.6 Acknowledgements

Part | - Structure

7. Classes

UML Superstructure Specification, v2.1.2

7.1 Overview
7.2 Abstract Syntax
7.3 Class Descriptions .

7.3.1 Abstraction (from
7.3.2 AggregationKind
7.3.3 Association (from
7.3.4 AssociationClass
7.3.5 BehavioralFeatur
7.3.6 BehavioredClass|
7.3.7 Class (from Kerng
7.3.8 Classifier (from K
7.3.9 Comment (from K
7.3.10 Constraint (from
7.3.11 DataType (from

7.3.12 Dependency (frg
7.3.13 DirectedRelatior]
7.3.14 Element (from K
7.3.15 Elementimport (
7.3.16 Enumeration (frg
7.3.17 EnumerationLitg
7.3.18 Expression (fron|
7.3.19 Feature (from K¢
7.3.20 Generalization (
7.3.21 GeneralizationS|
7.3.22 InstanceSpecifig
7.3.23 InstanceValue (fi
7.3.24 Interface (from |
7.3.25 InterfaceRealizgy
7.3.26 LiteralBoolean (f
7.3.27 Literallnteger (fr
7.3.28 LiteralNull (from
7.3.29 LiteralSpecificat
7.3.30 LiteralString (fro
7.3.31 LiteralUnlimited]|
7.3.32 MultiplicityElemg
7.3.33 NamedElement
7.3.34 Namespace (fro
7.3.35 OpaqueExpress
7.3.36 Operation (from
7.3.37 Package (from K
7.3.38 PackageableEle
7.3.39 Packagelmport

7.3.40 PackageMerge

7.3.41 Parameter (from|
7.3.42 ParameterDirec
7.3.43 PrimitiveType (fi

7.3.44 Property (from K
7.3.45 Realization (fron
7.3.46 RedefinableElery

7.3.47 Relationship (from Kernel) . .
7.3.48 Slot (fromKernel)c...ccooene .. 132
7.3.49 StructuralFeature (from Kernel) ...
7.3.50 Substitution (from Dependencies) ...
7.3.51 Type (fromKernel)cccccceeneee.
7.3.52 TypedElement (from Kernel) ..
7.3.53 Usage (from Dependencies)

7.3.54 ValueSpecification (from Kernel) . .. 137

7.3.55 VisibilityKind (from KErNel)cooiiiiiiiiiiieicee e 139

T4 DIagrams . ..ottt 140

8. ComPpoNnents 143
8.1 OVeIVIBW . ittt 143

8.2 AbStract SyNntaxottt 144

8.3 Class DesCriptionsot 146

8.3.1 Component (from BasicComponents, PackagingComponents)ccccceeeueene 146

8.3.2 Connector (from BasiCCOMPONENLS)cveveiiviiieeiiiiieeesiieeeesseieeeeesieeeeesnnneeeeens
8.3.3 ConnectorKind (from BasicComponents)
8.3.4 ComponentRealization (from BasicComponents)

8.4 Diagrams
9. Composite Structures

9.1 OVEIVIEW . .ottt e e
9.2 ADSIACt SYNEAX . . o ot

9.3 Class DescCriptionst

9.3.1 Class (from StruCtUr@dCIASSES)cuueeiiurieiiieeriieeiiie et esiee st e
9.3.2 Classifier (from Collaborations)ccceeruieriieeniie e
9.3.3 Collaboration (from Collaborations)

9.3.4 CollaborationUse (from Collaborations)cccoceeirreeiiieeniie e 171
9.3.5 ConnectableElement (from INternalStruCtures)cccovceeeiieeerieeniieeiiee e 174
9.3.6 Connector (from InternalStructures) .
9.3.7 ConnectorEnd (from InternalStructures, POIS)cccceiiiiiiiieiiiie e 176
9.3.8 EncapsulatedClassifier (from POIS)ccccveeiiiiireiiiiee e 178
9.3.9 InvocationAction (from InvocationActions) 178
9.3.10 Parameter (from Collaborations) 179
9.3.11 Port (from POrts)ccccceeeeiieeenne. .. 179
9.3.12 Property (from InternalStructures)ccccee... .. 183
9.3.13 StructuredClassifier (from InternalStructures) 186
9.3.14 Trigger (from InvocationActions) 190
9.3.15 Variable (from StruCturedACHVItIES)ccoiviriiiiieiiii et 191
9.4 DIagramMS . .ottt e 191
10. Deployments 193

UML Superstructure Specification, v2.1.2

ey

81,99

Reading the Standard Cont'd

— 20 — 2014-02-03 — Sreading —

Window

public
size: Area = (100, 100)
defaultSize: Rectangle
protected
visibility: Boolean = true
private
XWin: XWindow
public
display()
hide()
private
attachX(xWin: XWindow)

Figure 7.29 - Class notation: attributes and operations grouped according to visibility
7.3.8 Classifier (from Kernel, Dependencies, PowerTypes)
A classifier is a dassification of instances, it desribes a sebf instances that have features in common.

Generalizations

« “Namegpace(from Kernel)”on page 99
« “RedefinableElement (frorkernel)” on pag 130
« “Type (fran Kernel)”on page 135

Description

A classfier is anamespace who® members can includefeatures. Qassifier is an abstract metaclass

A classifier is a type and can own gealezations,thereby makig it possible todefine generalization relatioripls to
othe classifiers. A classfier can speify a generalzation hierarchy byeferening its generatlassifiers.

A classifier is a relefinableelemet, meaning thatit is posible to redéine nesed dassifiers

Attributes

* isAbstract: Boolean
If true, the Clasifier does noprovide acomplete declaration and campically notbeinstantiated. An abstract
classifier is intended tbe used bytherclassifiers(e.g.,as the taget of generalmetarelatimshigs or generakation
relationships). Defaultvalue isfalse.

Associations

« /attribute: Property*]
Refers to albf the Properties thatre drect (ie.,nat inherited or imported) attributesof the classifierSubsés
Classifier::feature andis a derved urion.

« /feature : Feature [*]
Spedfies each fedure defined in the ckaifier. Subsets Namespace::memheFhis is a derivednnion.

« /general : Classiir[*]
Specifies the general Cifiers for this Classfier. This is denved.

52 UML Superstructure Specification, v2.1.2

82/99

Reading the Standard Cont'd

— 20 — 2014-02-03 — Sreading —

Wind

public
size: Area = (]
defaultSize: R|
protected
visibility: Bool
private
XWin: XWindo|

public
display()
hide()

private
attachX(xWin|

Figure 7.29 - Cl
7.3.8 Clas
A classifier is g

Generalizatio
* “Nameg]
» “Redefin
« “Type (f

Description

A clasdfier is g

A classifier is
othe classifierd

A classifier is g

Attributes

¢ isAbstract]
If true,
classif
relatiol

Associations

e Jattribute:

Referg

Classif
e /[feature:

Spedfi
« /general:

Specif
52

* generalization: Generalization[*]
Specfiesthe Gereralizationrelationshps for his Classfier. These Generaliz@ins navgate tomore gereral
classfiersin the generalizatiohierarchy Subset€lement::omedElement

¢ /inheritedember: NamedElerent[*]
Specifies all elementsnherited by thisclassifier from thegeneral classifierSubgtsNamespace::memheFhis is
derived.

¢ redefinedClassifier: Classifi§t]
References the Clafiers thatareredefined by thi Classifier SibsetsRedfinableElenent::redefinedElemen

Package Dependencies

e substitution : Sibstitution
Referencethe sutstitutionsthat are owed by tlis Classfier. Subset€lement::ownedElemeand
NamedElement::cientDependency)

Package PowerTypes

* powertyeExtent: GeneralizationSet
Desigratesthe GeneralzationSet of wilch the associate@lassifier is apowertype.

Constraints

[1] The gaeralclassifiersarethe classifierseferenced byhe generalizébn relationshps.
general = self.parents()

[2] Generdization hierarchiemust be diected andcyclical. Aclassfier cannotbe bath a trasitively general and
trangtively specific clasiier of thesameclassifier

not self.allParents()->includes(self)

[3] A classfier mayonly speciaize classifiers of avalid type.
self.parents()->forAll(c | self. maySpecializeType(c))

[4] TheinheritedMember assodgitionis derivedby inheriting the inheritabé membersof the parens.
self.inheritedMember->includesAll(self.inherit(self.parents()->collect(p | p.inheritableMembers(self)))

Package PowerTypes

[5] The Clasifier thatmaps to aGenealizationSeimay neither be apecific nor a generaClassfier in any ofthe
Generailzation rektionships definedor that GenerakationSet In other words,a power type may notbe an irstance of
itself nor may its instarces also be its sulasises.

Additional Operations
[1] ThequeryallFeature§) gives all ofthe features in the namespace of the classifi general, through mechanissichas
inheritance, ths will be a lager set than feate.
Classifier::allFeatures(): Set(Feature);
allFeatures = member->select(oclisKindOf(Feature))
[2] The qery parerts() gives al of theimmediate ancestorsf ageneralized Classifier
Classifier::parents(): Set(Classifier);
parents = generalization.general

UML Superstructure Specification, v2.1.2 53

82/99

Reading

the Qtandard Cant’d

— 20 — 2014-02-03 — Sreading —

Wind

public
size: Area = (]
defaultSize: R|
protected
visibility: Bool
private
XWin: XWindo|

public
display()
hide()

private
attachX(xWin|

Figure 7.29 - Cl
7.3.8 Clas
A classifier is g

Generalizatio
* “Nameg]
» “Redefin
« “Type (f

Description

A clasdfier is g

A classifier is
othe classifierd

A classifier is g

Attributes

¢ isAbstract]
If true,
classif
relatiol

Associations
e Jattribute:

Referg

Classif
e /[feature:

Spedfi
« /general:

Specif
52

* generalizal
Specfi
classfi

¢ /inherited
Specif
derived

¢ redefinedd
Referg

Package Depe

e substitution
Refere
Named

Package Pows

e powertypeH
Design

Constraints
[1] The gmerd
general = s¢

[2] Generdizat
trangtively

not self.allP)
[3] A classfier
self.parents
[4] Theinherit
self.inherite:

Package Powse

[5] The Clasif
Generailzat
itself nor m

Additional Op
[1] Thequerya
inheritance
Classifier::a|
allFeatures
[2] The qery ¢

K]

(4]

(5]

(€]

(7]

(8]

The query allParenfsgives al of thedirect andndirect ance®rs ofa generalize€lassifier

Classifier::allParents(): Set(Classifier);

allParents = self.parents()->union(self.parents()->collect(p | p.allParents())

The wuery inheritabeMerrbers()gives all of the membersf aclassifierthat maybe irherited inone of its descendas,
subjectto whatever visilhi ty restictions appy.

Classifier::inheritableMembers(c: Classifier): Set(NamedElement);

pre: c.allParents()->includes(self)

inheritableMembers = member->select(m | c.hasVisibilityOf(m))

The query hasVisibilityOf() determineswhetheranamel element is visiblen the chssfier. By default all are visiblelt is
only called wten the agumert is sonmething owned by a paren

Classifier::has\sibilityOf(n: NamedElement) : Boolean;

pre: self.allParents()->collect(c | c.member)->includes(n)

if (self.inheritedMember->includes(n)) then
hasVisibilityOf = (n.visibility <> #private)
else

hasVisibilityOf = true
The query corformsTo() gives true for a clssifier that definea typethat conformdo anotherThis isused, for example,
in the specfication of sgnaure conformane for operatons.
Classifier::conformsTo(other: Classifier): Boolean;
conformsTo = (self=other) or (self.allParents()->includes(other))
The query inkrit() defines how to inherit a set of emens. Herethe operatia is defned toinherit trem all It is intended
to be redefined in circumstanogbereinheritances affected byredefinition.
Classifier::inherit(inhs: Set(NamedElement)): Set(NamedElement);
inherit = inhs
The query raySpecialzeType() deermines wretherthis classiier may have a generalizatin relatonshp to chssifiers &

the specifiedype. By default a classifienay specialize cladters of the ame or amore gereral type. It is infenced to be
redefinedby classfiers that have different speciatiation congaints.

Classifier::maySpecializeType(c : Classifier) : Boolean;
maySpecializeType = self.ocllsKindOf(c.oclType)

Semantics

A classifier is a dassification of insances according totheir featires.

A Classifier may participate in generalizatirelationships with other Classifiers. Arstance ofa specificClassifier is
also a (indirect) ingance of eaxh of the gnerd Classifiers. Therefore, feature spedfied for instacesof the gaerd
classifier ae implicitly specifed for instances of the specifatassifier Any canstraint applying to instances tife
general classifier also applies to instances of the specific classifier

The specific semntics of how generalizin afects each concrete subtype@ssfier varies. All instances of a
classifier have vakes corresponding to the classifeeattributes.

A Classifier defires a type. ¥pe conformace between generalizabBassifiers isdefined o that aClassifier conforms
to itself and to all of its ances®in the gneralizationhierarchy

Classifier::p|
parents = g4
54 UML Superstructure Specification, v2.1.2
UML Superstructmu SpelliLauult, ve. L.z 00 =

82/99

Reading

tho

— 20 — 2014-02-03 — Sreading —

Wind

public
size: Area = (]
defaultSize: R|
protected
visibility: Bool
private
XWin: XWindo|

public
display()
hide()

private
attachX(xWin|

Figure 7.29 - Cl
7.3.8 Clas
A classifier is g

Generalizatio
* “Nameg]
» “Redefin
« “Type (f

Description

A clasdfier is g

A classifier is
othe classifierd

A classifier is g

Attributes

¢ isAbstract]
If true,
classif
relatiol

Associations

e Jattribute:

Referg

Classif
e /[feature:

Spedfi
« /general:

Specif
52

* generalizal
Specfi
classfi

¢ /inherited
Specif
derived

¢ redefinedd
Referg

Package Depe

e substitution
Refere
Named

Package Pows

e powertypeH
Design

Constraints
[1] The gmerd
general = s¢

[2] Generdizat
trangtively

not self.allP)
[3] A classfier
self.parents
[4] Theinherit
self.inherite:

Package Powse

[5] The Clasif
Generailzat
itself nor m

Additional Op
[1] Thequerya
inheritance
Classifier::a|
allFeatures
[2] The qery ¢

[3] The query
Classifier::a
allParents 3

[4] The queryi
subjectto W
Classifier::i
pre: c.alIPaIl
inheritableM

[5] The queryH
only called|
Classifier::h
pre: self.all

if (self.
ha
else

haj

[6] Thequety d
in the spec}
Classifier::c}
conformsTo

[7] The query
to be rede
Classifier::ir|
inherit = inh

[8] The query
the specifi
redefinedb

Classifier::nf
maySpecial

Semantics
A classifier is

A Classifier m
also a (indired
classifier ae in|
general classi

The specific s
classifier have

A Classifier dd
to itself and tg

Package PowerTypes

The ndion of power type was inspirday the notion of powesd. A power sé is ddined & a €t whoseinstancesare
subsets In esence, thena power type is a clsswhoseinstances aresubclasees The powetypeExtent association reést
a Classifiewith a set of generalizatisithat a) have a comon specific Classifierard b) represent a collection of subset|
for that class.

Semantic Variation Points

The precise lifecycle semantics afgegation is a seamtic variation point.

Notation

Classifieris an abstract modelement,and so properly speaid has no notation. It is nektheless convenierb define
in one place a default redton available foany concrete subads of Classifr for which this notation is suitable. The
default notation for a classifier is a solid-outline rectangintaining the classifiername, and optiwally with
compartments separated by horizontal lines containing featu@h@membeas of theclasifier. The pedfic type of
classifiercan be shown in guillemetdbowe the name. Soespecializations of Clagsér have tkir own disinct notatims.

The name of an abstract Classifier is shown in italics.

An attribute can be shown as a text string. The format ofsthigg is specified in the Notation sub clause of “Propert
(from Kernel, AssociationClasses)” on pa2S.

Presentation Options

Any compartment may be spigssed. A separator line is ndrawn for a suppressed compartment. If a gamment is
suppressedjo inference can barawn about the presence absence of eleemts in it. Compartment nas can be used
to remove ambiguity, if necessary

An abstract Classifier can be showsing the keyword {abstrgcafter or below the name of the Classifier

Thetype, visiblity, default, multiplicity property string may bsuppressed from beig displayed, even if there avalues
in the model.

The individual properties of an attribute can be shaw columns rather thaas a continuas string.

Style Guidelines
« Attribute nanes typically begh with a lowercase letteMulti-word nanes are often forrad by concatenating the word|
and usindowercag for all letters excegor upcasng the firg letter ofeach word buthe first.
« Centerthe name ofhe clasHier in boldface.
« Center leyword (including stereotpe names) irplain face wthin guillemets above #hclassifiername.

« For those langages thatlistinguishbetwveen upprcaseard lowercase charactersapitdize nanes (i.e, begnh them
with anupperca® character).

« Left justify attributes ad operations in plain face.
- Begin attributeandoperationnames with dowercase letter
« Show full attributesand operationsshen needed asuppress hemin other contexts or references.

o7

Classifier::p|
parents = g4
UML Superstructure Specification, v2.1.2 55
54 - : T
UML Superstructmu SpelliLauult, ve. L.z 00

82/99

Reading

tho

— 20 — 2014-02-03 — Sreading —

Wind

public
size: Area = (]
defaultSize: R|
protected
visibility: Bool
private
XWin: XWindo|

public
display()
hide()

private
attachX(xWin|

Figure 7.29 - Cl

7.3.8 Clas

A classifier is g

Generalizatio
* “Nameg]
» “Redefin
« “Type (f

Description

A clasdfier is g

A classifier is
othe classifierd

A classifier is g

Attributes

¢ isAbstract]
If true,
classif
relatiol

Associations

e Jattribute:

Referg

Classif
e /[feature:

Spedfi
« /general:

Specif
52

* generalizal
Specfi
classfi

¢ /inherited
Specif
derived

¢ redefinedd
Referg

Package Depe

e substitution
Refere
Named

Package Pows

e powertypeH
Design

Constraints
[1] The gmerd
general = s¢

[2] Generdizat
trangtively

not self.allP)
[3] A classfier
self.parents
[4] Theinherit
self.inherite:

Package Powse

[5] The Clasif
Generailzat
itself nor m

Additional Op
[1] Thequerya
inheritance
Classifier::a
allFeatures
[2] The qery 4
Classifier::p|
parents = g4

[3] The query

Package Powse

The ndion of g

Examples

Classifier::al subsets In esgf ClassA
allParents § a Classifiemwith name: String
.| for that class. shape: Rectangle
[4] The queryi + size: Integer [0..1]
subjectto W s tic Vari / area: Integer {readOnly}
Classifier-f —Smantic vari height: Integer= 5
I'| . . width: Integer
pre: c.allPal The precise lif
inheritableM) Zr
(5] The qeeryt Notation
only called| classifieris an ClassB
Classifier::h| in one place a id {redefines name}
pre: self.alll default notatio shape: Square
- compartments| | heignt=7
if (self. pa / width
ha| classifiercan b
else
h The name of §)
a Figure 7.30 - Examples of attributes
[6] Thequeryd An attribute cg . - .
in thespec| (from Kernel, The attributesn Flgu.re7.30arfa explieuned belqw.
Classifier-c « ClassA:naneis an attribte with type Sring.
conformsTo| Presentation - ClassA:$apeis an attrbute with type Rectange.
[7] The query| Any compartm . CIassA:saels.a puﬂI-C attnb-ue of twe Ineger with mdtl plicity 0..1.
to be rede{ suppressedjo » ClassA::area is derivedattiibute with typeInteger. It is marked asead-aly.
Classifier::i] to remove am « ClassA:height is anattribute of type Integer with a defaultinitial value of 5.
inherit = inh An abstract Cl . CIassA:.wu.jth is ar.mattnbute of typelntegar.
[8] The query + ClassB:id is anatiribute that redfines ClassAnarre.
the specifi _Thehtype, l‘j"sl'b' - ClassB::kapeis an attribute that defines ClassAshape.It hastype Square, apecializabn of Recaingk.
redd|‘n.edb in the model. » ClassB:height is anattibutethat redefinelassA::teigh. It hasa defalt of 7 for ClassBinstanceghat overrideshe
Classifier:nt e jrgividual ClassA defali of 5.
maySpecial « ClassB:width isa derivedattribute that redefines ClassAwidth, which is na derived.
. Style Guidelin . . o . . o
Semantics An attribute may also be shown using asation notation, with no adornments at the taflthe arrow ashown in Figure
o » Attributd 7.37.
A classifier is g and usin
A Classifier m + Centerth
also a (indired - Centerliq size
classifier ae in « Forthos| | Window > Area
general classi with and 1
The specific s * Leftjust
classifier have - Begin af] Figure 7.31 - Association-like notation for attribute
A Classifier de * Showfu
to itself and to
56 UML Superstructure Specification, v2.1.2
UML Superstructmc Speiicauull, ve. L.z 00 =
54 — ; E—
a
o

UML Superstructure specnicauuit, ve.L.z

82/99

tho

Reading

— 20 — 2014-02-03 — Sreading —

Wind

public
size: Area = (]
defaultSize: R|
protected
visibility: Bool
private
XWin: XWindo|

public
display()
hide()

private
attachX(xWin|

Figure 7.29 - Cl

7.3.8 Clas

A classifier is g

Generalizatio
* “Nameg]
» “Redefin
« “Type (f

Description

A clasdfier is g

A classifier is
othe classifierd

A classifier is g

Attributes

¢ isAbstract]
If true,
classif
relatiol

Associations

e Jattribute:

Referg

Classif
e /[feature:

Spedfi
« /general:

Specif
52

* generalizal
Specfi
classfi

¢ /inherited
Specif
derived

¢ redefinedd
Referg

Package Depe

e substitution
Refere
Named

Package Pows

e powertypeH
Design

Constraints
[1] The gmerd
general = s¢

[2] Generdizat
trangtively

not self.allP)
[3] A classfier
self.parents
[4] Theinherit
self.inherite:

Package Powse

[5] The Clasif
Generailzat
itself nor m

Additional Op
[1] Thequerya
inheritance
Classifier::a
allFeatures
[2] The qery 4
Classifier::p|
parents = g4

[3] The query
Classifier::a
allParents 3

[4] The queryi
subjectto W
Classifier::i
pre: c.alIPaIl
inheritableM

[5] The queryH
only called|
Classifier::h
pre: self.all

if (self.
ha
else

haj

[6] Thequety d
in the spec]
Classifier::c}
conformsTo

[7] The query
to be rede
Classifier::ir|
inherit = inh

[8] The query
the specifi
redefinedb

Classifier::nf
maySpecial

Semantics
A classifier is

A Classifier m
also a (indired
classifier ae in|
general classi

The specific s
classifier have

A Classifier dd
to itself and tg

Package Powse

The ndion of g
subsets In esg|
a Classifiemwith
for that class.

Semantic Vari

The precise lif

Notation

Classifieris an
in one place a
default notatio
compartments
classifiercan b

The name of ¢

An attribute c3
(from Kernel,

Examples

Class

name: String
shape: Rectang
+ size: Integer ||
/ area: Integer {|
height: Integers
width: Integer

?

Class

id {redefines nal
shape: Square
height =7

/ width

Figure 7.30 - E

The attributesn

Package PowerTypes

For example, a Bank Accountype clasifier could have a poertype assoation with a GeneralizationSet. This
GeneralizationSet could then associate with Genedlizations whee the tas (i.e., geneflaClassifier) Bank Account
has two specific subdaes(i.e., Classfiers): Cheking Account and Savings Account. Checkidgcountand Savings
Account, then, are instances of the power type: BanloéucType. In other words, Checkingcdount and Savings
Account areboth: instances bBank Account ¥pe, as well as subaaes of Bank Account. (For morepéanationand
examples see Examplesn the GaeraliationSet ab clause bdow.)

7.3.9 Comment (from Kernel)
A comnent is a textual annotation thatnche attached to a set of elements.

Generalizations

« “Element(from Kernel)” on page64.

Description

A comment gives the ability tattach various remarks to elents. Acomment caries ro senantic force,but may cotain
informationthat is useil to a modeler

A comnent can be owned by any element.

Attributes

. ClassA:l * multiplicitybody: Sring [0..1]
Presentation . ClassA: Specifies a gring thatis thecomment
Any compartm| ' g:assA: Associations
suppressedio » ClassAd | annomtedElerent: Elemen{*]
to remove am « ClassA: References the Element{®ingcommented.
An abstract Cl » ClassA: .
« ClassB:] Constraints
Thetype, visibl « ClassB:] No additional constraints
in the model. .
» ClassB:
The irdividual ClassA{ Semantics
o + ClassBY A Comnent adds no semantics to the annotated @fsn butmay represent inforation useful to the reader of the
Style Guidelin . model
An attribute m :
» Attributd 7.37.
and usir Notation
+ Centerth A Comnent is shown as a rectaeglith the upper right caer bet (this isalo known asa “note ymbol”). The
» Center i rectande contains th body of theComment. The connection teach anatated element ishown by a separate dashed
- For thos Window | line.
with any
. Left just Presentation Options
. Beginat| Figure7.31-Ad Thedasled line connecting the note tcetlanntated element(sinay be suppressed if it is clear frothe context, or not
« Show fu important in this diagram.
UML Superstructure Specification, v2.1.2 57
56 S e
UML Superstructmc Speiicauull, ve. L.z 00

54

UML Superstructure specnicauuit, ve.L.z

fole)

82/99

— 20 - 2014-02-03 — main —

Meta Object Facility (MOF)

83/99

Open Questions...

— 20 — 2014-02-03 — Smof —

Now you've been “tricked” again. Twice.

We didn't tell what the modelling language for meta-modelling is.
We didn't tell what the is-instance-of relation of this language is.

Idea: have a minimal object-oriented core comprising the notions of
class, association, inheritance, etc. with “self-explaining” semantics.

This is Meta Object Facility (MOF),
which (more or less) coincides with UML Infrastructure [OMG, 2007a].

So: things on meta level
MO are object diagrams/system states
M1 are words of the language UML
M2 are words of the language MOF

M3 are words of the language . ..

84 /99

MOF Semantics

— 20 — 2014-02-03 — Smof —

One approach:
Treat it with our signature-based theory
This is (in effect) the right direction, but may require new (or extended)

signatures for each level.
(For instance, MOF doesn’t have a notion of Signal, our signature has.)

85,99

MOF Semantics

— 20 — 2014-02-03 — Smof —

One approach:

Treat it with our signature-based theory

This is (in effect) the right direction, but may require new (or extended)
signatures for each level.
(For instance, MOF doesn’t have a notion of Signal, our signature has.)

Other approach:

Define a generic, graph based “is-instance-of” relation.

Object diagrams (that are graphs) then are the system states —
not only graphical representations of system states.

85,99

MOF Semantics

— 20 — 2014-02-03 — Smof —

One approach:

Treat it with our signature-based theory

This is (in effect) the right direction, but may require new (or extended)
signatures for each level.
(For instance, MOF doesn’t have a notion of Signal, our signature has.)

Other approach:

Define a generic, graph based “is-instance-of” relation.

Object diagrams (that are graphs) then are the system states —
not only graphical representations of system states.

If this works out, good: We can easily experiment with different language
designs, e.g. different flavours of UML that immediately have a semantics.

85,99

MOF Semantics

— 20 — 2014-02-03 — Smof —

One approach:
Treat it with our signature-based theory
This is (in effect) the right direction, but may require new (or extended)

signatures for each level.
(For instance, MOF doesn’t have a notion of Signal, our signature has.)

Other approach:

Define a generic, graph based “is-instance-of” relation.

Object diagrams (that are graphs) then are the system states —
not only graphical representations of system states.

If this works out, good: We can easily experiment with different language
designs, e.g. different flavours of UML that immediately have a semantics.

Most interesting: also do generic definition of behaviour within a closed

modelling setting, but this is clearly still research, e.g.

[Buschermohle and Oelerink, 2008]
85,99

— 20 - 2014-02-03 — main —

Meta-Modelling: (Anticipated) Benefits

86,99

Benefits: Overview

— 20 — 2014-02-03 — Sbenefits —

We'll (superficially) look at three aspects:
Benefits for Modelling Tools.
Benefits for Language Design.

Benefits for Code Generation and MDA.

87/99

Benefits for Modelling Tools

— 20 — 2014-02-03 — Sbenefits —

The meta-model My of UML immediately provides a data-structure
representation for the abstract syntax (~ for our signatures).

If we have code generation for UML models, e.g. into Java,
then we can immediately represent UML models in memory for Java.

(Because each MOF model is in particular a UML model.)

There exist tools and libraries called MOF-repositories, which can
generically represent instances of MOF instances (in particular UML
models).

And which can often generate specific code to manipulate instances of
MOF instances in terms of the MOF instance.

88,99

Benefits for Modelling Tools Cont’d

— 20 — 2014-02-03 — Sbenefits —

And not only in memory, if we can represent MOF instances in files, we
obtain a canonical representation of UML models in files, e.g. in XML.

— XML Metadata Interchange (XMI)

89,99

Benefits for Modelling Tools Cont’d

And not only in memory, if we can represent MOF instances in files, we
obtain a canonical representation of UML models in files, e.g. in XML.

— XML Metadata Interchange (XMI)

Note: A priori, there is no graphical information in XMI (it is only
abstract syntax like our signatures) — OMG Diagram Interchange.

— 20 — 2014-02-03 — Sbenefits —

89,99

Benefits for Modelling Tools Cont’d

— 20 — 2014-02-03 — Sbenefits —

And not only in memory, if we can represent MOF instances in files, we
obtain a canonical representation of UML models in files, e.g. in XML.

— XML Metadata Interchange (XMI)

Note: A priori, there is no graphical information in XMI (it is only
abstract syntax like our signatures) — OMG Diagram Interchange.

Note: There are slight ambiguities in the XMI standard.

And different tools by different vendors often seem to lie at opposite ends on
the scale of interpretation. Which is surely a coincidence.

In some cases, it's possible to fix things with, e.g., XSLT scripts, but full
vendor independence is today not given.

Plus XMI compatibility doesn’t necessarily refer to Diagram Interchange.

89,99

Benefits for Modelling Tools Cont’d

— 20 — 2014-02-03 — Sbenefits —

And not only in memory, if we can represent MOF instances in files, we
obtain a canonical representation of UML models in files, e.g. in XML.

— XML Metadata Interchange (XMI)

Note: A priori, there is no graphical information in XMI (it is only
abstract syntax like our signatures) — OMG Diagram Interchange.

Note: There are slight ambiguities in the XMI standard.

And different tools by different vendors often seem to lie at opposite ends on
the scale of interpretation. Which is surely a coincidence.

In some cases, it's possible to fix things with, e.g., XSLT scripts, but full
vendor independence is today not given.

Plus XMI compatibility doesn’t necessarily refer to Diagram Interchange.

To re-iterate: this is generic for all MOF-based modelling languages
such as UML, CWM, etc.
And also for Domain Specific Languages which don't even exit yet.
89,99

Benefits: Overview

— 20 — 2014-02-03 — Sbenefits —

We'll (superficially) look at three aspects:
Benefits for Modelling Tools. [
Benefits for Language Design.

Benefits for Code Generation and MDA.

90,99

Benefits for Language Design

— 20 — 2014-02-03 — Sbenefits —

Recall: we said that code-generators are possible “readers” of stereotypes.

For example, (heavily simplifying) we could
introduce the stereotypes Button, Toolbar, ...

for convenience, instruct the modelling tool to use special pictures for
stereotypes — in the meta-data (the abstract syntax), the stereotypes
are clearly present.

instruct the code-generator to automatically add inheritance from
Gtk::Button, Gtk::Toolbar, etc. corresponding to the stereotype.

One mechanism to define DSLs (based on UML, and “within” UML): Profiles.

01,99

Benefits for Language Design

— 20 — 2014-02-03 — Sbenefits —

Recall: we said that code-generators are possible “readers” of stereotypes.

For example, (heavily simplifying) we could
introduce the stereotypes Button, Toolbar, ...

for convenience, instruct the modelling tool to use special pictures for
stereotypes — in the meta-data (the abstract syntax), the stereotypes
are clearly present.

instruct the code-generator to automatically add inheritance from
Gtk::Button, Gtk::Toolbar, etc. corresponding to the stereotype.

Et voila: we can model Gtk-GUIs and generate code for them.

One mechanism to define DSLs (based on UML, and “within” UML): Profiles.

01,99

Benefits for Language Design

— 20 — 2014-02-03 — Sbenefits —

Recall: we said that code-generators are possible “readers” of stereotypes.

For example, (heavily simplifying) we could
introduce the stereotypes Button, Toolbar, ...

for convenience, instruct the modelling tool to use special pictures for
stereotypes — in the meta-data (the abstract syntax), the stereotypes
are clearly present.

instruct the code-generator to automatically add inheritance from
Gtk::Button, Gtk::Toolbar, etc. corresponding to the stereotype.

Et voila: we can model Gtk-GUIs and generate code for them.

Another view:
UML with these stereotypes is a new modelling language: Gtk-UML.
Which lives on the same meta-level as UML (M2).

It's a Domain Specific Modelling Language (DSL).
One mechanism to define DSLs (based on UML, and “within” UML): Profiles.

01,99

Benefits for Language Design Cont’d

— 20 — 2014-02-03 — Sbenefits —

For each DSL defined by a Profile, we immediately have
In memory representations,
modelling tools,
file representations.

Note: here, the semantics of the stereotypes (and thus the language of
Gtk-UML) lies in the code-generator.

That's the first “reader” that understands these special stereotypes.
(And that's what's meant in the standard when they're talking about giving
stereotypes semantics).

One can also impose additional well-formedness rules, for instance that
certain components shall all implement a certain interface (and thus have
certain methods available). (Cf. [Stahl and Volter, 2005].)

092/99

Benefits for Language Design Cont’d

— 20 — 2014-02-03 — Sbenefits —

One step further:
Nobody hinders us to obtain a model of UML (written in MOF),
throw out parts unnecessary for our purposes,

add (= integrate into the existing hierarchy) more adequat new
constructs, for instance, contracts or something more close to
hardware as interrupt or sensor or driver,

and maybe also stereotypes.

— a new language standing next to UML, CWM, etc.

Drawback: the resulting language is not necessarily UML any more,
so we can’t use proven UML modelling tools.

But we can use all tools for MOF (or MOF-like things).
For instance, Eclipse EMF/GMF /GEF.

093/99

Benefits: Overview

— 20 — 2014-02-03 — Sbenefits —

We'll (superficially) look at three aspects:
Benefits for Modelling Tools. [
Benefits for Language Design. [
Benefits for Code Generation and MDA.

94 /99

Benefits for Model (to Model) Transformation

— 20 — 2014-02-03 — Sbenefits —

There are manifold applications for model-to-model transformations:

For instance, tool support for re-factorings, like moving common
attributes upwards the inheritance hierarchy.

This can now be defined as graph-rewriting rules on the level of

MOF.
The graph to be rewritten is the UML model

95,99

Benefits for Model (to Model) Transformation

— 20 — 2014-02-03 — Sbenefits —

There are manifold applications for model-to-model transformations:

For instance, tool support for re-factorings, like moving common
attributes upwards the inheritance hierarchy.

This can now be defined as graph-rewriting rules on the level of

MOF.
The graph to be rewritten is the UML model

Similarly, one could transform a Gtk-UML model into a UML model,
where the inheritance from classes like Gtk::Button is made explicit:

The transformation would add this class Gtk::Button and the
inheritance relation and remove the stereotype.

95,99

Benefits for Model (to Model) Transformation

— 20 — 2014-02-03 — Sbenefits —

There are manifold applications for model-to-model transformations:

For instance, tool support for re-factorings, like moving common
attributes upwards the inheritance hierarchy.

This can now be defined as graph-rewriting rules on the level of

MOF.
The graph to be rewritten is the UML model

Similarly, one could transform a Gtk-UML model into a UML model,
where the inheritance from classes like Gtk::Button is made explicit:

The transformation would add this class Gtk::Button and the
inheritance relation and remove the stereotype.

Similarly, one could have a GUI-UML model transformed into a
Gtk-UML model, or a Qt-UML model.

The former a PIM (Platform Independent Model), the latter a PSM
(Platform Specific Model) — cf. MDA.

95,99

Special Case: Code Generation

— 20 — 2014-02-03 — Sbenefits —

Recall that we said that, e.g. Java code, can also be seen as a model.

So code-generation is a special case of model-to-model transformation;
only the destination looks quite different.

96,99

Special Case: Code Generation

Recall that we said that, e.g. Java code, can also be seen as a model.

So code-generation is a special case of model-to-model transformation;
only the destination looks quite different.

Note: Code generation needn’t be as expensive as buying a modelling
tool with full fledged code generation.

If we have the UML model (or the DSL model) given as an XML file,
code generation can be as simple as an XSLT script.

“Can be"” in the sense of

“There may be situation where a graphical and abstract
representation of something is desired which has a clear and
direct mapping to some textual representation.”

In general, code generation can (in colloquial terms) become arbitrarily
difficult.

— 20 — 2014-02-03 — Sbenefits —

96,99

Example: Model and XMl

— 20 — 2014-02-03 — Sbenefits —

{(pt100)) gather {(65C02)) update

SensorA 1 ControllerA

<?xml version = ’1.0’ encoding = ’UTF-8’ 7>

(NET2270))
UsbA

<XMI xmi.version = ’1.2’° xmlns:UML = ’org.omg.xmi.namespace.UML’ timestamp = ’Mon Feb 02 18:23:12 CET 2009°’>

<XMI.content>

<UML:Model xmi.id = ’...°>
<UML:Namespace.ownedElement>
<UML:Class xmi.id = ’...’ name = ’SensorA’>

<UML:ModelElement.stereotype>
<UML:Stereotype name = ’pt100°’/>
</UML:ModelElement.stereotype>
</UML:Class>
<UML:Class xmi.id = ’...’ name = ’ControllerA’>
<UML:ModelElement.stereotype>
<UML:Stereotype name = ’65C02°/>
</UML:ModelElement.stereotype>
</UML:Class>
<UML:Class xmi.id = ’...’ name = ’UsbA’>
<UML:ModelElement.stereotype>
<UML:Stereotype name = ’NET2270°’/>
</UML:ModelElement.stereotype>
</UML:Class>
<UML:Association xmi.id
<UML:Association xmi.id
</UML:Namespace.ownedElement>
</UML:Model>
</XMI.content>
</XMI>

’in’ >...</UML:Association>
out’ >...</UML:Association>

’...7 name

’...7 name

97 /99

— 20 — 2014-02-03 — main

References

9899

— 20 - 2014-02-03 — main —

References

[Buschermohle and Oelerink, 2008] Buschermohle, R. and Oelerink, J. (2008). Rich meta object

facility. In Proc. 1st IEEE Int'| workshop UML and Formal Methods.

[Crane and Dingel, 2007] Crane, M. L. and Dingel, J. (2007). UML vs. classical vs. rhapsody
statecharts: not all models are created equal. Software and Systems Modeling, 6(4):415—435.

[Fischer and Wehrheim, 2000] Fischer, C. and Wehrheim, H. (2000). Behavioural subtyping relations
for object-oriented formalisms. In Rus, T., editor, AMAST, number 1816 in Lecture Notes in
Computer Science. Springer-Verlag.

[Harel and Gery, 1997] Harel, D. and Gery, E. (1997). Executable object modeling with statecharts.
IEEE Computer, 30(7):31-42.

[Liskov, 1988] Liskov, B. (1988). Data abstraction and hierarchy. SIGPLAN Not., 23(5):17-34.

[Liskov and Wing, 1994] Liskov, B. H. and Wing, J. M. (1994). A behavioral notion of subtyping.
ACM Transactions on Programming Languages and Systems (TOPLAS), 16(6):1811-1841.

[OMG, 2003] OMG (2003). Uml 2.0 proposal of the 2U group, version 0.2,
http://www.2uworks.org/uml2submission.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version 2.1.2. Technical
Report formal /07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version 2.1.2. Technical
Report formal /07-11-02.

[Stahl and Volter, 2005] Stahl, T. and Volter, M. (2005). Modellgetriebene Softwareentwicklung.
dpunkt.verlag, Heidelberg.

9999

	Contents & Goals
	Active and Passive Objects~cite {HarelGery1997}
	What about non-Active Objects?
	What about non-Active Objects?

	Active and Passive Objects: Nomenclature
	Active and Passive Objects: Nomenclature
	Active and Passive Objects: Nomenclature

	Passive and Reactive
	Passive and Reactive

	Passive Reactive Classes
	Passive Reactive Classes
	Passive Reactive Classes

	And What About Methods?
	And What About Methods?
	And What About Methods?

	Behavioural Features
	Behavioural Features
	Behavioural Features

	Behavioural Features: Visibility and Properties
	Behavioural Features: Visibility and Properties

	State Machines: Discussion.
	Semantic Variation Points
	Semantic Variation Points
	Semantic Variation Points

	Course Map
	Inheritance: Syntax
	Recall: Abstract Syntax
	Recall: Reflexive, Transitive Closure of Generalisation
	Inheritance: Desired Semantics
	ifdefined SblankTitle SblankTitle �i
	Desired Semantics of Specialisation: Subtyping
	Desired Semantics of Specialisation: Subtyping
	Desired Semantics of Specialisation: Subtyping
	Desired Semantics of Specialisation: Subtyping

	``...shall be usable...''?
	``...a client...''?
	``...can't tell difference...''?
	``...can't tell difference...''?
	``...can't tell difference...''?
	Motivations for Generalisation
	What Does cite {FischerWehrheim2000} Mean for UML?
	``...shall be usable...'' for UML
	Easy: Static Typing
	Static Typing Cont'd
	Excursus: Late Binding of Behavioural Features
	Late Binding
	Late Binding in the Standard and Programming Lang.
	Late Binding in the Standard and Programming Lang.

	Back to the Main Track: ``...tell the difference...'' for UML
	With Only Early Binding...
	Difficult: Dynamic Subtyping
	Difficult: Dynamic Subtyping

	Sub-Typing Principles Cont'd
	Sub-Typing Principles Cont'd
	Sub-Typing Principles Cont'd
	Sub-Typing Principles Cont'd

	Ensuring Sub-Typing for State Machines
	Ensuring Sub-Typing for State Machines
	Ensuring Sub-Typing for State Machines

	Towards System States
	Towards System States

	Domain Inclusion Semantics
	Domain Inclusion Structure
	Domain Inclusion System States
	Preliminaries: Expression Normalisation
	Preliminaries: Expression Normalisation
	Preliminaries: Expression Normalisation

	OCL Syntax and Typing
	More Interesting: Well-Typed-ness
	Well-Typed-ness with Visibility Cont'd
	Satisfying OCL Constraints (Domain Inclusion)
	Transformers (Domain Inclusion)
	Semantics of Method Calls
	Inheritance and State Machines: Triggers
	Domain Inclusion and Interactions
	Uplink Semantics
	Uplink Semantics
	Pre-Processing for the Uplink Semantics
	Uplink Structure, System State, Typing
	Satisfying OCL Constraints (Uplink)
	Transformers (Uplink)
	Late Binding (Uplink)
	Domain Inclusion versus {} Uplink Semantics
	Cast-Transformers
	Casts in Domain Inclusion and Uplink Semantics
	Identity Downcast with Uplink Semantics
	Domain Inclusion versus {} Uplink Semantics: Differences
	Domain Inclusion versus {} Uplink Semantics: Motives
	Meta-Modelling: Idea and Example
	Meta-Modelling: Why and What
	Meta-Modelling: Why and What

	Meta-Modelling: Example
	UML Meta-Model: Extract
	Classes {small cite [32]{OMG2007b}}
	Operations {small cite [31]{OMG2007b}}
	Operations {small cite [30]{OMG2007b}}
	Classifiers {small cite [29]{OMG2007b}}
	Namespaces {small cite [26]{OMG2007b}}
	Root Diagram {small cite [25]{OMG2007b}}
	Interesting: Declaration/Definition {small cite [424]{OMG2007b}}
	UML Architecture {small cite [8]{OMG2003a}}
	UML Superstructure Packages {small cite [15]{OMG2007c}}
	Meta-Modelling: Principle
	Modelling versus {} Meta-Modelling
	Modelling versus {} Meta-Modelling
	Modelling versus {} Meta-Modelling
	Modelling versus {} Meta-Modelling
	Modelling versus {} Meta-Modelling

	Well-Formedness as Constraints in the Meta-Model
	Well-Formedness as Constraints in the Meta-Model
	Well-Formedness as Constraints in the Meta-Model

	Reading the Standard
	Reading the Standard
	Reading the Standard

	Reading the Standard Cont'd
	Reading the Standard Cont'd
	Reading the Standard Cont'd
	Reading the Standard Cont'd
	Reading the Standard Cont'd
	Reading the Standard Cont'd

	Meta Object Facility (MOF)
	Open Questions...
	MOF Semantics
	MOF Semantics
	MOF Semantics
	MOF Semantics

	Meta-Modelling: (Anticipated)
Benefits
	Benefits: Overview
	Benefits for Modelling Tools
	Benefits for Modelling Tools Cont'd
	Benefits for Modelling Tools Cont'd
	Benefits for Modelling Tools Cont'd
	Benefits for Modelling Tools Cont'd

	Benefits: Overview
	Benefits for Language Design
	Benefits for Language Design
	Benefits for Language Design

	Benefits for Language Design Cont'd
	Benefits for Language Design Cont'd
	Benefits: Overview
	Benefits for Model (to Model) Transformation
	Benefits for Model (to Model)
Transformation
	Benefits for Model (to Model)
Transformation

	Special Case: Code Generation
	Special Case: Code Generation

	Example: Model and XMI
	References
	
	blank.pdf
	ifdefined SblankTitle SblankTitle �i
	ifdefined SblankTitle SblankTitle �i
	ifdefined SblankTitle SblankTitle �i

