— 10 — 2013-12-02 — main —

Sdtware Design, Modelling andAnalysisin UML

Ledure 10: Constructive Behaviour, Sate Machines Overview

201312-02

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Contents & Goals

Last Lecture:

(Mostly) completed discussion of modelling structure.

This Lecture:

Educational Objectives: Capabilities for following tasks/questions.
Discuss the style of this class diagram.
What's the difference between reflective and constructive descriptions of
behaviour?
What's the purpose of a behavioural model?
What does this State Machine mean? What happens if | inject this event?

Can you please model the following behaviour.

Content:
For completeness: Modelling Guidelines for Class Diagrams
Purposes of Behavioural Models
Constructive vs. Reflective

UML Core State Machines (first half)

— 10 — 2013-12-02 — Sprelim —

2/96

OCL Congtraintsin (Clasg Diagrams

— 10 — 2013-12-02 — main

3/96

Invariant in ClassDiagram Example

e oces
v>3 Coutrl C v
C I ef v 53
T T 3
v {U> } ’M‘P C‘ w C{
V: T wT

If €2 consists of only CD with the single class C, then
o InV(€PD) = Inv(CD) = § candont ¢ hv:v >3 §

2013-12-02 - Socldia —

~10 -

4,96

Constraints vs. Types

— 10 — 2013-12-02 — Socldia —

Find the 10 differences:

C

x:Int {x=3Vz>17}

x = 4 is well-typed in the left context,

a system state satisfying x = 4 violates the constraints of the diagram.

2(T) = {3}

U{neN|n>1T7}

x =4 is not even well-typed in the right context,

there cannot be a system state with o(u)(z)

= 4 because o(u)(x) is

supposed to be in 2(T) (by definition of system state).

Rule-of-thumb:

If something “feels like” a type (one criterion: has a natural

correspondence in the application domain), then make it a type.

If something is a requirement or restriction of an otherwise useful type,

then make it a constraint.

Semantics of a ClassDiagram

— 10 — 2013-12-02 — Socldia —

a N
Definition. Let €2 be a set of class diagrams.
We say, the semantics of €% is the signature it induces and the set of
OCL constraints occurring in €%, denoted

[€2] := (S (€D), InvV(€D)).

Given a structure 2 of . (and thus of ¥ 2), the class diagrams describe
the system states ©% . Of those, some satisfy Inv(% %) and some don't.
We call a system state o € 2 consistent if and only if o = Inv(¢2).

. /

In pictures: €9 ={CDy,...,CDy,}

basic

_— \

signature . (¢ 2)

Astmgu:sh\

(classes and attributes)

\induce /

P

extended
(visibility)

invariants Inv(‘(f@)

-ﬂ«are
o £
WM‘F‘ Ll

5/96

6/96

Pragmatics

— 10 — 2013-12-02 — Socldia —

— 10 — 2013-12-02 — main

Recall: a UML model is an image or pre-image of a software system.

A set of class diagrams 2 with invariants Inv(% 2) describes the structure
of system states.
Together with the invariants it can be used to state:

Pre-image: Dear programmer, please provide an implementation which
uses only system states that satisfy Inv(492).

Post-image: Dear user/maintainer, in the existing system, only system
states which satisfy Inv(€ 2) are used.

(The exact meaning of “use” will become clear when we study behaviour — intuitively: the system states that
are reachable from the initial system state(s) by calling methods or firing transitions in state-machines.)

Example: highly abstract model of traffic lights controller.

not(red and green)

TLCtrl
red : Bool
green : Bool

7/96

Addendum: Semantics of OCL Boolean Operations

8/96

— 10 — 2013-12-02 — Sblank —

0 semanhis UF ofn(aﬁw IS wmowoTone

(L ropegacies W/ ma a &é—c:-fbe.mbu evalu aks
H L, He wbole expassion does)

® IC+)(x,9)=§)i,fj ‘ l‘f Xr._i_ and g¥L

ellssse.
ole v
e if e, [petue or g=tee e ptL ol ger
X): ' F L
T (o) (09 f; | descde

‘K‘M\ -
vt OdUanF-oJ (-ﬂq‘h) ""'[’lﬂ Jd{.u-x;O

éoociUAdJ{»wu‘ (deh) oc el w.x>0
weuld wbf do Wat ue waut

9/96

Correda Semantics of OCL Bodlean Operations

Table A.2 - Semantics of boolean operations

— 10 — 2013-12-02 — main —

by b, b, and b, bl or b, by xor b, b, impliesb, | not by

false fase fase false fase true true

false true false true true true true

true fase fase true true false false

true true true true fase true false

false 1 false L 1 true true

true 1 1 true 1 1 false
188 Object Constraint Language, v2.0
Table A.2 - Semantics of boolean operations

1 false fase 1 1 1 1

1 true 1 true 1 true 1

1 1 1 1 1 1 1

10/96

— 10 — 2013-12-02 — main —

Design Guidelines for (Clas9 Diagram
(partly following [Ambler, 2005)

Be careful whaose advice you buy, but,
be patient with thase who supgy it.

Baz Luhrmann’Mary Schmich

11/96

Main andGeneral Modelling Guideline (adnittedly: trivial and obviows)

— 10 — 2013-12-02 — Selements —

Be good to your audience.

“Imagine you're given your diagram D and asked to conduct task 7.

e Can you do 7 with D?

(semantics sufficiently clear? all necessary information available? ...)

o Does doing 7 with D cost you more nerves/time/money/. . .than it should?”

(syntactical well-formedness? readability? intention of deviations from standard
syntax clear? reasonable selection of information? layout? ...)

In other words: sty Skl bo
o the things most relevant for 7, do they stand out in D? Y=<
o the things less relevant for 7, do they disturb in D7 o
o gt Ll

Main andGeneral Quallty Criterion (agan: trivial and olvious)

— 10 — 2013-12-02 — Selements —

Q: When is a (class) diagram a good diagram?

A: If it serves its purpose/makes its point.

Examples for purposes and points and rules-of-thumb:
Analysis/Design
realizable, no contradictions
abstract, focused, admitting degrees of freedom for (more detailed) design

platform independent — as far as possible but not (artificially) farer

Implementation/A

close to target platform

(Co,1 is easy for Java, C, comes at a cost — other way round for RDB)
Implementation/B

complete, executable
Documentation

Right level of abstraction: “if you've only one diagram to spend, illustrate the
concepts, the architecture, the difficult part”

The more detailed the documentation, the higher the probability for regression
“outdated/wrong documentation is worse than none”

General Diagramming Guidelines [Ambler, 2009

— 10 — 2013-12-02 — Selements —

(Note: “Exceptions prove the rule.”) @7 @

2.1 Readability CZE& L.
1.-3. Support Readability of Lines
Df:ij = /=17

4. Apply Consistently Sized Symbols
9. Minimize the Number of Bubbles/_ma’vs

10. Include White-Space in Diagrams

General Diagramming Guidelines [Ambler, 2005

— 10 — 2013-12-02 — Selements

(Note: “Exceptions prove the rule.”)

2.1 Readability

1.-3. Support Readability of Lines
4. Apply Consistently Sized Symbols
9. Minimize the Number of Bubbles

10. Include White-Space in Diagrams

13. Provide a Notational Legend
CD‘

14/96

General Diagramming Guidelines [Ambler, 2009

— 10 — 2013-12-02 — Selements

2.2 Simplicity _W@
14. Show Only What You Have to Show éo
o =" o/3
15. Prefer Well-Known Notation over Exotic Notation & ~%* S73
AN
- 10/
. o .~
16. Large vs. Small Diagrams l _—;8;,' 9/1
18. Content First, Appearance Second /(0/0
Y dik M;c{‘
bevery 1, oA
&fh 5 koo

15/96

General Diagramming Guidelines [Ambler, 2005

— 10 — 2013-12-02 — Selements

2.2 Simplicity
14. Show Only What You Have to Show
15. Prefer Well-Known Notation over Exotic Notation
16. Large vs. Small Diagrams

18. Content First, Appearance Second

2.3 Naming

20. Set and (23. Consistently) Follow Effective Naming Conventions

2.4 General
24. Indicate Unknowns with Question-Marks
25. Consider Applying Color to Your Diagram

26. Apply Color Sparingly

15/96

ClassDiagram Guidelines [Ambler, 2005

— 10 — 2013-12-02 — Selements

5.1 General Guidelines

88. Indicate Visibility Only on Design Models (in contrast to analysis models)

5.2 Class Style Guidelines
96. Prefer Complete Singular Nouns for Class Names
97. Name Operations with Strong Verbs

99. Do Not Model Scaffolding Code [Except for Exceptions]
A~

e.a. 3&% /,ﬂé %"‘éoa{s

16/96

— 10 — 2013-12-02 — Selements

ClassDiagram CGuidelines [Ambler, 2009 E(C,
w.
#: A'e g

5.2 Class Style Guidelines
103.
104.

Never Show Classes with Just Two Compartments

Label Uncommon Class Compartments

ClassDiagram Guidelines [Ambler, 2005

— 10 — 2013-12-02 — Selements

5.3 Relationships C [—- -

112
115
117
118
119

. Model Relationships HosiZontally Ltﬁfﬂu@«cy
. Model a Dependency When the Relationship is Transitory

. Always Indicate the Multiplicity (or &aw}ocv(M(ﬁ/
. Avoid Multiplicity " (explécitly use Oux or 1. #)

1796

. Replace Relationship Lines with Attribute Types ('{O have 760«/ lm‘)

c “a

i A

18/96

ClassDiagram Guidelines [Ambler, 2009

— 10 — 2013-12-02 — Selements —

— 10 — 2013-12-02 — main —

5.4 Associations

127. Indicate Role Names When Multiple Associations Between Two Classes
Exist

129. Make Associations Bidirectional Only When Collaboration Occurs in

Both Directions
; offe. (FH—C7
131. Avoid Indicating Non-Navigability ('f: dﬂf%f-'ﬁ be D‘-%)

133. Question Multiplicities Involving Minimums(and Maximums)

T —2

5.6 Aggregation and Composition

— exercises

19,96

[..] But trust me onthe sunscreen.

Baz Luhrmann’Mary Schmich

20/96

Example: Modelling Games

— 10 — 2013-12-02 — main

21/96

Task: Game Devdopment

Task: develop a video game.

Degrees of freedom:

Genre: Racing. Rest: open, i.e.

Exemplary choice: 2D-Tron

simulation vs. arcade

platform (SDK or not,
open or proprietary,
hardware capabilities...)

graphics (3D, 2D, ...)
number of players, Al

controller

game experience

10 — 2013-12-02 — Stron —

arcade

open

2D
min. 2, Al open
open (later determined by platform)

minimal: main menu and game

22/96

Modelling Sructure: 2D-Tron

In many domains, there are canonical
architectures — and adept readers try

2D-Tron

arcade

platform open
2D

min. 2, Al open
controller open

only game, no menues

to see/find/match this!

For games:

Main |
External inputs Game Logic Output
Keyboard player scores ? Graphics (from
Joystick interface inputs/engine T~ ASCII to bitmap;
oystic l—1 puts/eng , native or via API)
update l I notify) Sound
Physics) Engine
. (Physics) Eng L
g physical objects
i collision notification
S
‘ 23/96
|_ Main
: - |
Modelling Sructure: 2D-Tron| e] oo
inputs - 2
update notify _°
Tron
Joystick? 1.k Player OpenGL?
colour
Control ey =1 Gamepl Rend
ontro direction ameplay ender
speed
Keyboard? aalib?
update notify
head
I
5 Segment Engine
7 x0, y0 areawidth
8 Al? x1, y1 - -
& | 0..% areaheight Conventions:
9 colour world
"5’ default £ is 1
I

24/96

— 10 — 2013-12-02 — main

Modelli ng Behaviour

— 10 — 2013-12-02 — Sbehav —

25/96

Socktaking...
Have: Means to model the structure of the system.

Class diagrams graphically, concisely describe sets of system states.

OCL expressions logically state constraints/invariants on system states.
Want: Means to model behaviour of the system.

Means to describe how system states evolve over time,

that is, to describe sets of sequences &

- wol rend —time ,
00,01, € Just codu-/ﬁg
of system states. Sﬁff hace.

26,96

What Can Be Purposes of Behavioural Models?

— 10 — 2013-12-02 — Sbehav —

(We will discuss this in more detail in Lecture 22.)

Example: Pre-Image Image
(the UML model is supposed to be the blue-print for a software system).

A description of behaviour could serve the following purposes:

Require Behaviour. “System definitely does this”
“This sequence of inserting money and requesting and getting water must be
possible.”

(Otherwise the software for the vending machine is completely broken.)
Allow Behaviour. “System does subset of this”

“After inserting money and choosing a drink, the drink is dispensed (if in stock).”
(If the implementation insists on taking the money first, that’s a fair choice.)

Forbid Behaviour. “System never does this”

“This sequence of getting both, a water and all money back, must not be pos-
sible.” (Otherwise the software is broken.)

Note: the latter two are trivially satisfied by doing nothing...

28/96

Constructive \s. Refledive Descriptions

12-02 — Sbehav —

— 10 — 2013-

[Harel, 1997] proposes to distinguish constructive and reflective descriptions:

“A language is constructive if it contributes to the dynamic semantics
of the model. That is, its constructs contain information needed in
executing the model or in translating it into executable code.”

A constructive description tells how things are computed (which can
then be desired or undesired).

“Other languages are reflective or assertive, and can be used by the
system modeler to capture parts of the thinking that go into building the
model — behavior included —, to derive and present views of the model,
statically or during execution, or to set constraints on behavior in
preparation for verification.”

A reflective description tells what shall or shall not be computed.

Note: No sharp boundaries!

29/96

Constructive UML

— 10 — 2013-12-02 — Sbehav —

UML provides two visual formalisms for constructive description of behaviours:
Activity Diagrams
State-Machine Diagrams
We (exemplary) focus on State-Machines because
somehow “practice proven” (in different flavours),
prevalent in embedded systems community,
indicated useful by [Dobing and Parsons, 2006] survey, and

Activity Diagram’s intuition changed (between UML 1.x and 2.x) from
transition-system-like to petri-net-like...

Example state machine:

\t} En#0)/z =2+ 1;n!F
S1

30/96

— 10 — 2013-12-02 — Sbehav —

Course Map
N
R 5O
- w E
cD, SM o e 0CL CD, SD s
O !
U
7 =(,6,V, atr), SM expr ., SD
O !
M= (32,Ay,—su) u B = (Qsp,q0, A, —sp, Fsp)
O]
I
(consg,Sndg)
7 = (00,60) ——— (01,61)" wa = ((04, cons;, Snd;)); e
D 0
G=(N,E,f)
U
oD

31,96

— 10 — 2013-12-02 — main

— 10 — 2013-12-02 — main —

References

95/96

References

[Ambler, 2005] Ambler, S. W. (2005). The Elements of UML 2.0 Style. Cambridge
University Press.

[Crane and Dingel, 2007] Crane, M. L. and Dingel, J. (2007). UML vs. classical vs.
rhapsody statecharts: not all models are created equal. Software and Systems
Modeling, 6(4):415-435.

[Dobing and Parsons, 2006] Dobing, B. and Parsons, J. (2006). How UML is used.
Communications of the ACM, 49(5):109-114.

[Harel, 1987] Harel, D. (1987). Statecharts: A visual formalism for complex systems.
Science of Computer Programming, 8(3):231-274.

[Harel, 1997] Harel, D. (1997). Some thoughts on statecharts, 13 years later. In
Grumberg, O., editor, CAV, volume 1254 of LNCS, pages 226-231. Springer-Verlag.

[Harel and Gery, 1997] Harel, D. and Gery, E. (1997). Executable object modeling
with statecharts. |[EEE Computer, 30(7):31-42.

[Harel et al., 1990] Harel, D., Lachover, H., et al. (1990). Statemate: A working
environment for the development of complex reactive systems. |EEE Transactions
on Software Engineering, 16(4):403-414.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version
2.1.2. Technical Report formal/07-11-04. 96,96

