
SoftwareDesign, Modelli ng andAnalysis in UML

Lecture10: ConstructiveBehaviour, StateMachinesOverview

2013-12-02

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

–
1
0

–
2
0
1
3
-1

2
-0

2
–

m
a
in

–

Contents & Goals

Last Lecture:

• (Mostly) completed discussion of modelling structure.

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• Discuss the style of this class diagram.

• What’s the difference between reflective and constructive descriptions of
behaviour?

• What’s the purpose of a behavioural model?

• What does this State Machine mean? What happens if I inject this event?

• Can you please model the following behaviour.

• Content:

• For completeness: Modelling Guidelines for Class Diagrams

• Purposes of Behavioural Models

• Constructive vs. Reflective

• UML Core State Machines (first half)

–
1
0

–
2
0
1
3
-1

2
-0

2
–

S
p
re

li
m

–

2/96

OCL Constraints in (Class) Diagrams

–
1
0

–
2
0
1
3
-1

2
-0

2
–

m
a
in

–

3/96

Invariant in ClassDiagram Example

C

v : τ {v > 3}

If CD consists of only CD with the single class C, then

• Inv(CD) = Inv(CD) =

–
1
0

–
2
0
1
3
-1

2
-0

2
–

S
o
cl

d
ia

–

4/96

Constraints vs. Types

Find the 10 differences:

C

x : Int {x = 3 ∨ x > 17}

C

x : T
D(T) = {3}

∪{n ∈ N | n > 17}

• x = 4 is well-typed in the left context,
a system state satisfying x = 4 violates the constraints of the diagram.

• x = 4 is not even well-typed in the right context,
there cannot be a system state with σ(u)(x) = 4 because σ(u)(x) is
supposed to be in D(T) (by definition of system state).

Rule-of-thumb:

• If something “feels like” a type (one criterion: has a natural
correspondence in the application domain), then make it a type.

• If something is a requirement or restriction of an otherwise useful type,
then make it a constraint.

–
1
0

–
2
0
1
3
-1

2
-0

2
–

S
o
cl

d
ia

–

5/96

Semantics of a ClassDiagram

Definition. Let CD be a set of class diagrams.

We say, the semantics of CD is the signature it induces and the set of
OCL constraints occurring in CD , denotedJCDK := 〈S (CD), Inv(CD)〉.

Given a structure D of S (and thus of CD), the class diagrams describe

the system states ΣDS . Of those, some satisfy Inv(CD) and some don’t.

We call a system state σ ∈ ΣDS consistent if and only if σ |= Inv(CD).

In pictures: CD = {CD1, . . . , CDn}

signature S (CD) invariants Inv(CD)

basic

(classes and attributes)

extended

(visibility)

(σ ∈) ΣDS

J · K
distinguish

induce

–
1
0

–
2
0
1
3
-1

2
-0

2
–

S
o
cl

d
ia

–

6/96

Pragmatics

Recall: a UML model is an image or pre-image of a software system.

A set of class diagrams CD with invariants Inv(CD) describes the structure
of system states.

Together with the invariants it can be used to state:

• Pre-image: Dear programmer, please provide an implementation which
uses only system states that satisfy Inv(CD).

• Post-image: Dear user/maintainer, in the existing system, only system
states which satisfy Inv(CD) are used.

(The exact meaning of “use” will become clear when we study behaviour — intuitively: the system states that
are reachable from the initial system state(s) by calling methods or firing transitions in state-machines.)

Example: highly abstract model of traffic lights controller.

TLCtrl

red : Bool

green : Bool

not(red and green)

–
1
0

–
2
0
1
3
-1

2
-0

2
–

S
o
cl

d
ia

–

7/96

Addendum: Semantics of OCL BooleanOperations

–
1
0

–
2
0
1
3
-1

2
-0

2
–

m
a
in

–

8/96

–
1
0

–
2
0
1
3
-1

2
-0

2
–

S
b
la

n
k

–

9/96

Correct Semanticsof OCL Boolean Operations

188 Object Constraint Language, v2.0

Table A.2 - Semantics of boolean operations

b1 b2 b1 and b2 b1 or b2 b1 xor b2 b1 implies b2 not b1

false false false false false true true

false true false true true true true

true false false true true false false

true true true true false true false

false A false A A true true

true A A true A A false

A.2.2 Common Operations On All Types

A false false A A A A

A true A true A true A

A A A A A A A

Table A.2 - Semantics of boolean operations

–
1
0

–
2
0
1
3
-1

2
-0

2
–

m
a
in

–

10/96

DesignGuidelines for (Class) Diagram

Be careful whose advice you buy, but,
be patient with thosewho supply it.

BazLuhrmann/Mary Schmich

(partly following [Ambler, 2005])

–
1
0

–
2
0
1
3
-1

2
-0

2
–

m
a
in

–

11/96

Main andGeneral Modelli ngGuideline (admittedly: trivial and obvious)

Be good to your audience.

“Imagine you’re given your diagram D and asked to conduct task T .

• Can you do T with D?

(semantics sufficiently clear? all necessary information available? ...)

• Does doing T with D cost you more nerves/time/money/. . . than it should?”

(syntactical well-formedness? readability? intention of deviations from standard

syntax clear? reasonable selection of information? layout? ...)

In other words:

• the things most relevant for T , do they stand out in D?

• the things less relevant for T , do they disturb in D?

–
1
0

–
2
0
1
3
-1

2
-0

2
–

S
el

em
en

ts
–

12/96

Main andGeneral Quality Criterion (again: trivial and obvious)

• Q: When is a (class) diagram a good diagram?

• A: If it serves its purpose/makes its point.

Examples for purposes and points and rules-of-thumb:

• Analysis/Design

• realizable, no contradictions

• abstract, focused, admitting degrees of freedom for (more detailed) design

• platform independent – as far as possible but not (artificially) farer

• Implementation/A

• close to target platform

(C0,1 is easy for Java, C∗ comes at a cost — other way round for RDB)

• Implementation/B

• complete, executable

• Documentation

• Right level of abstraction: “if you’ve only one diagram to spend, illustrate the
concepts, the architecture, the difficult part”

• The more detailed the documentation, the higher the probability for regression

“outdated/wrong documentation is worse than none”–
1
0

–
2
0
1
3
-1

2
-0

2
–

S
el

em
en

ts
–

13/96

General DiagrammingGuidelines [Ambler, 2005]

(Note: “Exceptions prove the rule.”)

• 2.1 Readability

• 1.–3. Support Readability of Lines

• 4. Apply Consistently Sized Symbols

• 9. Minimize the Number of Bubbles

• 10. Include White-Space in Diagrams

–
1
0

–
2
0
1
3
-1

2
-0

2
–

S
el

em
en

ts
–

14/96

General DiagrammingGuidelines [Ambler, 2005]

(Note: “Exceptions prove the rule.”)

• 2.1 Readability

• 1.–3. Support Readability of Lines

• 4. Apply Consistently Sized Symbols

• 9. Minimize the Number of Bubbles

• 10. Include White-Space in Diagrams

• 13. Provide a Notational Legend

–
1
0

–
2
0
1
3
-1

2
-0

2
–

S
el

em
en

ts
–

14/96

General DiagrammingGuidelines [Ambler, 2005]

• 2.2 Simplicity

• 14. Show Only What You Have to Show

• 15. Prefer Well-Known Notation over Exotic Notation

• 16. Large vs. Small Diagrams

• 18. Content First, Appearance Second

–
1
0

–
2
0
1
3
-1

2
-0

2
–

S
el

em
en

ts
–

15/96

General DiagrammingGuidelines [Ambler, 2005]

• 2.2 Simplicity

• 14. Show Only What You Have to Show

• 15. Prefer Well-Known Notation over Exotic Notation

• 16. Large vs. Small Diagrams

• 18. Content First, Appearance Second

• 2.3 Naming

• 20. Set and (23. Consistently) Follow Effective Naming Conventions

• 2.4 General

• 24. Indicate Unknowns with Question-Marks

• 25. Consider Applying Color to Your Diagram

• 26. Apply Color Sparingly

–
1
0

–
2
0
1
3
-1

2
-0

2
–

S
el

em
en

ts
–

15/96

ClassDiagram Guidelines [Ambler, 2005]

• 5.1 General Guidelines

• 88. Indicate Visibility Only on Design Models (in contrast to analysis models)

• 5.2 Class Style Guidelines

• 96. Prefer Complete Singular Nouns for Class Names

• 97. Name Operations with Strong Verbs

• 99. Do Not Model Scaffolding Code [Except for Exceptions]

–
1
0

–
2
0
1
3
-1

2
-0

2
–

S
el

em
en

ts
–

16/96

ClassDiagram Guidelines [Ambler, 2005]

• 5.2 Class Style Guidelines

• 103. Never Show Classes with Just Two Compartments

• 104. Label Uncommon Class Compartments

• 105. Include an Ellipsis (...) at the End of an Incomplete List

• 107. List Operations/Attributes in Order of Decreasing Visibility

–
1
0

–
2
0
1
3
-1

2
-0

2
–

S
el

em
en

ts
–

17/96

ClassDiagram Guidelines [Ambler, 2005]

• 5.3 Relationships

• 112. Model Relationships Horizontally

• 115. Model a Dependency When the Relationship is Transitory

• 117. Always Indicate the Multiplicity

• 118. Avoid Multiplicity “∗”

• 119. Replace Relationship Lines with Attribute Types

–
1
0

–
2
0
1
3
-1

2
-0

2
–

S
el

em
en

ts
–

18/96

ClassDiagram Guidelines [Ambler, 2005]

• 5.4 Associations

• 127. Indicate Role Names When Multiple Associations Between Two Classes
Exist

• 129. Make Associations Bidirectional Only When Collaboration Occurs in
Both Directions

• 131. Avoid Indicating Non-Navigability

• 133. Question Multiplicities Involving Minimums and Maximums

• 5.6 Aggregation and Composition

• → exercises

–
1
0

–
2
0
1
3
-1

2
-0

2
–

S
el

em
en

ts
–

19/96

[...] But trust me on thesunscreen.

BazLuhrmann/Mary Schmich

–
1
0

–
2
0
1
3
-1

2
-0

2
–

m
a
in

–

20/96

Example: Modelli ngGames

–
1
0

–
2
0
1
3
-1

2
-0

2
–

m
a
in

–

21/96

Task: GameDevelopment

Task: develop a video game. Genre: Racing. Rest: open, i.e.

Degrees of freedom: Exemplary choice: 2D-Tron

• simulation vs. arcade arcade

• platform (SDK or not,
open or proprietary,
hardware capabilities...)

open

• graphics (3D, 2D, ...) 2D

• number of players, AI min. 2, AI open

• controller open (later determined by platform)

• game experience minimal: main menu and game

–
1
0

–
2
0
1
3
-1

2
-0

2
–

S
tr

o
n

–

22/96

Modelli ng Structure: 2D-Tron
2D-Tron

• arcade
• platform open
• 2D
• min. 2, AI open
• controller open

• only game, no menues

• In many domains, there are canonical
architectures – and adept readers try
to see/find/match this!

• For games:

Main

External inputs

• Keyboard

• Joystick

• . . .

Game Logic

• player scores

• interface inputs/engine

(Physics) Engine

• physical objects

• collision notification

Output

• Graphics (from
ASCII to bitmap;
native or via API)

• Sound

• . . .

notifyupdate ?

?

–
1
0

–
2
0
1
3
-1

2
-0

2
–

S
tr

o
n

–

23/96

Modelli ng Structure: 2D-Tron
Main

External
inputs

Game Logic

(Physics) Engine

Output

notifyupdate ?

?

Tron

Joystick?

. . .

Keyboard?

Control

Player

colour
score
direction
speed

Gameplay Render

OpenGL?

. . .

aalib?

AI?

Segment

x0, y0
x1, y1
colour

Engine

areawidth
areaheight

1..∗

notifyupdate

0..∗

head

world

1..∗

Conventions:

• default ξ is 1

–
1
0

–
2
0
1
3
-1

2
-0

2
–

S
tr

o
n

–

24/96

Modelli ngBehaviour

–
1
0

–
2
0
1
3
-1

2
-0

2
–

m
a
in

–

25/96

Stocktaking...

Have: Means to model the structure of the system.

• Class diagrams graphically, concisely describe sets of system states.

• OCL expressions logically state constraints/invariants on system states.

Want: Means to model behaviour of the system.

•• Means to describe how system states evolve over time,
that is, to describe sets of sequences

σ0, σ1, · · · ∈ Σω

of system states.

–
1
0

–
2
0
1
3
-1

2
-0

2
–

S
b
eh

a
v

–

26/96

What CanBe Purposes of Behavioural Models?

(We will discuss this in more detail in Lecture 22.)

Example: Pre-Image Image
(the UML model is supposed to be the blue-print for a software system).

A description of behaviour could serve the following purposes:

• Require Behaviour. “System definitely does this”

“This sequence of inserting money and requesting and getting water must be
possible.”

(Otherwise the software for the vending machine is completely broken.)

• Allow Behaviour. “System does subset of this”

“After inserting money and choosing a drink, the drink is dispensed (if in stock).”

(If the implementation insists on taking the money first, that’s a fair choice.)

• Forbid Behaviour. “System never does this”

“This sequence of getting both, a water and all money back, must not be pos-

sible.” (Otherwise the software is broken.)

Note: the latter two are trivially satisfied by doing nothing...

–
1
0

–
2
0
1
3
-1

2
-0

2
–

S
b
eh

a
v

–

28/96

Constructive vs. ReflectiveDescriptions

[Harel, 1997] proposes to distinguish constructive and reflective descriptions:

• “A language is constructive if it contributes to the dynamic semantics
of the model. That is, its constructs contain information needed in
executing the model or in translating it into executable code.”

A constructive description tells how things are computed (which can
then be desired or undesired).

• “Other languages are reflective or assertive, and can be used by the
system modeler to capture parts of the thinking that go into building the
model – behavior included –, to derive and present views of the model,
statically or during execution, or to set constraints on behavior in
preparation for verification.”

A reflective description tells what shall or shall not be computed.

Note: No sharp boundaries!

–
1
0

–
2
0
1
3
-1

2
-0

2
–

S
b
eh

a
v

–

29/96

ConstructiveUML

UML provides two visual formalisms for constructive description of behaviours:

• Activity Diagrams

• State-Machine Diagrams

We (exemplary) focus on State-Machines because

• somehow “practice proven” (in different flavours),

• prevalent in embedded systems community,

• indicated useful by [Dobing and Parsons, 2006] survey, and

• Activity Diagram’s intuition changed (between UML 1.x and 2.x) from
transition-system-like to petri-net-like...

• Example state machine:

s1 s2

s3

E[n 6= ∅]/x := x + 1;n !F

/n := ∅F/x := 0

–
1
0

–
2
0
1
3
-1

2
-0

2
–

S
b
eh

a
v

–

30/96

Course Map

UML

M
o
d
e
l

In
s
t
a
n
c
e
s

N

S

W E

CD, SM

S = (T,C, V, atr), SM

M = (ΣDS , AS ,→SM)

ϕ ∈ OCL

expr

CD, SD

S , SD

B = (QSD , q0, AS ,→SD , FSD)

π = (σ0, ε0)
(cons0,Snd0)
−−−−−−−−→

u0

(σ1, ε1)· · · wπ = ((σi, consi, Snd i))i∈N

G = (N, E, f) Mathematics

OD UML

✔ !

✔ !

!
✔

✔

✔

✔

✔

–
1
0

–
2
0
1
3
-1

2
-0

2
–

S
b
eh

a
v

–

31/96

References

–
1
0

–
2
0
1
3
-1

2
-0

2
–

m
a
in

–

95/96

References

[Ambler, 2005] Ambler, S. W. (2005). The Elements of UML 2.0 Style. Cambridge
University Press.

[Crane and Dingel, 2007] Crane, M. L. and Dingel, J. (2007). UML vs. classical vs.
rhapsody statecharts: not all models are created equal. Software and Systems
Modeling, 6(4):415–435.

[Dobing and Parsons, 2006] Dobing, B. and Parsons, J. (2006). How UML is used.
Communications of the ACM, 49(5):109–114.

[Harel, 1987] Harel, D. (1987). Statecharts: A visual formalism for complex systems.
Science of Computer Programming, 8(3):231–274.

[Harel, 1997] Harel, D. (1997). Some thoughts on statecharts, 13 years later. In
Grumberg, O., editor, CAV, volume 1254 of LNCS, pages 226–231. Springer-Verlag.

[Harel and Gery, 1997] Harel, D. and Gery, E. (1997). Executable object modeling
with statecharts. IEEE Computer, 30(7):31–42.

[Harel et al., 1990] Harel, D., Lachover, H., et al. (1990). Statemate: A working
environment for the development of complex reactive systems. IEEE Transactions
on Software Engineering, 16(4):403–414.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version
2.1.2. Technical Report formal/07-11-04.–

1
0

–
2
0
1
3
-1

2
-0

2
–

m
a
in

–

96/96

