Sdtware Design, Modelling andAnalysisin UML

Ledure 16: Hierarchical State Machines |
201401-15

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

20160115 - mai

OCL Constraints and Behaviour c \B

PV

| | x= il mice -
« Let M = (%9,.%(,67) be a UML model. L) gt

shps, x20
. . . 8 Vichabed
» We call M consistent iff, for each OCL constraint expr € Inv(6'2), (3

o |= expr for each “reasonable point” (o,) of computations of M.
(CEmrrrmmrsmm discussion of “reasonzble point’) 51) /
(<3l e ks, [E1
0
Note: we could define Inv(%4) sglr to Ind(¢2). R 2 -
. _ new Ocl xE1 _
Mo ey =21 9520 et X fe2
UR
ey, . .
Pragmatics: % qoude € v, sh=S1 wplies 002+ cuoice &) &J
o In UML-as-blueprint mode, if ## doesn't exist yet, then M = (¢ 2,0,0%7)
is typically asking the developer to provide .%# such that
M = (€9, %4,0) is consistent
If the developer makes a mistake, then M’ is inconsistent.
« Not common: if .%# is given, then constraints are also considered when choos-
ing transitions in the RTC-algorithm. In other words: even in presence of mis-
takes, the .## never move to inconsistent configurations.

1

Contents & Goals

Last Lecture:
 Putting it all together: UML model semantics (so far)

= Rhapsody demo, code generation

This Lecture:

« Educational Objectives: Capabilities for following tasks/questions.
* What does this State Machine mean? What happens if | inject this event?
« Can you please model the following behaviour.
« What does this hierarchical State Machine mean? What may happen if |
inject this event?

© What is: AND-State, OR-State, pseudo-state, entry/exit/do, final state, ..

« Content:
« State Machines and OCL
« Hierarchical State Machines Syntax
itial and Final State
« Composite State Semantics
© The Rest

Hierarchical State Machines

20140115 - mai

Sate Machines and OCL

UML Sate-Machines: What do we haveto cover?

e sutyos s

[

- ey oo

The Full Sory

UML distinguishes the following kinds of states:

veserted keguotds, b

. “ example

Representing All Kinds of States

example

Sl vt

pseudo-state

simple state

final state

composite state

OR

From UML to Hierarchical Sate Machines:. By Example

Bufacts,

in
(shallow) history

deep history
fork /join
junction, choice
entry point

exit point
terminate

submachine state

16 201

S det~

o Until now: jit. shie
/ Y ¢
ﬁqunc<\~n.uq sp€S,— CSx A%CAM‘: X MSﬁﬁ\ X hiﬁlx S
et qﬂ frautbons bigpe gl acho
QL&

DECV Y o (51,054, 52)
v

o (15,53, 19, S op (<3, I3)

Yausthos iucidomce
vlsaih.. —y —— e

EC NN
W % »9 ° Q\M:nrnuw\ Mﬁw@w‘_\vﬁmrw‘m&x&wkv

4 2 Tvm 2,53, Fsapt

7 (S. kind, region, —, 1, annot)

example €S kind

simple state .
Croluing, wsed il

final state

composite state

OR

AND

. submachine state

pseudo-state

o] | =

® va»jvﬁ [

(later)

@,

T/so 850
From UML to Hierarchical State Machines: By Example
| T T T e T T
_ : : |
region | DON ﬁ» NCOZ T |
3 | . tr(gd]/act l
g I
p | Y 4 I\ annot) |
™
... translates to (S, kind, on, —, 1, annot) =
:!Pmm,w (§ Gy s8), (5154), (g,
region S
{f5,55, 25584 {oprs 189,508, s 0, 5,06, 3,004,
5,508 3 .
950 d 10ss0

Representing All Kinds of Sates

« Until now:
(S,s0,—), s0€S8,— CSx(6U{})x Expry x Acty x S
» From now on: (hierarchical) state machines

(S,

where e waachins)
© S D {top} is a finite set of'states

o kind : § — {st, init, fin, shist, dhist, fork, join, junc, choi, ent, exi, term}
is a function which labels states with their kind, (new)

s .) .) .
© region : S — 2% is a function which characterises the regions of a state,

| region, —, v, annot)

(as before),

R~ sefs of sefs of S (new)

« is a set of transitions, (o Neasihr wasaes) (changed)

o 1 (—) — 25 x 25 is an incidence function, and (new)
o annot : (—) — (§U{ }) x Eapr, x Acts provides an annotation for

each transition. (new)

(s0 is then redundant — replaced by proper state (!) of kind ‘init'.)

WEll-Formedness Regions (foll ows from diagram)

| €S kind | regionC25,5,CS
simple state s st 0
final state fin 0
composite state st {S1,....8},n>1 SU---US,
pseudo-state s nit, ... 0 0
implicit top state | top st {81} 81

e)
» Each state (except for top) lies in exactly one region, w

« States s € S with kind(s) = st may comprise regions. ﬂmnzk\ﬁ of
« No region: simple state. PO A

» One region: OR-state.

« Two or more regions: AND-state.

« Final and pseudo states don’t comprise regions.

« The region function induces a child function.
10

Well-Formedness | nitial Sate (reguirement on dagram)

al state and at least one

+ Each non-empty region has a reasonable
transition from there, i.e
o for each s € S with region(s) = {S
 there exists exactly one initial pseudo-state (s}, init) € S; and
at least one transition t €— with s} as source,
. ‘o Yes
o and such transition’s target s} is in S;, and
(for simplicity!) kind(s) = st, and
annot(t) = (-, true, act) [

» No ingoing transitions to initial states. =) Aol @ &
No outgoing transitions from final states. @—() No/

.Su}.n>1, foreach 1 <i<n,

DON'T! DON'T!
JwF&Qn&
—

IR O)

1275

Initial Pseudostate

annot

AN

Principle:
« when entering a region without a specific destination state,
» then go to a state which is destination of an initiatj
« execute the action of the chosen initiation transitions between exit and
entry actions(se lak)s

Special case: the region of top.
 If class C has a state-machine, then “create-C' transformer” is the
concatenation of
« the transformer of the “constructor” of C' (here not ly) and
« a transformer corresponding to one initiation transition of the top region.

troduced expl

155

e

Plan ccample ceample

(shallow) history

deep history

fork/join

junction, choice

OR

entry point

exit point

terminate

o Initial pseudostate, final state.
« Composite states.
« Entry/do/exit actions, internal transitions.

o History and other pseudostates, the rest.

1350

Towards Final States: Completion of States

.\/EhﬂmTFB\m oves el poof

« Transitions without trigger can conceptionally be viewed as being sensitive for
the “completion event”.

E/act Do °t:

o Dispatching (here: E) can then alternatively be viewed as
) fetch event (here: E) from the ether,
(ii) take an enabled transition (here: to s3),

) remove event from the ether,

after having finished entry and do action of current state (here: s5) — the state i

then called completed —, .
en cal p oo

(v) raise a completion event — with strict priority over events from ether!

(vi) if there is a transition enabled which is sensitive for the completion event,
« then take it (here: (s, 55)).

« otherwise become stable.
16759

~ sintin -

Initial Pseudcstates and Final States

14750

Fina Sates %

o
et MM. [\ l annot f,© . Lo, Lepd

Np—0
Lf =2
o a step of|object u moves u into a final state (s, fin), and
o all siblinglregions are in a final state,
then (conceptionally) a completion event for the current composite state s is
raised.
« If there is a transition of a parent state (i.e., inverse of child) of s enabled
which is sensitive for the completion event,
« then take that transition,

 otherwise u

~+ adjust (2.) and (3.) in the semantics accordingly

+ One consequence: u never survives reaching a state (s, fin) with s € child(top).

1750

Composite Sates

(formali sation foll ows [Dammet al., 2003)

1850

Reaall: Syntax

translates to

({(top, st), (s, st). (s1, st)(s}, st)(s2, 5t)(sh. st) (s3, st)(sh, st) },

S, kind

{top — {s},s— {{s1,51}, {s2,55}, {s3. 55} }, 51— 0,5 — 0,

region

4, annot)

2150

20140115

Composite Sates

« In a sense, composite states are about
abbreviation, structuring, and avoiding redundancy.

o Idea: in Tron, for the Player's Statemachine,
instead of

write

1950
Syntax: Fork/Join
« For brevity, we always consider transitions with (possibly) multiple
sources and targets,
(=) = 25\ 0) x (2°\9)
o For instance,
translates to
: (S, kind, region, {t1}, {t; — ({s2, 53}, {55, s6})} {t1 — (tr, gd, act)})
H pe v anmot
"+ Naming convention: (t) = (source(t), target(t)).
2259

Composite Sates

and instead of
o [

Lo

20750

Composite Sates: Blessng o Curse?

States:
« what are legal state
configurations?

« what is the type of the
i ute?

Transitions:

« what are legal

transitions? what may happen on E?

« when is a transition « what may happen on E, F?
enabled? « can E, G kil the object?
« what effects do transi- .
tions have?
; 235

- shie

Sate Configuation

Sate Configuration

Sate Configuation

ie. st:25

from now on a set of states,

+ The type of st is from now on a set of states, i.e. st : 25 « The type of st is from now on a set of states, i.e. st : 25 + The type of
o Aset S C S is called (legal) state configurations if and only if

o Aset S; C Sis called (legal) state configurations if and only if
o top € S1, and

o Aset S; C S is called (legal) state configurations if and only
o top € Si, and * top € S1, and
o for each state s € Sy, for each non-empty region () # R € region(s), « for each state s € Sy, for each non-empty region) # R € region(s), « for each state s € Sy, for each non-empty region 0 # R € region(s),
exactly one (non pseudo-state) child of s (from R) is in Sy, i.e. exactly one (non pseudo-state) child of s (from R) is in S, i.e.

exactly one (non pseudo-state) child of s (from R) is in Sy, i.e.
[{s0o € R | kind(so) € {st, fin}} N S1| = 1. [{s0 € R | kind(s0) € {st, fin}} N S1| =1 [{s0 € R | kind(so) € {st, fin}} N S| = 1.
o Examples:

o Examples:

o

2450 ¥ 2450 2450
A Partial Order on Sates A Partial Order on Sates Least Comnon Ancestor and Ting
i i oS
The substate- (or child-) relation induces a partial order on states: The substate- (or child-) relation induces a partial order on states: * The least common ancestor is the function lca : 2%\ {8} — § such that
« The states in S are (transitive) children of lca(S)), i.e.
o top < s, forallse S, o top < s, forallse S,
o s< ¢, forall s' € child(s), o 5 <, forall ' € child(s), lca(S)) < s, foralls € S, C S,
o transitive, reflexive, antisymmetric, o transitive, reflexive, antisymmetric, « lca(Sy) is minimal, i.e. if § < s for all s € S, then § < lca(S))
o s’ <sands” <simpliess’ <s”ors” <s o s’ <sands” <simplies s’ <" or s" <. « Note: lca(S)) exists for all S; C S (last candidate: top).
s
T
i
I
i
i
. . | L
£ § i £
i : | i
i) i
2650

2550

25/50

Least Comnon Ancestor and Ting

o The least common ancestor is the function lca : 25\ {#} — S such that
» The states in S; are (transitive) children of lca(Sy), i

lea(Sy) < s, foralls € S; C S,

o lca(Sy) is minimal, i.e. if § < s for all s € S, then § < lca(Sy)
« Note: lca(S)) exists for all S; C S (last candidate: top).

26750

Least Comnon Ancestor and Ting

« A set of states S; C S is called consistent, denoted by | S,
if and only if for each s,s" € Sy,

e s5<s, or

e s <5 0r

o sls

2850

Least Comnon Ancestor and Ting

e

« Two states s1, s € S are called orthogonal, denoted s; L s», if and only if

« they are unordered, i.e. s; £ s and sy £ s1, and
o they “live" i

ve" in different regions of an AND-state,

Js, region(s) = {S1,..., S} 31 <i#j<n:s € child"(S;

Least Comnon Ancestor and Ting

o A set of states S; C S is called consistent, denoted by | S;,
if and only if for each s,s" € S,

o8 <s o0r
o5l

)

A

55 € child" (S)),

2759

28759

Least Comnon Ancestor and Ting

« Two states s1, sy € S are called orthogonal, denoted s; L sy, if and only if
« they are unordered, i.e. s; £ 52 and s £ s1, and
o they ifferent regions of an AND-state, i

Is,region(s) = {S1,..., 5.} 3L < i # j <m:sy € child™(Si) A sz € child™(S;),

2750
Lega Transitions
A hiearchical state-machine (S, kind, region, —, 1, annot) is called well-
formed if and only if for all transitions ¢ €—,
(i) source and destination are consistent, i.e. | source(t) and | target(t),
source (and destination) states are pairwise orthogonal
o forall s,5" € source(t) (€ target(t)), s L s',
the top state is neither
source nor destination, i.e.
o top ¢ source(t) U source(t)
+ Recall: final states are
not sources of transitions.
' 2950

The Depth of States

The Depth of Sates

Legal Transitions
o depth(top) =0, o depth(top) =0,
o depth(s') = depth(s) + 1, for all s’ € child(s)

A hiearchical state-machine (S, kind, region, —, ¢, annot) is called well-
o depth(s') = depth(s) + 1, for all s’ € child(s)

formed if and only if for all transitions ¢ €—,
(i) source and destination are consistent, i.e. | source(t) and | target(t),

source (and destination) states are p: e orthogonal,

o forall s,s' € source(t) (€ target(t)), s L s', Example:
the top state is neither

source nor destination,

o top ¢ source(t) U source(t).

« Recall: final states are
not sources of transitions.

| Example:
v : 3050 R 305
Enallednessin Hierarchical State-Machines Enallednessin Hierarchical State-Machines Enallednessin Hierarchical State-Machines
» The scope (“set of possibly affected states”) of a transition ¢ is the least » The scope (“set of possibly affected states”) of a transition ¢ is the least » The scope (“set of possibly affected states”) of a transition ¢ is the least
common region of common region of
source(t) U target(t).

common region of
source(t) U target(t).

source(t) U target(t).
« Two transitions ¢, £ are called consistent if and only if their scopes are

« Two transitions 1, t; are called consistent if and only if their scopes are
orthogonal (i.e. states in scopes pairwise orthogonal). orthogonal (i.e. states in scopes pairwise orthogonal).
n ¢ is the depth of its

nermost source state,

« The priority of tran

prio(t) == max{depth(s) | s € source(t)}

3150 3159 3150

Enabednessin Hierarchical Sate-Machines

The scope (“set of possibly affected states”) of a transition ¢ is the least
common region of

source(t) U target(t).

Two transitions ¢y, are called consistent if and only if their scopes are
orthogonal (i.e. states in scopes pairwise orthogonal).

The priority of transition ¢ is the depth of its innermost source state,

prio(t) := max{depth(s) | s € source(t)}

« A set of transitions 7" C— is enabled in an object u if and only if
« T'is consistent,
o T is maximal wrt. priority,
« all transitions in 7" share the same trigger,
« all guards are satisfied by (1), and

« for all t € T, the source states are active, i

source(t) C a(u)(st) (C S).
3150

Entry/Do/Exit Actions

51
ety
o In general, with each state mﬁc\\@un: 52
5 € S there is associated dof actf trlgd)/act [“entryfacts™
) exit/act? "
« an cntry, ado, and anexit | dofactfe
action (default: skip) 1/acts, exit/actg
« a possibly empty set of E "
trigger/action pairs called n/acte,
internal transitions,
(default: empty). E1,...,E, € &, ‘entry’, ‘do’, ‘exit’ are reserved names!

3450

Transitions in Hierarchical State-Machines

« Let T be a set of transitions enabled in u.
o Then (0,2) LD, (g1 ery if

« o'(u)(st) consists of the target states of f,

e. for simple states the simple states themselves, for composite
states the initial states,

cons, and Snd are the effect of firing each transition t € T’
one by one, in any order, i.e. for each t € T,

 the exit transformer of all affected states, highest depth first,
o the transformer of ¢,
o the entry transformer of all affected states, lowest depth first.

~ adjust (2), (3.), (5.) accordingly.

e

3250
Entry/Do/Exit Actions
[
i
« In general, with each state entry oct; =)
s € S there is associated dof act{ . trigdl/act [“entry/acte™
—— 5
« an entry, a do, and an exit wz /acty dof actge
action (default: skip) 1/act, exit/act
* a possibly empty set of

trigger//action pairs called En/actp,

internal transitions,

(default: empty). Ei,...,E, €

, ‘entry’, ‘do’, ‘exit’ are reserved namesl!

Recall

each action's supposed to have a transformer. Here: # e, tycr,

« Taking the transition above then amounts to applying

tgepenty © tact © Lgepeni
acty” © Lact © Lactey

instead of only

tact

~ adjust (2.), (3.) accordingly.
3450

Entry/Do/Exit Actions, Internal Transitions

3350

Internal Transitions
(a

entry/act{""™

dof act{® trlgd)/act
exit/ act$
Ei/actp,

exit/ actgt

Eu/acts,

For internal transitions, taking the one for Ey, for instance, s
amounts to taking only tacts, -

Intuition: The state is neither left nor entered, so: no exit, no entry.

~ adjust (2.) accordingly.
» Note: internal transitions also start a run-to-completion step.

3550

Internal Transitions Alternative View: Entry/Exit/Internal as Abbrevations Alternative View: Entry/Exit/Internal as Abbreviations

entry]acte™

S2

do/ act{°], y
91/ act | entry/acig™ o
exit/actf™ v/ trolgdol/ acto [“entry/acte™™ | trilgi]/ach . trolgdol/acty [entry/aete™ | trilods]/act: ;
By fact, dof acty (50 T it/ et entry/acts"™” — S e ety Jacty™
et exit/ actg exit/ act? tralgdal/actz | gy g M\v\sm_ tr2ldal/acta | g/ gz
1/actp,

Ei/actp,

E,/actg,

... as abbrevation for ... o ... as abbrevation for .

For internal transitions, taking the one for E, for instance, s
amounts to taking only fact, -
Intuition: The state is neither left nor entered, so: no exit, no entry.

~~ adjust (2.) accordingly. E

« Note: internal transitions also start a run-to-completion step.

o That is: Entry/Internal /Exit don’t add expressive power to Core State Machines.
If internal actions should have priority, s1 can be embedded into an OR-state
(see later).

» Note: the standard seems not to clarify whether internal transitions have
priority over regular transitions with the same trigger at the same state.

o

© Abbreviation may avoid confusion in context of hierarchical states (see later,

M Some code generators assume that internal transitions have priority! B
' 3550 36750 3650
Do Actions Do Actions
51 51
entry/act{""” " entry/act{™” .
do 52 1o 52
dof actf trlgd)/act [eneryfacty™ mo.\ actt trlgdl/act [“entryacty™
exit/ act$ dofctts exit/ act$ dofoctts
o/ act§ o/ actg .
Ey/act. Ey/act
1/acts, exit/act 1/acte, exit/actg The Concept of History, and Other Pseudo-States
E,/actp, E./actp,
o Intuition: after entering a state, start its do-action. « Intuition: after entering a state, start its do-action.
o If the do-action terminates, « If the do-action terminates,
« then the state is considered completed, o then the state is considered completed,
« otherwise, « otherwise,
« if the state is left before termination, the do-action is stopped. o if the state is left before termination, the do-action is stopped.
« Recall the overall UML State Machine philosophy: H
3 “An object is either idle or doing a run-to-completion step. 3
: %« Now, what is it exactly while the do action is executing...? H
38/

3750 3759

History and Deep History: By Example

What happens on...

° R

© Ra?

* A, B,C,S,Rs?

« AB.S,Rs?

« AB,C,D,E,R?

* A,B,C,D,Rq?

60115

3950

Junction andChoice

Junction andChoice Junction andChoice

 Junction (“static conditional branch”):

» Junction (“static conditional branch’

» good: abbreviation

« unfolds to so many similar transitions with different guards,
the unfolded transitions are then checked for enabledness
 at best, start with trigger, branch into conditions, then apply actions

» Choice: (“dynamic con nal branch”)

Note: not so sure about naming and symbols, e.g.,

Note: not so sure about naming and symbols, e.g.,
I'd guessed it was just the other way round...

I'd guessed it was just the other way round...

40/50 40750

Entry and Exit Point, Submachine Sate, Terminate

Entry and Exit Point, Submachine State, Terminate

Junction (“static conditional branch”):

« good: abbreviation
« unfolds to so many similar transitions with different guards,

the unfolded transitions are then checked for enabledness
« at best, start with trigger, branch into conditions, then apply actions

conditional branch™)

Choice: (“dynam

may get stuck

« enters the transition without knowing whether there’s an enabled path
« at best, use “else” and convince yourself that it cannot get stuck

« maybe even better: avoid

Note: not so sure about naming and symbols, e.g.,

I'd guessed it was just the other way round...
40750

» Hierarchical states can be “folded” for readability.
(but: this can also hinder readability.)

« Hierarchical states can be “folded” for readal
(but: this can also hinder readability.)

« Can even be taken from a different state-macl

ty.

ferent state-machine for re-use. S:s

» Can even be taken from a

e for re-use.

« Entry/exit points o®
« Provide connection points for finer integration into the current level,
than just via initial state
« Semantically a bit tricky:
 First the exit action of the exiting state,
o then the actions of the transition,
 then the entry actions of the entered state,

then action of the transition from
the entry point to an internal state,

and then that internal state's entry act

~Shist—

4150 ! 4150

Entry and Exit Point, Submachine Sate, Terminate

« Hierarchical states can be “folded” for readal
(but: this can also hinder readability.)
» Can even be taken from a different state-machine for re-use. S:s
+ Entry/exit points oO®

« Provide connection points for finer integration into the current level,
than just via initial state.

 Semantically a bit tricky:
o First the exit action of the exiting state,
o then the actions of the transition,

then the entry actions of the entered state,

« then action of the transition from
the entry point to an internal state,

and then that internal state's entry action.

 Terminate Pseudo-State X
« When a terminate pseudo-state is reached,

the object taking the transition is immediately killed. 4lsso

Deferred Events: | dea

For ages, UML state machines comprises the feature of deferred events.

The idea is as follows:

« Consider the following state macl

B/

« Assume we're stable in s, and F is ready in the ether.
 In the framework of the course, F is discarded.

« But we may find it a pity to discard the poor event
and may want to remember it for later processing, e.g. in s2,
in other words, defer it.

4350

Deferred Eventsin Sate-Machines

Deferred Events: | dea

For ages, UML state machines comprises the feature of deferred events.

T

=

e idea is as follows:

.

Consider the following state machine:

« Assume we're stable in 51, and I is ready in the ether.
o In the framework of the course, F is discarded.

But we may find it a pity to discard the poor event
and may want to remember it for later processing, e.g. in sa,
in other words, defer it.

.

General options to satisfy such needs:

= Provide a pattern how to “program” this (use self-loops and helper attributes).

« Tumn it into an original language concept.

Deferred Events: |dea

For ages, UML state machines comprises the feature of deferred events.
The idea is as follows:
« Consider the following state machine:

B/

» Assume we're stable in sy, and F' is ready in the ether.
» In the framework of the course, F is discarded.

42750 43550
Deferred Events: |dea
For ages, UML state machines comprises the feature of deferred events.
The idea is as follows:
» Consider the following state machine:
E F,
/ B /
» Assume we're stable in 51, and F' is ready in the ether.
« In the framework of the course, F is discarded.
« But we may find it a pity to discard the poor event
and may want to remember it for later processing, e.g. in sz,
' in other words, defer it.
© General options to satisfy such needs:
3 = Provide a pattern how to “program” this (use self-loops and helper attributes)
2 o Turn it into an original language concept. (— OMG's choice)
4350 ! 4350

Deferred Events: Syntax and $mantics

« Syntactically,
» Each state has (in addition to the name) a set of deferred events.
« Default: the empty set.

ActiveandPassve Objeds [Harel andGery, 1997

4450

45/50

Deferred Events. Syntax and $mantics

Deferred Events: Syntax and $mantics

20140115 - Sde

« Syntactically, .
« Each state has (in addition to the name) a set of deferred events.
« Default: the empty set.

« The semantics is a bit intricate, something like .
« if an event E is dispatched,
« and there is no transition enabled to consume E,
« and E is in the deferred set of the current state configuration,

then stuff E into some “deferred events space” of the object, (e.g. into the

ether (= extend ¢) or into the local state of the object (= extend o))

= and turn attention to the next event.

Syntactically,
» Each state has (in addition to the name) a set of deferred events.
» Default: the empty set.

The semantics is a bit intricate, something like

« if an event E is dispatched,

© and there is no transition enabled to consume E,

e and E

« then stuff I into some “deferred events space” of the object, (e.g. into the
ether (= extend ¢) or into the local state of the object (= extend 7))

n the deferred set of the current state configuration,

© and turn attention to the next event.

Not so obvious:
o Is there a priority between deferred and regular events?

o Is the order of deferred events preserved?

.

[Fecher and Schénborn, 2007], e.g., claim to provide semantics for the complete
Hierarchical State Machine language, including deferred events.

44550 44550
What abou nontActive Objeds? What abou nonActive Objeds?
Recal Recal
« We're still working under the assumption that all classes in the class » We're still working under the assumption that all classes in the class
agram (and thus all objects) are active. diagram (and thus all objects) are active.
» That is, each object has its own thread of control and is (if stable) « That is, each object has its own thread of control and is (if stable)
at any time ready to process an event from the ether. at any time ready to process an event from the ether.
But the world doesn’t consist of only active objects.
For instance, in the crossing controller from the exercises we could wish to have
the whole system live in one thread of control
So we have to address questions like:
, » Can we send events to a non-active object?
~ « And if s0, when are these events processed?
. L e et
46750 ' 4650

Active and Passve Objeds: Nomenclature

[Harel and Gery, 1997] propose the following (orthogonall) notions:
» A class (and thus the instances of this class) is either active or passive
as declared in the class diagram.
» An active object has (in the operating system sense) an own thread:
an own program counter, an own stack, etc.
« A passive object doesn't.

Passve and Reactive

« So why don’t we understand passive/reactive?

 Assume passive objects u; and uz, and active object u,
and that there are events in the ether for all three.

Which of them (can) start a run-to-completion step...?
Do run-to-completion steps still interleave...?

4750

4850

ActiveandPassve Objeds: Nomenclature

e

[Harel and Gery, 1997] propose the following (orthogonal!) notions:

» A class (and thus the instances of this class) is either active or passive
as declared in the class diagram.

+ An active object has (in the operating system sense) an own thread:

an own program counter, an own stack, etc.
« A passive object doesn't.

« A class is either reactive or non-reactive.

« A reactive class has a (non-trivial) state machine.

= A non-reactive one hasn't.

Passve and Reactive

» So why don't we understand passive/reactive?

« Assume passive objects u; and us, and active object u,
and that there are events in the ether for all three.

Which of them (can) start a run-to-completion step...?
Do run-to-completion steps still interleave...?

Reasonable Approaches:
« Avoid — for instance, by
« require that reactive implies active for model well-formedness.
« requiring for model well-formedness that events are never sent to
instances of non-reactive classes.
« Explain — here: (following [Harel and Gery, 1997])
« Delegate all dispatching of events to the active objects.

4750

4830

Active and Passve Objeds: Nomenclature

[Harel and Gery, 1997] propose the following (orthogonal!) notions:

+ A class (and thus the instances of this class) is either active or passive

as declared in the class diagram.

» An active object has (in the operating system sense) an own thread:
an own program counter, an own stack, etc.

« A passive object doesn't.

» A class is either reactive or non-reactive.

« A reactive class has a (non-trivial) state machine.

« A non-reactive one hasn't.

Which combinations do we understand?

7 active 7 passive

reactive i i

non-reactive i i

4750

Passve Reactive Classs

« Firstly, establish that each object u knows, via

o Ifui

the active object u.; which is responsible for dispatching events to u.

an i

stance of an active class, then u, =

itsAct

:

4950

Passve Reactive Classes Passve Reactive Classes

© Firstly, establish that each object u knows, via (implicit) link itsAct,

« Firstly, establish that each object u knows, via (implicit) link itsAct,
the active object .., which is responsible for dispatching events to u.

the active object ta.; which is responsible for dispatching events to u.

o If uis an instance of an active class, then u, = u « If uis an instance of an active class, then u, = u.
And What Abou Methods?

itsAct itsAct
m m
n n
u Oy 7 g : Co vli D itsAct wi: Cy ug:Cy Uy : D ﬁ itsAct
“t = itsAct = [— itsAct
Sending an event: Sending an event: Dispatching an event:
« Establish that of each signal we « Establish that of each signal we « Observation: the ether only has
have a version Ec with an have a version Ec with an events for active objects.
association dest : Co,1, C € 4. association dest : Co., C € €. + Say u. is ready in the ether for w,.
¢ e Thenn!in s : Cy becomes: L e ThennlEin s : Gy becomes: + Then ua asks o(u)(dest) — ua to
3 « Create an instance u. of Ec, and 3 « Create an instance u. of Ec, and process 1. — and waits unti H
2 set u,'s dest to ug = o(u1)(n) completion of corresponding RTC B

0140115

set u,'s dest to ug = o(u1)(n)

* Send to u, := o(0(u1)(n))(itsAct), © Send to u, := o(o(u1)(n))(itsAct), o uy may in particular discard event. H
= e ® (uaue). e & = (ua uc). :

49750 495 50750

And What About Methods? Behavioural Features c

And What Abou Methods?

1 f(m, $Tin, 1 Py
o In the current setting, the (local) state of objects is only mo o In the current setting, the (local) state of objects is only modified by MM mﬂ: R) .a: P
actions of transitions, which we abstract to transformers. actions of transitions, which we abstract to transformers. (signal)) E B
« In general, there are also methods. « In general, there are also methods. Semantics:
+ UML follows an approach to separate + UML follows an approach to separate * The implementation of a behavioural feature can be provided by:
o the interface declaration from o the interface declaration from « An operation.
« the implementation. o the implementation.
In C++ lingo: distinguish declaration and definition of method. In C++ lingo: distinguish declaration and definition of method.
« In UML, the former is
called behavioural feature « The class’ state-machine (“triggered operation”).
and can (roughly) be & f(rit,- o Tim) 7 Py
i § + 3 call interface f(n,,.. & Flr2a, . Tamg) 172 Pa 3
: 2 . ((signal) E i
i + a signal name E
3 3 Note: The signal list is redundant as it can be looked up in the state machine
i of the class. But: certainly useful for documentation.
' 52/

! 5150 51759

Behavioural Features: Visibility and Properties

Behavioural Features C Behavioural Features

& Flra,. Tam) i Py
(signal),

& flra,
& F(raa,..
(signal)) B

& f(na
& F(m
{sign

Semantic: Semantics:

« The implementation of a behavioural feature can be provided by: » The implementation of a behavioural feature can be provided by:
« Visibility:
« Extend typing rules to sequences of actions such that
a well-typed action sequence only calls visible methods.

« An operation. « An operation.

In our setting, we simply assume a transformer like T's. In our setting, we simply assume a transformer like T’

ns: It is then, e.g. clear how to admit method calls as actions on transitions:
function composition of transformers (clear but tedious: non-termination).

It is then, e.g. clear how to admit method calls as actions on tran:
function composition of transformers (clear but tedious: non-termination)

: operation is a method body.

In a setting with Java as action language: operation is a method body.
o The class' state-machine (“triggered operation”). o The class' state-machine (“triggered operation”).
« Calling F with ny parameters for a stable instance of C
] iliary event F and dispatches it (bypassing the ether).
H 3 . ill in the return value. H
M 7 = On completion of the RTC step, the call returns. g
3 3 « For a non-stable instance, the caller blocks until stability is reached again 3
0 52/50 b 52/50 0 53/50
Behavioural Features: Visibility and Properties Semantic Variation Points
Pessimistic view: They are legion...
« For instance,
) . . o allow absence of initial pseudo-states
) B Discusson. can then “be” in enclosing state without being in any substate; or assume
one of the children states non-deterministically
- Visibility: . -
) . o (implicitly) enforce determinism, e.g.
* Extend typing rules to sequences of actions such that by considering the order in which things have been added to the CASE
a well-typed action sequence only calls visible methods. tool's repository, or graphical order
. Useful properties: o allow true concurrency . S
. concurrency Exercise: Search the standard for “semantical variation point”.
o concurrent — is thread safe
« guarded — some mechanism ensures/should ensure mutual exclusion
B o sequential — is not thread safe, users have to ensure mutual exclu: .
K « isQuery — doesn't modify the state space (thus thread safe) H 3
= For simplicity, we leave the notion of steps untouched, we construct our 2 :
] semantics around state machines. B :
) Yet we could explain pre/post in OCL (if we wanted to) 2 "
5450 ' 55/50

! 53/s0

Semantic Variation Points

Pessimistic view: They are legion...

o For instance,

« allow absence of initial pseudo-states
can then “be” in enclosing state without being in any substate; or assume

one of the children states non-determ

« (implicitly) enforce deterr
by considering the order in which things have been added to the CASE

tool's repository, or graphical order
o allow true concurrency
Exercise: Search the standard for “seman

al variation point”.
o [Crane and Dingel, 2007], e.g., provide an in-depth comparison of
Statemate, UML, and Rhapsody state machines — the bottom line is:

o the intersection is not empty
(i.e. there are pictures that mean the same thing to

| three communities)

* none is the subset of another

.. for each pair of communities exist pictures meaning different things)

55/50

Course Map
D, .m\SJr w e 0oCL D, ,ME s
0 0
iA L W H y
S =(T.6,V,atr), SM expr #, 8D

e
5 WJ
B = (Qsp,qo: Az, —sp, Fsp)

maff/ Mmivﬂ

,:Hu (2%, Az, —sm)
[,m m
0. 2 s

= (90, 0)

0"

A,

G = (N,E, f)

o
oD

)

(conso,Sn

(01,€1)++ "\ wr = (04, consi, Snd;))ien

5750

Semantic Variation Points

60115

1

Pessimistic view: They are legion

« For instance,

o allow absence of initial pseudo-states
can then “be” in enclosing state without being in any substate; or assume
dren states non-determi

one of the cl

o (implicitly) enforce determ;
by considering the order in which things have been added to the CASE

tool's repository, or graphical order

o allow true concurrency
Exercise: Search the standard for “semantical variation poin

« [Crane and Dingel, 2007], e.g., provide an in-depth comparison of
Statemate, UML, and Rhapsody state machines — the bottom line is:

o the intersection is not empty
(i.e. there are pictures that mean the same thing to all three communities)

© none is the subset of another
(i.e. for each pair of communities exist pictures meaning different things)

Optimistic view: tools exist with complete and consistent code generation.

References

5550

58/59

- 16 - 20140115 - main -

You are here.

56/59

References

[Crane and Dingel, 2007] Crane, M. L. and Dingel, J. (2007). UML vs. classical vs. rhapsody
statecharts: not all models are created equal. Software and Systems Modeling,
6(4):415-435.

[Damm et al., 2003] Damm, W., Josko, B., Votintseva, A., and Pnueli, A. (2003). A formal
semantics for a UML kernel language 1.2. IST/33522/WP 1.1/D1.1.2-Part1, Version 1.2.

[Fecher and Schénborn, 2007] Fecher, H. and Schénborn, J. (2007). UML 2.0 state
machines: Complete formal semantics via core state machines. In Brim, L., Haverkort,

B. R., Leucker, M., and van de Pol, J., editors, FMICS/PDMC, volume 4346 of LNCS,
pages 244-260. Springer.

[Harel and Gery, 1997] Harel, D. and Gery, E. (1997). Executable object modeling with
statecharts. /EEE Computer, 30(7):31-42.

[Harel and Kugler, 2004] Harel, D. and Kugler, H. (2004). The rhapsody semantics of
statecharts. In Ehrig, H., Damm, W., GroBe-Rhode, M., Reif, W., Schnieder, E., and
Westkimper, E., editors, ion of Software Techniques for Applications
in Engineering, number 3147 in LNCS, pages 325-354. Springer-Verlag.

[OMG, 2007] OMG (2007). Unified modeling language: Superstructure, version 2.1.2.
Technical Report formal /07-11-02.

[Stérrle, 2005] Stérrle, H. (2005). UML 2 fiir Studenten. Pearson Studium.

5950

