Sdtware Design, Modelling andAnalysisin UML

Ledure 07: A Type System for Misibility
201311-18

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Extended Classes

From now on, we assume that each class C' € ¢ has:

.a e (possibly empty) set S of stereotypes,

abstract,

« a boolean flag a € B indicating whether

« a boolean flag ¢ € B indicating whether C' s active.

We use S¢ to denote the set (o cq Sc of stereotypes in .7

ely, we could add a set St as 5-th component to . to provides the stereo-
portant to care.)

(Alternat
types (names of stereotypes) to choose from. But: too ul

Convention:
« We write
. (C.Sc.at)ye?
<2 when we want to refer to all aspects of C.

o If the new aspects are irrelevant (for a given context),
7 we simply write C' € % i.e. old definitions are still valid.

Contents & Goals

Last Lecture:
= Representing class diagrams as (extended) signatures — for the moment
without associations (see Lecture 08).

o And: in Lecture 03, implicit assumption of well-typedness of OCL expressions.

This Lecture:
« Educational Objectives: Capabilities for following tasks/questions.
o s this OCL expression well-typed or not? Why?
» How/in what form did we define well-definedness?

+ What is visibility good for?
« Content:
» Recall: type theory/static type systems.

« Well-typedness for OCL expression,
o Visibility as a matter of well-typedness.

Extended Attributes

= From now on, we assume that each attribute v € V' has
(in addition to the type):

private, protected, package}
o088

= = —# =~

al value expr, given as a word from language for initial

s an
values, e.g. OCL expresions.

We define Py analogously to stereotypes.
v

Convention:
o We write (v : 7,§, expry, P,) € V when we want to refer to all aspects of v.

7 » Write only v : 7 or v if details are irrelevant.

100

Reall: From ClassBoxes to Extended Sgnaures

From ClassBoxes to Extended Sgnaures

A class box n induces an (extended) signature class as follows:

4 (C. {0 5 alm),)
V(n) = {(0r : 705 €0 001/ Prrs s Prome Do (00 70 €0 00.6:{Prts -+ Peme 1)}

atr(n) i= {C = {v1,...,ve}}

where
« “abstract” is determined by the font « “active” is determined by the frame:

o) = ﬁim Jifn=

*i% . otherwise false , otherwise

Excursus: Type Theory (cf. Thiemann, 2008

A Type System for OCL

We will give a finite set of type rules (a type system) of the form

“premises”

(“name”) “side con

“conclusion”
These rules will establish well-typedness statements (type sentences)

of three different “qualities”:

(i) Universal well-typedness:
- eapr:T
F142:Int

Well-typedness in a type environment A: (for logical variables)
At expriT

self : 7o © self v Int

Well-typedness in type environment A and context B: (for visibility)
A BFexpr:T
self : 70, C' & self .r.v: Int

103

31118

Type Theory

Recall: In lecture 03, we introduced OCL expressions with types, for instance:
expr = w iT . logical variable w
| true | false : Bool ... constants
[0 =1|1|... :Int ...constants
| expry + expry :Int x Int — Int ...operation
| size(expry) : Set(r) — Int
[not exp< ¢ Bool —> B
Wanted: A procedure to tell well-typed, such as (w : Bool)
not w
from not well-typed, such as,
size(w).

Approach: Derivation System, that is, a finite set of derivation rules.
We then say ezpr is well-typed if and only if we can derive
A, Cterpr:T (read: “expression expr has type 7")

e.7€TpUTe U{Set(r) |70 € TsUTg}, C€E.

for some OCL type T,

83

Constants and Operations

o If eapr is a boolean constant, then epr is of type Bool:

(BOOL)

B Bool B € {true, false}

o If expr is an integer constant, then ezpr is of type Int:
(INT) e{0,1,-1,...}

« If expr is the application of operation w : 7 X --- X 7, — T to expressions

expry, .., eapr, which are of type 7y, ..., 7,, then capr is of type 7:
- tT... B D Th
(Rng) EEPED e PO,
leapry e i N
(Note: this rule also covers ‘=,", ‘isEmpty’, and ‘size'.)

A Type System for OCL

Constants and Operations Example

113

- Soclyp -

(BOOL) = B € {true, false}

(INT) = Nefo1,-1,...}
Feapryimi ... etpry it

MUK X T o T
Fw(epry, .- eapr,) : 7 s B

n>1,w¢ atr(6)

(Funo)

Example:
© not true
(80c)

\ s s Boof
(e ot (e : Boof
o true+ 3 got shck— e Cdimsl
@N;.n Hos o e aeles

g
e F 3Lt ol xS Lt
hale +3 ¢ lot

© (o dwev3 i wob wll-fed

ok : Beol -3 Bosl

(R

1273

Type Environment

« Problem: Whether
w+3

is well-typed or not depends on the type of lo

« Approach: Type Environments

Definition. A type environment is a (possibly empty) finite se-
quence of type declarations.
The set of type environments for a given set T of logical variables
and types T is defined by the grammar

Au=0|Aw:T

wherew e W, 7 €T.

Clear: We use this definition for the set of OCL logical variables TV and
the types 7' = T3 U T U {Set(ro) | 7o € Ty U T }.

All Instances and Attributes in Type Environment

nstances of class C, then it is of type Set(rc),

o If expr refers to

(AUISY) i ancese - Set(ra).

o If expr is an attribute access of an attribute of type 7 for an object of
C' as denoted by exzpr,, then the premise is that expr, is of type 7¢:

_TS:‘&\J

(Attrg) A (e 2 v:1€atr(C), 7€ 7

ony AF eapr, t%\\lJ

, (i) STy Doy e atr(C)
: (Attr3) A ewpry i To 12 D, € atr(C)

AF ry(ezpry) : Set(rp)’

133

16/37

Environment Introduction andLogical Variables

o If eapr is of type 7, then it is of type T in any type environment:

b eapr i T
Envlntro) ——PCiT
(Bnvlntro) — s

al variables in sub-expressions of operator application:

At eapryim ... Ab eapr,

AL o) T T X X Ty T
wempry, ... copry) 7 o d et

(Funy)

al variable such that w : 7 occurs in A,
then we say w is of type T,

B w:TEA
: Vo) e
b 1450
Attributes in Type Environment Example
(Attro) WTTM.MMQ ﬁ.t vir€atr(C), T €T
o) -
01 Ab enpr, i e
(Attrd") AFrieary) 75" 1t Do, € atr(C)
BE
- AF eapr, i Tc . doivedle
(Attr) G P waleapr) Sty ™ D, € atr(C) }M«

V=fehd :Dy,
. D hld)s fef

za
o1 sel} T k- SHf: T2

Cself e b oselfy s Int —————— K Gl y bt
self - ¢ & self.y : Int (o g e F».IMM

R
o self 17 b oself . Int well~topel by (M), (uur)

o self sro b oself.r o ek chyped (A, Ge)

self 7o - selfr s Int ook il sl gob shele o gy CAEY
o el T F gL el by (ARYY, (k) Cler)

1773

Type Environment Example

Foeapr:T
(i) TEGaie
(Fuma) Abempryin o Abemrim
At w(eapry,... eapr,) T w1, w g atr()
wiTEA
(var) Arw:r
Example:

cw+3, A=w:Int

wr)
e A lat
) =2 MF«WI_MNTE
. F3
Ab bt (Fho,) itk 3 bt

W€ - szv__s»\ e
f) ., WS v
.n>\e+w.ff3\; wotesl oo i%ﬂk

g3 wn

153

Iterate

o If expr is an iterate expression, then
« the iterator variable has to be type consistent with the base set, and
al and update expressions have to be consistent with the result

variable: tli-pdvs o OF2 . imues Scope
depomds dr ...rwunf N
(Jter) Av ogd: Setlt:) AFOPLIT2)70&@&»
h AT eapri->iterate(w : 71 5 wa : To = expry | eapry) 1 7

~ T

s}m_‘mb‘\uxﬂ@ (w1 = 71) g5 (w2 : 72).

overide w?g of v ooud oy jnd
(" Toy Wy bide oudes 2ope”)

18/

e Tt 59A () Ly Hua: Boo|

Iterate Example

AF eapry 70
Al - .
) e s) (Aur) e
(er) _AFemri:Set(n) Abepryin A'Feopry:in

AF eapr,->iterate(ws : 71 ; Wa : T2 = expr, | €apry) i T2

where A = A @ (wy : 71) © (w2 : 2).

Example: (# = ({Int},{C}, {o : Int},{C — {2}))

<z e A

Mreslit Lotz

(e A A stfGe)bat A0,
o rlﬁl?g. o Arctsl A= G0] B
£ Sal, ST F aud (1,2 (e (], 0))

A
Ar dlhsheas, > ilasets (s :dl; ¢ Bacl =t \n[««ﬂx\ap@

-

A+ context C'inv:z =0
andl (1,)

Lo weld ~Huped o

One Possble Extension: | mplicit Casts

+ We may wish to have
1 and false : Bool (*)

In other words: We may wish that the type system allows to use
0,1 Int instead of true and false without breaking well-typedness.

« Then just have a rule:
At ezpr: Int
(Cast) e Bool
« With (Cast) (and (Int), and (Bool), and (Fun)),
we can derive the sentence (x), thus conclude well-typedness.

« But: that's only half of the story — the definition of the interpretation
function I that we have is not prepared, it doesn't tell us what () means.

2231

First Recapitulation

« T only defined for well-typed expressions.

o What can hinder something, which looks like a well-typed OCL
expression, from being a well-typed OCL expression...?

= ({Int}, {C, D}, {u : Int, n: Do}, {C — {n},{D — {z})
© Ploin syt ey g s

context C': false

o Sl sprboe eor (dpends o .@in\v\em PR

context Cinv:y'=0

.ﬂ%«. eo s

context self : C inv i self .= self .n.a

203
Implicit Casts Cont’d
So, why isn’t there an interpretation for (1 and false)?
« First of all, we have (syntax)
expry and expr, : Bool x Bool — Bool
© Thus,
I(and) : I(Bool) x I(Bool) — I(Bool)
where I(Bool) = {true, false} U {L o0}
« By definition,
I[1and false] (o, 3) = I(and)(I[1](0,B), I[false](o,3)),
and there we're stuck.
23w

Casting in the Type System

21/
Implicit Casts:. Quickfix
« Explicitly define
Hand(eapry, eapr)](o, 8) o= {12101 7 Lot 7 B2
LBoor , otherwise
where
o by := toBool(I[expr,] (o, 3)),
o by := toBool(I[eapry](a, 8)),
and where
toBool : I(Int) U I(Bool) — I(Bool)
true i
i { false
Lpoot . otherwise
243

Bottomline

« There are wishes for the type-system which require changes in both,
the definition of I and the type system.
In most cases not difficult, but tedious.

« Note: the extension is still a basic type system.

. Note: OCL has a far more elaborate type system which in particular
addresses the relation between Bool and Int (cf. [OMG, 2006]).

Context = (3 463, £y, vkt

« Example: A problem?

Tp

\
:N_SI%,R@VO v

self ¢ _\.Jq >0 X
iTe
« That is, whether an expression involving attributes with visibility is
well-typed depends on the class of objects for which it is evaluated.

« Therefore: well-typedness in type environment A and context B € %"

ABF expr:T

« In particular: prepare to treat “protected” later (when doing inheritance).

253

28

Visibility in the Type System
i 263
Attribute Accessin Context
o If expr is of type 7 in a type environment, then it is in any context:
B
AF expr:7
AQQ:EN“@V Y [arr—
« Accessing attribute v of a C-object via logical variable w is well-typed if
o \sispEStTG? w is of type T
Arw:Tp
(Attry) IB o)) {v: 7, expry, Pg) € atr(B)
o Accessing attribut C-object of via expression expr, is
well-typed in context 7 if
« v is public, or expr; denotes an object of class B:
(v:7,& expry, Pg) € atr(C),
] E=+00C=B
T 293

= ({Int}.{C, D}, {n: Dos,
m: Doy, (x: Int, &, expry, 0)},

\isibility — The Intuition

{C — {n}, D — {z,m}}

Let's study an Example:

Assume wy : 7c and w3 7p are logical variables. Which of the following syntacti-
cally correct (?) OCL expressions shall we consider to be well-typed?

& of private protected package
wi.n.x =0 - later not
GZXi | pavabenss s by closs,

7t —] vel by object
@:.3 later not

oo
? s

we.m.x =0

x (w(we)) =0

i

27w

Context in Operator Application

~ Suisitp -

« Operator Application:

A, Bt eapr:mi ... A,BF eapr, T,

(Puny) X L WITIX X Ty T
A,BFw(expry, ... expr,): T w1 w¢ atr(®)
o lterate:
(Jtery) A, Bt expr : Set(r)) A Bk expry:m A Bl eapry:my

A, BF expri->iterate(w : 71 ; wa : T2 = expry | expry) i T

where A" = A® (wy :71) @ (w2 : 72).

3037

Attribute Accessin Context Example

A capr i
Eeimaﬁ; GBE
A, Bl empry ¢
(Attr)) ——————LC (y:7,¢, expry, Pg) € atr(C),
ABEov(empr) it o =B
- D
c vitnt u
0,1
0,1
Example:

self ire Fself .rov>0

' 31

Recapitulation

343

The Semantics of Visibility

31118

» Observation:
» Whether an expression does or does not respect vi
of well-typedness only.

y is a matter

« We only evaluate (= apply I to) well-typed expressions.

— We need not adjust the interpretation function I to support vi

323

Recapitulation

Class Diagrams €2
A‘ induces
extended (!) signature .7 (6 %)
{ gives ris to

Basic Type System

» We extended the type system for
« casts (requires change of I) and<{ fea calies dhides
« visibility (no change of I).

« Later: navigability of associations.

Good: well-typed is decidable for these typ tems. That is, we can have
© automatic tools that check, whether OCL expressions in a model are well-typed.

3573

D

What is Visibility Good For? P ey

« Visibility is a property of attributes —
is it useful to consider it in OCL?

+ In other words: given the picture above,
is it useful to state the following invariant (even though z is private in D)

context Cinv:n.x >0 7

o It depends. (cf. [OMG, 2006], Sect. 12 and 9.2.2)

ts and pre/post con ns:
ity is sometimes not taken into account. To state “global” requirements,
it may be adequate to have a “global view”, be able to look into all objects.
y supports “narrow interfaces”, “information hiding”, and

similar good design practices. To be more robust against changes, try to

state requirements only in the terms which are visible to a class.
Rule-of-thumb: if attributes are important to state requirements on design
models, leave them public or provide get-methods (later).

* Constra

Guards and operation bodies:
If in doubt, yes (= do take visibility into account).

ity into account. 33

n language typically takes

Any so-called act

References

36/37

References

[OMG, 2006] OMG (2006). Object Constraint Language, version 2.0. Tech
Report formal /06-05-01.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version
2.1.2. Technical Report formal/07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version
2.1.2. Technical Report formal/07-11-02.

371

