Sdtware Design, Modelling andAnalysisin UML

Ledure 21: Inheritancell
20140263
0

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Given:

Wanted: conled-C wv- .20

« x> 0 also well-typed for c.mMrnim D v x20
assignment itsC1 := itsD1 being well-typed ()
itsCl.z = 0, itsC1.f(0), itsC1 | F
being well-typed (and doing the right thing).

.

Approach:
« Simply define it as being well-typed, s
adjust system state definition to do the right thing. & Ndwi.u
opuviz ofG & weld-Yypel 4 e

v =
g, e ol oo Ty ard Tl et D <0 B

4y

e

Contents & Goals

Last Lecture:
* Behavioural Features
« State Machines Variation Points
 Inheritance in UML: concrete syntax

« Liskov Substi

ition Principle — desired semantics

This Lecture:

« Educational Objectives: Capabilities for following tasks/questions.
* What's the Liskov Substitution Principle?
« What is late/early binding?
* What is the subset, what the uplink semantics of inheritance?
© What's the effect of inheritance on LSCs, State Machines, System States?
* What's the idea of Meta-Modelling?

« Content:
« Two approaches to obtain desired semantics
« The UML Meta Model

__ SaticTypingCont'd ~ Asséy D) & Dltdt) & D (Faats)

flus onsprdlly dp-ygh.

S(nt) It

L

Notions (from category theory):

« invariance,

« covariance,

« contravariance.
We could call, e.g. a method, sub-type preserving, if and only if it

« accepts more general types as input (contravariant),

« provides a more specialised type as output (covariant).

This is a notion used by many programming languages — and easily type-checked.

...shall beusable..” for UML

Excursus: Late Binding o Behavioural Features

Late Binding

What transformer applies in what situation? (Early (compile time) binding.)

[overridden in D

1 not overridden in D

Lo
dohmis
wud- el
i ,Me_ at “somec—>£() cf Iy
MWL 7o onep > £() D {L)
AH L.U_HL SomeC > 1() PNa) A0
%w,v;

What one could want is something different: (Late binding.)

mgu.r o« someC > £() C:H) @
obpch somep->1() onf0 @
®

4 dotewoms someC ->£() Deifo)
S v Swgl =
S is utd

Wth Only Early Binding...

+ ...we're done (if we realise it correctly in the framework).

« Then
« if we're calling method f of an object u,

which is an instance of D with C' < D

via a C-link,

« then we (by definition) only see and change the C-part.

= We cannot tell whether u is a C or an D instance.

So we immediately also have behavioural/dynamic subtyping.

1077

Late Bindingin the Sandad andProgramning Lang

0140205

#0205 - Saubt

In the standard, Section 11.3.10, “CallOperationAction”
“Semantic Variation Points
The mechanism for determining the method to be invoked as a
result of a call operation is unspecified.” [OMG, 2007b, 247]

In C++,
o methods are by default “(early) compile time binding",
« can be declared to be “late binding” by keyword “virtua

s to all inheriting classes.

« the declaration ap)

In Java,
« methods are “late binding";
o there are patterns to imitate the effect of “early binding"

Exercise: What could have driven the designers of C++ to take that approach?

Note: late binding typically applies only to methods, not to attributes.
(But: getter/setter methods have been invented recently.)

8
Difficult: Dynamic mst C
f(Int) : Int
D
o C::f and D::f are type compatible,
but D is not necessarily a sub-type of C. f(Int) : Int
« Examples: (C++)
int C::f(int) { int D::f(int) {
return 0; vs. return 1;
i i
int C::f(int) { int D::f(int x) {
return (rand() vs. return (x % 2);
b }
117

Backto the Main Track “...tell the difference.” for UML

SubTyping Principles Cont’d

= In the standard, Section 7.3.36, “Operation’
"Semantic Variation Points
[..] When operations are redefined in a specialization, rules regarding
invariance, i or c iance of types and ti
ine whether the iali classifier is i for its more
general parent. Such rules constitute semantic variation points with
respect to redefinition of operations.” [OMG, 2007a, 106]

o So, better: call a method sub-type preserving, if and only if it
(contravariant),
(covariant).

(i) accepts more input values
(i) on the old values, has fewer behaviour

i) is no longer a matter of simple type-checking!

» And not necessarily the end of the story:
« One could, e.g. want to consider execution time.
» Or, like [Fischer and Wehrheim, 2000], relax to “fewer observable
behaviour”, thus admitting the sub-type to do more work on inputs.
Note: “testing” differences depends on the granularity of the semantics.

(contravariant),
(covariant).

Related: “has a weaker pre-condition,”
“has a stronger post-condition.”

1272

Ensuring SubTyping for State Machines

o In the CASE tool we consider, multiple classes

in an inheritance hierarchy can have state machines. o

» But the state machine of a sub-class cannot be drawn from scratch.

Instead, the state machine of a sub-class can only be obtained by
applying actions from a restricted set to a copy of the original one.
Roughly (cf. User Guide, p. 760, for details),

© add things into (hierarchical) states,

« add more states,

© attach a transition to a different target (limited).

+ They ensure, that the sub-class is a behavioural sub-type of the super
class. (But method implementations can still destroy that property.)

o Technically, th that (by late b
specialised classes are running

g) only the state machine of the most

By knowledge of the framework, the (code for) state machines of super-classes i still
accessi

le — but using it is hardly a good idea...

13/

Domain Inclusion Sructure

Let ¥ = (7,%,V,atr,&, F, mth,) be a signature.

Now a structure 2

« [as before] maps types, classes, associations to domains,
« [for completeness] methods to transformers,

« [as before] indentities of instances of classes not (transitively) related by
generalisation are disjoint,

+ [changed] the indenti
sub-classes, i.e.

s of a super-class comprise a

vCeew:2(0)2 |J 2(D).
c<ab

Note: the old setting coincides with the special case <1 = 0).

16/7

Towards System Sates

0140205

Wanted: a formal representation of “if C' < D then D ‘is a’ C", that is|
(i) D has the same attributes and behavioural features as C, and

c
il
(ii) D objects (identities) can replace C' objects. D7)
EELY,

We'll discuss two approaches to semantics:

» Domain-inclusion Semantics, (more theoret

oy 4 > 06t)
sl Ixgd Do D!

)
oin): T3 —> DX Dby)

 Uplink Semantics (more technical)
4 e d-py
ﬂ Y lrslze
< Al of D

WM\N
??&n 3 g="*
sowgD.x A~ soweD. yplink

14/m

Domain Inclusion System Sates

vz

Now: a system state of .7 wrt. 2 is a type-consistent mapping
7 D E) > (V + (2(T)UD(602) U ()
that is, for all u € dom(c) N 2(C),
o [as before] o(u)(v) € 2(r) ifv:7, 7€ T or 7 € {C.,Coy}.
« [changed] dom(o(u)) = Ug, <c atr(Co),

Example:

x: Int
:Int

Note: the old setting st
17/

Domain Inclusion Smartics

Preliminaries: Expresson Normalisation

Recall:
ontext D inv:v <0,

« we want to allow, e.g

« we assume fully qualified names, e.g. C:

Intuitively, v shall denote the
“most special more general” C::v according to <.

To keep this out of typing rules, we assume that the following normalisation
has been applied to all OCL expressions and all actions.
+ Given expression v (or f) in context of class D, as determined by, e.g.
© by the (type of the) navigation expression prefix, or
« by the class, the state-machine where the action occcurs belongs to,

« similar for method bodies,
+ normalise v to (= replace by) C::v,
» where C is the greatest class wrt. “<" such that
« C=DandC:ve atr(C).
If no (unique) such class exists, the model is considered not well-formed; the
expression is ambiguous. Then: explicitly provide the qualified name,

15/

1877

OCL Syntax and Typing

« Recall (part of the) OCL syntax and typing:

Saisfying OCL Constraints (Domain Inclusion)

expr u= v(expr;)

t1e = 7(v),
rexpr,) :7¢c —7Tp,

v,reV,C,DeEC

ifv:red

if r: Doy

reapry) i1 — Set(rp), ifr:D.

The definition of the semantics remains (textually) the same.

Let M =(€2,62,.4,.) be a UML model, and 2 a structure.

We (continue to)

say M = eapr for context C' inv : expry
-2

=eapr

€ Inv(M) iff

V7= (05,c)ien € [M] Vi€ N Vuedom(e) N 2(C):

Ifexpr,

|

(00 {self > u}) = 1.

M s (still) consistent if and only if it satisfies all constraints in Inv(M).

Example:

19/

22/m

More Interesting: Well-Typed-ness

a2

» We want
context D inv:v <0

to be well-typed.

Currently it isn't because

capry) 7o — ()
but A b self : mp.
(Because and 7 are still different types, although dom(rp) C dom(c:).)
« So, add a (first) new typing rule
Abemrimp
ST e < D Inh
AFeprime 07 (inh)

Which is correct in the sense that, if ‘eapr’ is of type 7p, then we can use it
everywhere, where a 7¢ is allowed.

The system state is prepared for that.

2077
Transformers (Domain Inclusion)
+ Transformers also remain the same, e.g. [VL 12, p. 18]
update(eapry, v, expry) : (0,€) > (o', <)
with
o = alu s o(w)[v s Ifeapr](
where u = ITeapr,](0).
¥ 2378

W&l -Typed-nesswith Visibility Cont’d

A,DF erpr:ro

AIDrC =+ (Pub)

A, D¢ expr: ¢ _
e CE= (Prot)
{=—,C=D (Priv)

(Cv: 7,00, P) € atr(C).

Example:

context/
inv

(nJr2 <0 (n)ug <0

217
Semantics of Method Calls
« Non late-binding: clear, by normalisation
« Late-binding:
Construct a method call transformer, which is applied to all method calls.
2474

Inheritanceand Sate Machines: Triggers

« Wanted: triggers shall also be sensitive for inherited events,
sub-class shall execute super-class’ state-machine (unless overridden).

(0.2) LmStD (o Lty if

* Ju € dom(o) N Z(C) Jur € Z(6) : ur € ready(e, u)
« us stable and in state machine state s, i.e. o/(u)(stable) = 1 and o(u)(st) = 5,

ion is enabled,

3 (s, P, eapr, act, ') € (SMc) : F = E A l[expr](3) = 1

« atran e

where & = o [u.params ; - 1]
and
* (o”.<') results from applying fuc: to (0,) and removing ur: from the ether, i

o' = (0" [u.st v s, u.stable v b, u.params 5 — 0])|z(e) (ug)
where b depends
« If u becomes stable in ', then b= 1. It does become stable if and only if there
is no transition without trigger enabled for u in (o, <')
« Otherwise b = 0.

e effects of the action are observed,

« Consumption of ug; and the
25

cons = {(u, (E,0(ug)))}, Snd = Obst,, (5, & ug)

Uplink Semartics

o Idea:
« Continue with the existing definition of structure, i.e. disjoint
domains for identities.
« Have an implicit association from the child to each parent part

D

« Apply (a different) pre-processing to make appropriate use of that
iation, e.g. rewrite (C-++)

in D to

uplink. =>x = 0.

28

Domain Inclusion andinteractions

» Similar to satisfaction of OCL expressions above:

nstances of C' (exact or inhe

+ An instance line stands for al

« Satisfaction of event observation has to take inhei
into account, too, so we have to fix, e.g.

0. cons, Snd |=5 B, ,

if and only if

0140205

) sends an F-event to By where E < F.

' « Note: C-instance line also binds to C’-objects. 260

Pre-Processng for the Uplink Semantics

« For each pair C' <1 D, extend D by a (fresh) associ
uplink e : C with = [1,1], € =+
(Exercise: public necessary?)

» Given expression v (or f) in the context of class D,

o let C' be the smallest class wrt. “<" such that

o then there exists (by definition) C <1 Cy <1... < C,, < D,
+ normalise v to (= replace by)

uplinkc,, =>--- => uplink ¢, .C::v

vz

« Again: if no (unique) smallest class exists,
the model is considered not well-formed; the expression is ambiguous.

2

2977

Uplink Semartics

b 27/m
Uplink Structure, System State, Typing
« Definition of structure remains unchanged.
« Definition of system state remains unchanged.
« Typing and transformers remain unchanged —
the preprocessing has put everything in shape.
3077

Saisfying OCL Constraints (Uplink)

o let M =(62,09,74,5) be a UML model, and Z a structure.

» We (continue to) say

for

if and only if

« Mis (s

1) consistent if and only

M expr

context C' inv : eapry € Inv(M)

S

=expr

V= (0i)ien € [M]
Vie N
Yu € dom(o;) N 2(C) :
Heaprol(o {self —

uh =1

fies all constraints in Inv(M).

Domain Inclusion vs. Uplink Semantics

31m

34

Transformers (Uplink)

Late Binding (Upli nk)

« Employ something similar to the “mostspec” trick (in a
is typically far from concise.
7, v) (Related to OCL's isKind0£() function, and RTTl in C++.)

« What has to change is the create transformer:

ereate(C, e

» Assume, C's inheritance relations are as follows.

Cip<...aC,, 20,

Cpy <Q...<9Cpp, 9C.

« Then, we have to
o create one fresh object for each part, e.g.

UL dyee oy ULy ooy Wm,ly e o s Umng, s

» set up the uplinks recursively, e.g.

11,0) (uplink, |) = us 1.

0140205

+ And, if we had constructors, be careful with their order.

ute!). But the result

) 321 ! 33/m
Cast-Transformers Castsin Domain Inclusion andUplink Semantics
«Cc; Domain Inclusion Uplink
+Dd; Cx cp casy: immediately compatible | easy: By pre-processing,
« Identity upcast (C++): =&d; (in underlying system state) be- | Cx cp = d.uplink;
cause &d yields an identity from
o Cx cp = &d; // assign address of ‘d’ to pointer ‘cp’ (D) € 7(C).
. D dp = easy: the value of cpisin Z(D)N
o Identity downcast (C++): (D*)cp; 7(C) because the pointed-to ob-
_ . . o . . ject is a D. noted by cp.
o D+ dp = (D¥)cp; |/ assign address of ‘d’ to pointer ‘dp Jectisa
Otherwise, error condition. (See next slide.)
+ Value upcast (C++): bit ult: set (for all C < D) | easy: By pre-processing,
. .) (- - 2 = Do = #(d.uplink,);
o %c = *d; // copy attribute values of ‘d’ into ‘c’, or, MMMV T.i.mw,x ol lawrce) ¢ = *(auplink:)
|/ more precise, the values of the C-part of ‘d’ Newn o1 q_ww VI)] s
not type-compatible!
v 3574 ' 3674

Identity Downcast with Uplink Semantics

Recall (C++): Dd; C# cp=&d; Dxdp = (D¥)c

.

Problem: we need the identity of the D whose C-slice is denoted by cp.

One technical solution:
« Give up disjointness of domains for one additional type comprising a
identities, i.e. have

alle 7, 7(a11) = |J 2(0)
cee

ions “mostspec’
ed slices, plus information of which type that slice is.

means, ing on the type (only
s), going down and then up as necessary, e.g.

switch(mostspec_type){
case C':
dp = cp ->mostspec -> uplink,, ->...->uplink, ->uplinkp;

Meta-Modelling: | dea andExample

Domain Inclusion vs. Uplink Semantics: Differences

» Note: The uplink semantics views inheritance as an abbreviation:

» We only need to touch transformers (create) — and if we had constructors, we
idn't even needed that (we could encode the recursive construction of the upper
slices by a transformation of the existing constructors.)

« So:
o Inheritance doesn’t add expressive power.
« And it also doesn’t improve conciseness soo dramatically.

As long as we're “early binding", that is...

38/m

Meta-Modelli ng: Why and What

2014020

+ Meta-Modelling is one major prerequisite for understanding
o the standard documents [OMG, 2007a, OMG, 2007b], and
o the MDA ideas of the OMG.

« The idea is simple:
. ifa i is about modelling things,
« and if UML models are and comprise things,
« then why not model those in a modelling language?

 In other words:
Why not have a model My such that
o the set of legal instances of My

s
o the set of well-formed (1) UML models.

2

a1

Domain Inclusion vs. Uplink Semantics. Motives

« Exercise:

What's the point of
« having the tedious adjustments of the theory
if it can be approached technically?

« having the tedious technical pre-processing
if it can be approached cleanly in the theory?

397

Meta-Modelli ng: Example

« For example, let's consider a class.

« A class has (on a superficial level)
* a name,
« any number of attributes,
« any number of behavioural features.

Each of the latter two has

« aname and

o a visibility.

Behavioural features in addition :.“:\mA
+ a boolean attribute isQuery,
« any number of parameters, ™

=4
o a return type. 7

« Can we model this (in UML, for a start)?

427

UML Meta-Model: Extract

Comment ————4 Element 7

NamedElement
visibilty

RedefElement] redefdElem

type
TypedElement

type NW
Feature i Namespace
Classifier StructFeature i E..%E:L
- P
H : mﬂ
o Operation Parameter
43m

Operations [ome, 20075 30

Figure 7.10 - Features diagram of the Kernel package

46/

Classs [omG, 2007h 32

saubsotidPropesy

—

st e
e fnsesouner

— A Gt

e e S

Figure 7.12 - Classes diagram of the Kernel package

Classfiers [omg, 2007 29

Figure 7.9 - Classifiers diagram of the Kernel package

A4y1

Ly

Operations [omg, 2007h 31

Farameter

e

sets oyrediue
R g

{bsets ouredie)
gy

Constrant

[ErEpe——

Figure 7.11 - Operations diagram of the Kernel package

Namespaces [ome, 2007h 26]

iy vibityKiod

Figure 7.4 - Namespaces diagram of the Kernel package

451

48/

Roat Diagram [omg, 2007h 25 Interesting: Dedaration/Definiti on [omg, 2007h 424 UML Architedure [om, 2003 8]
e

= Meta-modelling has already
been used for UML 1.x.

oubsats owner) (subsets ownedElem

i) Behavior For UML 2.0, the request
] o ot ook for proposals (RFP) asked
for a separation of concerns:

R ——
I Infrastructure and S —
{readonly, union} T s bty Superstructure. TransitonLne,
[etationsiin_} et ement < o]
g eoenasoonasir « One reason:
[: sharing with MOF (see é‘ > o
L —
T T, later) and, e.g., CWM.
+ reource. b Figure0-1 Overview of architedure
o
e, ,
Figure 7.3 - Root diagram of the Kernel package T i
< FunctionBehavior g

o e 136 Common sehair o : o
UML Sugerstructure Packages [oms, 20073 15 Modelli ng vs. Meta-Modelli ng
Commongehaviors. Class roper e
s Meta- o | 0
/) o Model I !
J Meta-Modelling: Principle (M2) |
=1, = ,,
, g - c | 7 =({z},
- —Z ' {C} {v},
j& \\\\\\\ Model Wﬁe.wm%_
M1) —F e
- |
E Instance | instance-of /
(Mo) | /€
| /
i o= {ur—

Deploments £

ure

Figure 7.5 The top-level package structure of the UML 2.1.1 Superst

52/ 53/

Modelli ng vs. Meta-Modelling

__Readngthe Siandad

M [Class Property Type |
eta- e Str ame: St name - St
Model - !
(M2) t 1 ! I !
l } | Il
1 T T
| 1 I | i
| I | _
T I | 7 = ({2},
Class | Property | Type {C}, {v},
v:Z . L
Model name = C name = v name = 7, {C— e%.
(M) ———— 7~y
« So, if we have a meta model My of UML, then the set
Instance ’

(Mo) of UML models is the set of instances of M. /e
« A UML model M can be represented as an object /

diagram (or system state) wrt. the meta-model M. | = {t

1 01}
Other view: An object diagram wrt. meta-model My
can (alternatively) be rendered as the UML model M.

5477

Table of Contents

1 Scope

2. Conformance
21 Language s
22

23 Moaring and Types

3
4. Terms and Definitons|
B
5.

o
65

Part | - Structure

o o Dpensencs)

7. Classes

e —— - 56/7

Well -Formednessas Constraints in the Meta-Model

01402

» The set of well-formed UML models can be defined as the set of object
diagrams satisfying all constraints of the meta-model.

For example,

“[2] Generalization hierarchies must be directed and acyclical. A classifier
cannot be both a transitively general and transitively specific classifier
of the same classifier.

not self . allParents() -> includes(self)" [OMG, 2007b, 53]

« The other way round:
Given a UML model M, unfold it into an object diagram Oy wrt. My .
If Oy is a v i
then M is a well-formed UML model.

That is, if we have an object diagram validity checker for of the meta-modelling
language, then we have a well-formedness checker for UML models.

557
Table of Contents
1 scope 74 agrams. 110
2 Conformance 5. Components 13
21 Language Unis 81 Overven e
22 Complance Levels 82 Absiactsyniax ™
23 Mearing and Types 3
24 Complance Level ¢{
3. Normative References|
4. Terms and D 24 vlagams
5. symbols B
6. Additional Informatonl
101
Part | - Structure . 10. Deployments 103
7. Classes [———
B L I
e — . 56/7

Reading the Sandad

object diagram of My (i.e. s all invariants from Inv(My)),

Table of Contents
1 scope 1
2 Conformance 1
21 Luage Unes 2
22 Complarce vt 2
23 Mg s Ty of Campance .
24 Compianco Lewl Conrts .
3. Normative References 10
4. Terms and Definitons 0
5. symbols 10
5. Additonal information 0
61 Cranges o At MG Spesstons s
o X
53 On e RunTime Semantcs o kL
¢ 65 How 0 Read s Sectcaton 1
7 o
| Part | - Structure 21
T |7 classes 2

Reading the Sandad Cont’d

- amepscton Karlronpon 51
~ Retiraomert ke 5 130

o vt A s on pey 3 ke

56/7

57/

Reading the Sandad Cont’d the Sandzrd Cant'd -
P —
o d— e s e
I - L e S
et
L e 57/ L — — had 57/ L — hid 57/
tha 9 "
[t T
T et s
e Meta Objed Facility (MOF)
w L s gt et 52 g UM Supersinchne Specicaton, v21.2 - 5
& ML Supersin o = e ML SupersrciTE SRR VT = =
CLE 57/ L 57/ 58/7%

Open Questions...

« Now you've been “tricked” again. Twice.
» We didn't tell what the modelli for met.
» We didn't tell what the is-instance-of relation of this language is.

« ldea: have a minimal object-oriented core comprising the notions of

class, association, inheritance, etc. with “self-explaining” semantics.

« This is Meta Object Facility (MOF),
which (more or less) coincides with UML Infrastructure [OMG, 2007a].

« So: things on meta level
» MO are object diagrams/system states
« M1 are words of the language UML
o M2 are words of the language MOF

» M3 are words of the language ...

Benefits: Overview

« We'll (superficially) look at three aspects:
» Benefits for Modelling Tools.
» Benefits for Language Design.

« Benefits for Code Generation and MDA.

59,7

6277

40205

MOF Semantics

» One approach:

» Treat it with our signature-based theory

 This is (in effect) the right direction, but may require new (or extended)
signatures for each level
(For instance, MOF doesn't have a notion of Signal, our signature has.)

« Other approach:

« Define a generic, graph based “is-instance-of”" relation.

Object diagrams (that are graphs) then are the system states —
not only graphical representations of system states.

o If this works out, good: We can easily experiment with different language
designs, e.g. different flavours of UML that immediately have a semantics.

Most interesting: also do generic definition of behaviour within a closed
modelling setting, but this is clearly still research, e.g.
[Buschermdhle and Oelerink, 2008]

Benefits for Modelli ng Tools

r0205

+ The meta-model M of UML immediately provides a data-structure
representation for the abstract syntax (~ for our signatures).

If we have code generation for UML models, e.g. into Java,
then we can immediately represent UML models in memory for Java.

(Because each MOF model is in particular a UML model.)

There exist tools and libraries called MOF-repositories, which can
generically represent instances of MOF instances (in particular UML
models).

And which can often generate specific code to manipulate instances of
MOF instances in terms of the MOF instance.

6074

Meta-Modelli ng: (Anticipated) Benefits

617

Benefits for Modelling Todls Cont’d

les, we
XML.

And not only in memory, if we can represent MOF instances in
obtain a canonical representation of UML models in files, e.g.

— XML Metadata Interchange (XMI)

Note: A priori, there is no graphical information in XMI (it is only
abstract syntax like our signatures) — OMG Diagram Interchange.

Note: There are slight ambiguities in the XMI standard.

And different tools by different vendors often seem to lie at opposite ends on
the scale of interpretation. Which is surely a coincidence

's possible to fix things with, e.g., XSLT scripts, but full
today not given.

In some cases,
vendor independence

Plus XMI compatibility doesn't necessarily refer to Diagram Interchange.

To re-iterate: this is generic for all MOF-based modelling languages
such as UML, CWM, etc.
And also for Domain Specific Languages which don’t even exit yet.

Benefits: Overview

« We'll (superficially) look at three aspects:

« Benefits for Modelling Tools. [

« Benefits for Language Design.
« Benefits for Code Generation and MDA.

65/74

Benefits for Languag Design Cont’d

« One step further:

« Drawbacl

Nobody hinders us to obtain a model of UML (written in MOF),
throw out parts unnecessary for our purposes,

add (= integrate into the existing hierarchy) more adequat new
constructs, for instance, contracts or something more close to
hardware as interrupt or sensor or driver,

and maybe also stereotypes.

a new language standing next to UML, CWM, etc.

: the resulting language is not necessarily UML any more,

so we can’t use proven UML modelling tools.

« But we can use all tools for MOF (or MOF-like things).
For instance, Eclipse EMF/GMF/GEF.

687

Benefits for Languag Design

40205

r0205

« Recall: we said that code-generators are possible “readers” of stereotypes.

» For example, (heavily simplifying) we could

« introduce the stereotypes Button, Toolbar,

« for convenience, instruct the modelling tool to use special pictures for
stereotypes — in the meta-data (the abstract syntax), the stereotypes
are clearly present.

« instruct the code-generator to automatically add inheritance from
Gtk::Button, Gtk::Toolbar, etc. corresponding to the stereotype.

Et voila: we can model Gtk-GUIs and generate code for them.

» Another view:
* UML with these a new i : Gtk-UML.
* Which lives on the same meta-level as UML (M2).

ing Language (DSL).

« It's a Domain Specific Mod

One mechanism to define DSLs (based on UML, and “within

Benefits: Overview

« We'll (superficially) look at three aspects:

= Benefits for Model

g Tools. []
« Benefits for Language Design. (]
o Benefits for Code Generation and MDA.

UML): Profiles.

66/74

6974

Benefits for Languag Design Cont'd

.

For each DSL defined by a Profile, we immediately have
« in memory representations,

« modelling tools,

« file representations.

Note: here, the semantics of the stereotypes (and thus the language of
Gtk-UML) lies in the code-generator.

That's the first “reader” that these special pes.
(And that's what's meant in the standard when they're talking about giving
stereotypes semantics).

One can also impose additional well-formedness rules, for instance that
certain components shall all implement a certain interface (and thus have
certain methods available). (Cf. [Stahl and Vélter, 2005].)

Benefits for Model (to Model) Transformation

» There are manifold applications for model-to-model transformations:

» For instance, tool support for re-factorings, like moving common
attributes upwards the inheritance hierarchy.
This can now be defined as graph-rewriting rules on the level of
MOF.
The graph to be rewritten is the UML model

« Similarly, one could transform a Gtk-UML model into a UML model,
where the inheritance from classes like Gtk::Button is made explicit:

The transformation would add this class Gtk::Button and the
n and remove the stereotype.

inheritance rela:
« Similarly, one could have a GUI-UML model transformed into a

Gtk-UML model, or a Qt-UML model

The former a PIM (Platform Independent Model), the latter a PSM

(Platform Specific Model) — cf. MDA.

671

70/

Spedal Case: Code Generation

» Recall that we said that, e.g. Java code, can also be seen as a model.
So code-generation is a special case of model-to-model transformation;
only the destination looks quite different.

« Note: Code generation needn’t be as expensive as buying a model
tool with full fledged code generation.

= If we have the UML model (or the DSL model) given as an XML
code generation can be as simple as an XSLT script.

“Can be" in the sense of
‘There may be situation where a graphical and abstract
representation of something is desired which has a clear and
direct mapping to some textual representation.”

In general, code generation can (in colloquial terms) become arbitrarily
difficult.

Tim

References

[Buscherméhle and Oelerink, 2008] Buschermahle, R. and Oelerink, J. (2008). Rich meta object
facility. In Proc. 1st IEEE Int'l workshop UML and Formal Methods

[Fischer and Wehrheim, 2000] Fischer, C. and Wehrheim, H. (2000). Behavioural subtyping relations
for object-oriented formalisms. In Rus, T., editor, AMAST, number 1816 in Lecture Notes in
Computer Science. Springer-Verlag

[OMG, 2003] OMG (2003). Uml 2.0 proposal of the 2U group, version 0.2,
http://waw. 2uvorks. org/uml2submission.

[OMG, 2007a] OMG (2007a). U
Report formal /07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version 2.1.2. Technical
Report formal/07-11-02.

[Stahl and Valter, 2005] Stahl, T. and Vélter, M. (2005). Modellgetriebene Softwareentwicklung
dpunkt.verlag, Heidelberg.

ed modeling language: Infrastructure, version 2.1.2. Technical

T4/

Example: Model and XMl

(ipt100)) | gather | descozy | update | (NET:
SensorA 1 | ControllerA | T UsbA
<2xml version = 1.0 sncoding = 'UTF-8 7>

<KUI xmi.version = ’1.2' xalns:UML = ’org.ong.xmi.namespace.UML' timestamp = 'Mon Feb 02 18:23:12 CET 2009'>

<UML:Model xmi.id = ’...">

<UML: Nemespace . ounedElenent>
<UML:Class xmi.id = '...’ name = 'Sensorh’>
<UML:Node1ELenent . stereotype>
<UML:Stereotype name = ’pti00’/>
</UL:Node1ELement .stereotype>
</UML:Class>
<UML:Class xmi.id = *...’ name = 'Controllerh’>
<UML:Mode1ELenent . stereotype>
<UML:Stereotype name = ’65002’/>
</UNL:Node1ELenent .stereotype>
</UML:Class>
<UML:Class xmi.id = *...’ name = 'UsbA’>
<UML:Node1ELenent . stereotype>
<UML:Stereotype name = ’NET2270'/>
</UML:Node1Elenent .stereotype>
</UML:Class>
<UML:Association xmi.id = *...’ name = ’in’ >...</UML:Association>
<UML:Association xmi.id = *... name = out’ >...</UNL:Association>
</UL:Nanespace . ounedELenent>

72/m

References

T3

