
Prof. Dr. A. Podelski, Dr. B. Westphal Wintersemester 2013/14
R. Albrecht

Software Design, Modeling, and Analysis in UML

http://swt.informatik.uni-freiburg.de/teaching/WS2013-14/sdmauml

Exercise Sheet 5

Early submission: Monday, 2014-01-06, 10:00 Regular submission: Wednesday, 2014-01-08, 10:00

Exercise 1 (2/20 Points)

Give the core state machine corresponding to the diagram shown in Figure 1.

Exercise 2 (3/20 Points)

Let ε be a FIFO which comprises exactly the four events e1, e2, e3, e4 for an object u in that order
(e1 is first, e4 is last) where

• e1, e2 are instances of signal E,

• e3 is an instance of signal F , and

• e4 is an instance of signal G.

Assume e5 is another instance of signal F and u2 is an object different from u.
Let

ε′ := ⊖(⊖(⊕(⊖(ε, e1), u, e5), e3), e2).

What is ready(ε′, u) and ready(ε′, u2)?

Exercise 3 (3/20 Points)

Let σ be the system state given by the complete object diagram in Figure 2 and let ε be the empty
FIFO queue.

• Compute IJx := 1;x := 2K(σ, ε). (1)

• Compute IJn !EK(σ, ε). (0.5)

• Compute IJp !F K(σ, ε). (0.5)

• Compute IJn := new(C)K(σ, ε). (1)

•
s1 s2 s3 s4

s5

s6 s7

E/x := 0

E/x := 1;x := 2

F/

[x = 1]/

[x = 2]/x := 3

G/

G/

[x ≤ 3]/x := x− 1

Figure 1: State machine for Exercise 1.

1



C
x : Int

n

0..1

×
p

∗

×

u : C

x = 27
n = {u}
p = ∅
st = s1

stable = 1

Figure 2: Class diagram and complete object diagram.

Exercise 4 (7/20 Points)

Assume that the state machine shown in Figure 1 is the state machine of class C from Figure 2.

• Let (σ, ε) be the system configuration where σ is given by the complete object diagram in
Figure 2 and where ε is a FIFO which is shared between all alive objects and which comprises
exactly the four events E,E, F,G for u in that order (E is first, G is last).

How can (σ, ε) evolve?

For each transition (σ, ε)
(cons,Snd)
−−−−−−−→

u

(σ′, ε′) in the evolution, please point out which of the

cases (i) – (v) justifies the transition, how are system state σ′ and ether ε′ determined
according to the rule? (6)

• In your answer to the previous task point out an example for a step and an example for an
RTC step. (1)

Exercise 5 (0/20 Points + 5 Bonus)

If we define length of an RTC step to be the number of steps in it, are RTC steps of finite length
in general?

Note: If yes, sketch the proof, if no, provide a counterexample.

Exercise 6 (5/20 Points)

Consider the UML model of a one-way level crossing consisting of Figures 3 and 4. Assume
the model already comprises an initialisation phase which ensures that all links are established
correctly and that the barriers are all up.
Please provide a state machine for the CrossingController which, for each approaching train first
lowers the barriers, then in case the barriers do not hit an obstacle sets lineclear to true to signal
the train that it’s safe to proceed, and after the train is through, first resets lineclear and then
raises the barriers.
Your state machine shall in particular ensure that the line is never cleared if the barriers are not
down.
Convince tutor that your design is correct.

Note: the EmptySensor is counting axes. Event ‘In’ corresponds to a train axis being detected before the

crossing and ‘Out’ to one axis being detected after the crossing.

Hint: Where is the train? Do you need to make any assumptions to ensure that the requirements are

satisfied?

2



〈〈signal , env〉〉

In

〈〈signal , env〉〉

Out

〈〈signal〉〉

Clear

〈〈signal〉〉

Up

〈〈signal 〉〉

Down

〈〈signal , env〉〉

Tock

〈〈signal , env〉〉

Appr

〈〈signal〉〉

Ok

〈〈signal〉〉

Fail

EmptySensor
operational : Bool = 0

n : Int = 0

CrossingControl
lineclear : Bool = 0

Barrier
angle : Float 〈〈env〉〉

itsCC

1

itsB1

1

itsB2

1

itsCC

1

Figure 3: Class diagram for Exercise 2.

•
s1 s2

serr

In/n := n+ 1
Out/n := n− 1 Out/n := n− 1

[n = 0]/itsCC !Clear
In/operational := 0

(a) State machine of class EmptySensor.

•
down up

godn

Up/

Down/ Tock[angle < 90]/itsCC !Fail
Tock[angle ≥ 90]/itsCC !Ok

(b) State machine of class Barrier.

Figure 4: State machines for Exercise 2.

3


