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Tranformer: Create  |[* x1= Gl + aes Cly

concrete syntax

abstract syntax
nxw?,\ = naw C

create(C, expr, v)
intuitive semantics
Create an object of class C' and assign it to attribute v of the object

denoted by expression expr.
well-typedness
expr: Tp, v € atr(D), atr(C) = {(vi : 7, exprd) | 1 <i < n}

semantics
observables

(error) conditions

I[expr](o, 8) not defined.

+ We use an “and assign-action for simplicity — it doesn't add or remove
expressive power, but moving creation to the expression language raises all
kinds of other problems such as order of evaluation (and thus creation)

ty: no parameters to construction (~ parameters of construc-
g them is straightforward (but somewhat tedious).
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Last Lecture:
« System configuration
« Transformer

« Action language: skip, update, send

This Lecture:
« Educational Objectives: Capabilities for following tasks/questions.
» What does this State Machine mean? What happens if | inject this event?
» Can you please model the following behaviour.
» What is: Signal, Event, Ether, Transformer, Step, RTC.

« Content:
o Transformers for Action Language
* Run-to-completion Step
« Putting It All Together

Create Transformer Example

SMc:

create(C, eapr, v)

tereate(C,ezprv)(9:€) =

Transformer Cont’d

How To Choaose New | dentiti es?

« Re-use: choose any identity that is not alive now, i.e. not in dom(

« Doesn't depend on history.
« May “undangle” dangling references — may happen on some platforms.

e. not in

« Fresh: choose any identity that has not been alive ever,
dom(c) and any predecessor in current run.

» Depends on history.
+ Dangling references remain dangling — could magk “dirty” effects of
platform




Transformer: Create

abstract syntax concrete syntax

create(C, expr,v)

Create an object of class C' and assign it to attribute v of the object
denoted by expression expr.
well-typedness
eapr: 7p, v € atr(D), atr(C) = {{vy : 7, expr?) | 1 < i < n}

i of ey caued object

& = [u](e); ue B(C) fresh, ie. u g dom(c);_—NWE

L__d=

o = TTeonr] (o,0; ds — ILecpr®](o, ) if expr® - 8'and arbitrary
value from Z(7;) otherwise; N )

observables cpeatin ..
Obsrsselia] = (G L, () T o o gy

(error) conditions

I[exzpr](o) not defined.

What to Do With the Remaining Objeds?

Assume object u is destroyed.
refer to it via association r:

« object uy may st

» allow dangling references?
Q)  or remove ug from o (uy)(r)?
« object ug may have been the last one linking to object u

@  leave uy alone?
« or remove uy also? (gasbage cdlockins’)

 Plus: (temporal extensions of) OCL may have dangling references.

g references and no garbage collection!
, because there are target platforms which

don't provide garbage collection — and models shall (in general) be correct
without assumptions on target platform.

But: the more “dirty” effects we see in the model, the more expensive it often
is to analyse. Valid proposal for simple analysis: monotone frame semantics,
no destruction at all.
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Transformer: Destroy
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abstract syntax concrete syntax
destroy(capr) delete. eps

intuitive semantics
Destroy the object denoted by expression expr.

well-typedness
eapr:7c, C €€

semantics

observables

Obsaestroy[tia] = {(ta, L, (+,0),u)}

(error) conditions

I[eapr](o, 3) not defined.

Transformer: Destroy

Destroy Transformer Example o

abstract syntax concrete syntax

destroy(expr)
ive semantics
Destroy the object denoted by expression expr.

well-typedness
expr:7c, C €F

mmiuzznm
tu)(0,6) = (0/,2) i restrichia

where 0’ = 0o ()\ u} With u = I[eapr](c,).

observables

Obsaestroy|tiz) = {(tz, L, (+,0),u)}

(error) conditions

] I[expr](o,4) not defined.

SMe:

destroy(erpr)

stroy(expr) (2] (7,€) = ..

Sequential Composition o Transformers

« Sequential composition t; o t, of transformers ¢, and » is canonically
defined as \ék “eg afles " < b o fots

(t2 0 t1)[ua)(0,€) = ta[ua] (t1[ue](0, 2))

with observation

Obs(1501,)[ua](0,€) = Obsy, [uz](0,€) U Obsy, [uz](t1 (0 €))-

« Clear: not defined if one the two intermediate “micro step:

xextd jdodke w j w!lF

4 1 i (Eath (tupake (50)))

12/



Transformers And Denatationd Semartics

Observation: our transformers are in principle the denotational semantics
of the actions/action sequences. The trivial case, to be precise.

. . 20) Nz X1
Note: with the previous examples, we can capture @fg

« empty statements, skips,

« assignments, Lx£0]
« conditionals (by normalisa ry variables), M

Le>ol/creseq

« create/destroy,

Sep andRun-to-completion Sep

Transition Relation, Computation

Definition. Let A be a set of actions and S a (not necessarily
finite) set of of states.

We ca
— CSxAxS

a (labelled) transition relation.
Let Sy C S be a set of initial states. A sequence

502 5y 2Ly 5y 22,

but not possibly diverging loops. il
with s; € S, a; € A is called computation of the labelled transi-
tion system (S, —, Sp) if and only if

Our (Simple) Approach
then (syntactically) forbid loops and calls of recursive funcf

Other Approach: use full blown denotational semantics.

o initiation: so € Sp

o consecution: (s;,a;,Si+1) €— for i € No.

No show-stopper, because loops in the action annotation can be converted into

transition cycles in the state machine. . PP
Note: for simplicity, we only consider infinite runs.

0 13738 b 14/3 1538
Active \s. Passve ClasesObjeds From Core State Machinesto LTS (i) Discarding An Event
. . (cons,Snd) o
+ Note: From now on, assume that all classes are active for simplicity. Definition. Let .% = (%, %, Vi, atro, &) be a signature with signals (all classes (0,8) ——— (0',€")
We'll later briefly discuss the Rhapsody framework which proposes a way ), ) & CHISIG Gff i, et (B i G (1) el iy G &6 e 2 i
N N . Assume there is one core state machine M per class C' € €
how to integrate non-active objects. ) ) » ) o an E-event (instance of signal E) is ready in ¢ for object u of a class @, i.e. if
We say, the state machines induce the following labelled transition relation on states
§ = (32 U {#]} x Eth) with actions A := Amﬁﬁiﬁéc::msa._@vxﬁ\é mxS% d u € dom(0) N Z(C) AJugr € Z(&) : up € ready(e, u)
7T e stake ~_ \v 2~
« Note: The following RTC “algorithm” follows [Harel and Gery, 1997] 0,y Lm0 Cons, Sod, o wis stable and in state machine state s, i.e. o(u)(stable) = 1 and o(u)(st) =
the one realised by the Rhapsody code generation) where the standard & ’ - _.ﬁ o © but there is no corresponding transition enabled (all transitions incident with
ambiguous or leaves choices. 1t and only it . o current state of u either have other triggers o the guard is not satisfied)
(i) an event with destination u is discarded,
an event is dispatched to u, i.e. stable object processes an event, or Y (s, F, expr, act,s') €= (SMc) : F # EV gﬁiir\u 0
) run-to-completion processing by u commences,
i.e. object u is not stable and continues to process an event, and
(iv) the environment interacts with object u, © the system configuration doesn’t change, i.e. o' = o
B H o Leons.0) M  the event up is removed from the ether, i
) i if and only 0 & =c6up,
8 2 (v) s = # and cons = 0, or an error condition occurs during consumption of cons. © . consumption of us is observed, i.e
: : cons = {(u, (E,0(ur)))}, Snd = 0.
' 1838
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(signal, env))

Example: Dispatch ,, Aﬁ T
N L =

Example: Discard emeben) (i) Dispatch (0r0) CmID 1

SMe: " 0 Gla>0)fz =y (oignat) o u € dom(0) N 2(C) AJus € Z(&) s up € ready(e, u) SMe: Cle> 0=y
- G.J o uis stable and in state machine state s, i.e. o(u)(stable) = 1 and o'(u)(st) = s, e
H/z:=y/x c © a transition is enabled, H/z:=y/x e E—
Ot oz dnt (s, F, eanr, act, ') €= (SMc) : F = I A Teaprl(ag=1 O oz dat

3 is coomod potluny seut

y: Int {env)
Y V\ where & = ou.params ; — ug).
(133,9) ol=c and (563, )
\_n o (0',¢') results from applying tac: to (o,¢) and removing up from the ether, s - e > x=2, 220, =2
. . stable = 1 s
. r-X " = pemore obyct U 2
4 of e £ 4 ) (0",&') & toct(d,6 O up), ] e - I =0
. ! = (0" [u.st — &, u.stable b, u. "
alect does sft oy & o = (0" [ust — ', u.stable — b,u.params ; — 0])|(€) (up) g "
where b depends:
. o If u becomes stable in s', then b = 1. It does become stable if and only if s
H there is no transition without trigger enabled for u in (¢,'). 5 + Ju € dom(o) N Z(C) o o(u)(stable) = 1, o(u)(st) = s,
1] e ucdom(@)n9(0) « o{u)(stable) = 1, o(u)(st) = s, M + Otherwise b — 0. . Jup € D(8) : up € ready(e,u) -
= Jup € 2(8) : up € ready(e, u) , , H : : ; . (0"¢) = tas(r2 © uB)
V(s Freapract. ) e (SMe) : sd=0=cous |« Consumption of ug and the side effects of the action are observed, S| e A B e act,s) € (SMo) - - Pl q
g 2 w,m< % .L_ﬂQu @ o) : < cons = ({5, o(us)))}, Snd =B g g F =EA[eapr](5) =1 o o' = (0"[u.st = ', u.stable — b, u.params g — 0))|2(e)\ fur}
. e = 3 cons = {(u, (E,0(ug)))}, Snd = Obs.,. (5,¢ S u, : & = ofu.params; — ug]. « cons = {(u, (B, o(ug)))}, Snd = Obsy,, (7,6 S ug)
! 1973 2073 ' R
: . (signal, env)) . . .
(iii ) Comnence Run-to-Completion Example: Comnence o (iv) Environment Interaction
[e>0)/z:=a—1;nlJ
= A that t Seny C & is designated i t ts and t
o SMo: Gle>0)fzimy p— ssume that a set &, C & is designated as environment events and a se
(0.2) (cons,Snd) (',¢) a7 of attributes ve,, C V is designated as input attributes.
. -
n el Then
o there is an unstable object u of a class e ;A, ) (0,6) LomeSnd) (1 1y
y: Int ((env) env
u € dom(0) N Z(C) A o(u)(stable) = 0 if
« there is a transition without trigger enabled from the current state Qw ﬁ ‘rc: s © an environment event E € &.n, is spontaneously sent to an alive object
s =o(u)(st), ie - . > PETp—— ue (o), ie
3 (s, eapr, act,s') €= (SMc) : I[eapr](ouf=1 K.,nw '=oUfup = {vimdi|1<i<n}, & =cous
and o \ s where ug ¢ dom(o) and atr(E) = {v,...,vn}.
o (0',€) results from applying tuc: to (a,2), : . « Sending of the event is observed, i.e. cons = ), Snd = {(env, E(d))}
']
s (6".€) € taelul(0,6), 0" = 0" [u.st v s, u.stable s B] . ¢ @W\MU Lo
£ nere b depends as bef £ Nudd ~© Values of input attributes change freely in alive objects
. where 9 depencs as before. o |+ 3uedome) N 2(C) : o(u)(stable) = 0 o (0",€) = tact(0,€)s : " 4 - o
©« Only the side effects of the action are observed, G| L 3o capr, et ) e (SMe) - Teapr(o) =1 o [ ] Vv €V Vuedom(o) : o' (u)(v) # ou)(v) = veV.
b cons = 0, Snd = Obsy,,,(0,€) o « o(u)(stable) = 1, o(u)(st) = s, « cons =0, Snd = Obsy,..(0,¢) and no objects appear or disappear, i.e. dom(c’) = dom(c)
! o e=e 2473
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(signal, env))

. : (signal, env)) : . ;
Example: Environment (e (v) Error Condtions Example: Error Condtion
-  (cons,Snd)
SMc: (signal)) s " #
(5] G.J o
if, in or (iii), Iﬁ
c o I[ezpr] is not defined for o, or (vg) " c
Otz e « tuet is not defined for (7€) FE O oz dat
'+ Int (env) act € y: Int (env))
and = C
T=0:=0y-2 [¢3 s W\v & + consumption is observed according to (ii) or (iii), but Snd = 0. T=0,2=0,y=27
_ N }
st=s c st=sz
stable = 1 stable = 1
Examples:
e gle/o/ect |
12 . .
Eltrue)/ae |
Bl = U s o D A - o Ed(E) H 2 « Ifeapr] not defined for o, or - consumption according to (ii) o (i)
= |+ & =c®ug where up ¢ dom(o) « cons =0, Snd = {(env, E(d))}. 3 3 + toct is not defined for (a,) . Snd =0
¥ and atr(E) = {v1,. .., va}. ¥ T
B 2573 - 26/ B 273
Notions of Steps: The Sep Notions of Seps: The Run-to-Completion Sep Notions of Steps: The Run-to-Completion Sep Cont’d
s,Snd i to- i
Note: we call one evolution (o, <) (cons ) (0',€) a step. What is a run-to-completion step. Proposal: Let
u o Intuition: a maximal sequence of steps, where the first step is a (consg,Sndo) (consn_1,Snd, 1)
Thus in our setting, a step directly corresponds to dispatch step and all later steps are commence steps. (00,20) T (on,n); m >0,
one object (namely u) takes a single transition between regular states. . : i i .
) ( y u) g " ‘ 8! ) Note: one step corresponds to one transition in the state machine. be a finite (1), non-empty, maximal, consecutive sequence such that
(We have to extend the concept of “single transition” for hierarchical state machines.) A run-to-completion step is in general not syntacically definable — one + object u s alive in oo,
That is: We're going for an interleaving semantics without true paral transition may be taken multiple times during an RTC-step.  uo = u and (conso, Sndo) indicates dispatching to u, i.e. cons = {(u, 7+ d)},
Remark: With only methods (later), the notion of step is not so clear. E . © there are no receptions by u in between, i.e.
y xample:
For example, consider cons; N {u} x Bvs(&,2) =0,i > 1,
o ¢y calls £() at ¢y, which calls g() at ¢; which in turn calls h() for c;. B .
© w,_y = uand uis stable only in o and o, i.e.
. i ?
Is the completion of h() a step? o(u)(stable) = o (u)(stable) = 1 and o,(u)(stable) = 0 for 0 < i < n,
L « Or the completion of £()7 & :
 Or doesn't it play a role? g Let 0 = ky < ko < -+ < ky = n be the maximal sequence of indices such
i play } ’ ' that uy, = u for 1 <i < N. Then we call the sequence
It does play a role, because constraints/invariants are typically (= by convention) H
assumed to be evaluated at step boundaries, and sometimes the convention is meant g (o0(u) =) 0w, (W), 0k, (w) s ok (0) (= o-a(w))
to admit (temporary) violation in between steps. , . 2 run-to-completion computation of u (from (local) configuration noﬁ::wo
; -
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Divergence

We say, object u can diverge on reception cons from (local) configuration
oo(u) if and only if there is an infinite, consecutive sequence

(conso,Sndo) (cons1,Sndy)
(70,80) ——— (o1,61) ———— .

such that u doesn't become stable again.

« Note: di of object not consi in the definitions.
By the current definitions, it's neither divergence nor an RTC-step.

31

The Missng Piece Initial Sates

Recall: a labelled transition system is (S, —, Sp). We have

« S: system configurations (o, )
. cons, Snd
« —: labelled transition relation (o, ¢) Lcons,Snd), (a',€").
u

Wanted: initial states Sp.

Proposal:
Require a (finite) set of object diagrams OD as part of a UML model

(€9, 54,69).

And set
So = {(0,2) | o € G™(OD),0D € 6%, empty}.

Other Approach: (used by Rhapsody tool) multiplicity of classes.
We can read that as an abbreviation for an object diagram.

343

Run-to-Completion Sep: Discusson.

0131218

What people may dislike on our definition of RTC-step is that it takes a global
and non-compositional view. That is:
see the effect of interaction with

o In the projection onto a single object we s
other objects.

Adding classes (or even objects) may change the divergence behaviour of
existing ones.

Compositional would be: the behaviour of a set of objects is determined by the
behaviour of each object “in isolation”.

Our semantics and notion of RTC-step doesn’t have this (often desired) property.

Can we give (syntactical) criteria such that any global run-to-completion step
is an interleaving of local ones?
Maybe: Strict interfaces. (Proof left as exercise...)
o (A): Refer to private features only via “self”
(Recall that other objects of the same class can modify private attributes.)

+ (B): Let objects only communicate by events,
don't let them modify each other's local state via links at all.

32
Semartics of UML Model —SoFar
The semantics of the UML model
M= (6D, 5M,09)
where
« some classes in %7 are stereotyped as ‘signal’ (standard), some signals and
attributes are as ‘external’ ( tandard),
 there is a 1-to-1 relation between classes and state machines,
« 07 is a set of object diagrams over €7,
is the transition system (S, —, Sy) constructed on the previous slide.
The computations of M are the computations of (S, —, Sp).
353

Putting It All Together

333

OCL Constraints and Behaviour

o Llet M= (€2, %4 ,62) be a UML model.
« We call M consistent iff, for each OCL constraint expr € InV(62),
o = eapr for each “reasonable point” (o, <) of computations of M.

(Cf. exercises and tutorial for discussion of “reasonable point”.)

Note: we could define Inv(.#) similar to Inv(€Z).

Pragmatics:
© In UML-as-blueprint mode, if ## doesn't exist yet, then M = (62.0.0%7)
is typically asking the developer to provide .%# such that
M = (€2,%M,09) is consistent.
If the developer makes a mistake, then M is inconsistent.

« Not common: if .7# is given, then constraints are also considered when choos-

ons in the RTC-algorithm. In other words: even in presence of mis-

ing tran:
takes, the .# never move to inconsistent configura

36/3
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