
SoftwareDesign, Modelli ng andAnalysis in UML

Lecture15: Hierarchical StateMachines I

2014-01-13

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

–
1
5

–
2
0
1
4
-0

1
-1

3
–

m
a
in

–

State Machines V

Contents & Goals

Last Lecture:

• RTC-Rules: Discard, Dispatch, Commence.

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• What does this State Machine mean? What happens if I inject this event?

• Can you please model the following behaviour.

• What is: initial state.

• What does this hierarchical State Machine mean? What may happen if I
inject this event?

• What is: AND-State, OR-State, pseudo-state, entry/exit/do, final state, . . .

• Content:

• Step, RTC, Divergence

• Putting It All Together

• Rhapsody Demo

• Hierarchical State Machines Syntax

–
1
5

–
2
0
1
4
-0

1
-1

3
–

S
p
re

li
m

–

2/55



Step andRun-to-completion Step

–
1
5

–
2
0
1
4
-0

1
-1

3
–

m
a
in

–

3/55

Notions of Steps: TheStep

Note: we call one evolution (σ, ε)
(cons,Snd)
−−−−−−−→

u
(σ′, ε′) a step.

Thus in our setting, a step directly corresponds to

one object (namely u) takes a single transition between regular states.

(We have to extend the concept of “single transition” for hierarchical state machines.)

That is: We’re going for an interleaving semantics without true parallelism.

–
1
5

–
2
0
1
4
-0

1
-1

3
–

S
st

m
st

ep
–

4/55



Notions of Steps: TheRun-to-Completion Step

What is a run-to-completion step...?

• Intuition: a maximal sequence of steps, where the first step is a
dispatch step and all later steps are commence steps.

• Note: one step corresponds to one transition in the state machine.

A run-to-completion step is in general not syntacically definable — one
transition may be taken multiple times during an RTC-step.

Example:

s1 s2

E[x > 0]/

/x := x − 1

σ:
: C

x = 2

ε:

E for u

–
1
5

–
2
0
1
4
-0

1
-1

3
–

S
st

m
st

ep
–

5/55

Notions of Steps: TheRun-to-Completion Step Cont’d

Proposal: Let

(σ0, ε0)
(cons0,Snd0)
−−−−−−−−→

u0

. . .
(consn−1,Sndn−1)
−−−−−−−−−−−−→

un−1

(σn, εn), n > 0,

be a finite (!), non-empty, maximal, consecutive sequence such that

• object u is alive in σ0,

• u0 = u and (cons0, Snd0) indicates dispatching to u, i.e. cons = {(u,~v 7→ ~d)},

• there are no receptions by u in between, i.e.

cons i ∩ {u} × Evs(E ,D) = ∅, i > 1,

• un−1 = u and u is stable only in σ0 and σn, i.e.

σ0(u)(stable) = σn(u)(stable) = 1 and σi(u)(stable) = 0 for 0 < i < n,

Let 0 = k1 < k2 < · · · < kN = n be the maximal sequence of indices such
that uki

= u for 1 ≤ i ≤ N . Then we call the sequence

(σ0(u) =) σk1
(u), σk2

(u) . . . , σkN
(u) (= σn−1(u))

a (!) run-to-completion computation of u (from (local) configuration σ0(u)).

–
1
5

–
2
0
1
4
-0

1
-1

3
–

S
st

m
st

ep
–

6/55



Divergence

We say, object u can diverge on reception cons from (local) configuration
σ0(u) if and only if there is an infinite, consecutive sequence

(σ0, ε0)
(cons0,Snd0)
−−−−−−−−→ (σ1, ε1)

(cons1,Snd1)
−−−−−−−−→ . . .

such that u doesn’t become stable again.

• Note: disappearance of object not considered in the definitions.
By the current definitions, it’s neither divergence nor an RTC-step.

–
1
5

–
2
0
1
4
-0

1
-1

3
–

S
st

m
st

ep
–

7/55

Run-to-Completion Step: Discussion.

What people may dislike on our definition of RTC-step is that it takes a global
and non-compositional view. That is:

• In the projection onto a single object we still see the effect of interaction with
other objects.

• Adding classes (or even objects) may change the divergence behaviour of
existing ones.

• Compositional would be: the behaviour of a set of objects is determined by the
behaviour of each object “in isolation”.

Our semantics and notion of RTC-step doesn’t have this (often desired) property.

Can we give (syntactical) criteria such that any global run-to-completion step
is an interleaving of local ones?

Maybe: Strict interfaces. (Proof left as exercise...)

• (A): Refer to private features only via “self”.

(Recall that other objects of the same class can modify private attributes.)

• (B): Let objects only communicate by events, i.e.

don’t let them modify each other’s local state via links at all.

–
1
5

–
2
0
1
4
-0

1
-1

3
–

S
st

m
st

ep
–

8/55



Putting It All Together

–
1
5

–
2
0
1
4
-0

1
-1

3
–

m
a
in

–

9/55

TheMissing Piece: Initial States

Recall: a labelled transition system is (S,−→, S0). We have

• S: system configurations (σ, ε)

• −→: labelled transition relation (σ, ε)
(cons,Snd)
−−−−−−−→

u
(σ′, ε′).

Wanted: initial states S0.

Proposal:
Require a (finite) set of object diagrams OD as part of a UML model

(CD ,SM ,OD).

And set

S0 = {(σ, ε) | σ ∈ G−1(OD),OD ∈ OD , ε empty}.

Other Approach: (used by Rhapsody tool) multiplicity of classes.
We can read that as an abbreviation for an object diagram.

–
1
5

–
2
0
1
4
-0

1
-1

3
–

S
to

g
et

h
er

–

10/55



Semantics of UML Model —SoFar

The semantics of the UML model

M = (CD ,SM ,OD)

where

• some classes in CD are stereotyped as ‘signal’ (standard), some signals and
attributes are stereotyped as ‘external’ (non-standard),

• there is a 1-to-1 relation between classes and state machines,

• OD is a set of object diagrams over CD ,

is the transition system (S,−→, S0) constructed on the previous slide.

The computations of M are the computations of (S,−→, S0).

–
1
5

–
2
0
1
4
-0

1
-1

3
–

S
to

g
et

h
er

–

11/55

Contemporary UML Modelli ngTools

–
1
5

–
2
0
1
4
-0

1
-1

3
–

m
a
in

–

13/55



–
1
5

–
2
0
1
4
-0

1
-1

3
–

S
b
la

n
k

–

14/55

References

–
1
5

–
2
0
1
4
-0

1
-1

3
–

m
a
in

–

54/55



References

[Crane and Dingel, 2007] Crane, M. L. and Dingel, J. (2007). UML vs. classical vs. rhapsody
statecharts: not all models are created equal. Software and Systems Modeling,
6(4):415–435.

[Damm et al., 2003] Damm, W., Josko, B., Votintseva, A., and Pnueli, A. (2003). A formal
semantics for a UML kernel language 1.2. IST/33522/WP 1.1/D1.1.2-Part1, Version 1.2.

[Fecher and Schönborn, 2007] Fecher, H. and Schönborn, J. (2007). UML 2.0 state
machines: Complete formal semantics via core state machines. In Brim, L., Haverkort,
B. R., Leucker, M., and van de Pol, J., editors, FMICS/PDMC, volume 4346 of LNCS,
pages 244–260. Springer.

[Harel and Kugler, 2004] Harel, D. and Kugler, H. (2004). The rhapsody semantics of
statecharts. In Ehrig, H., Damm, W., Große-Rhode, M., Reif, W., Schnieder, E., and
Westkämper, E., editors, Integration of Software Specification Techniques for Applications
in Engineering, number 3147 in LNCS, pages 325–354. Springer-Verlag.

[OMG, 2007] OMG (2007). Unified modeling language: Superstructure, version 2.1.2.
Technical Report formal/07-11-02.

[Störrle, 2005] Störrle, H. (2005). UML 2 für Studenten. Pearson Studium.

–
1
5

–
2
0
1
4
-0

1
-1

3
–

m
a
in

–

55/55


