Software Design, Modelling and Analysis in UML

Lecture 09: Class Diagrams III

2013-11-25

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Let be the state own join matigit groups:

A=\{\text{t} \times \{\text{(tick.3a)}\} \} \text{ desired own join matigit groups:

A=\{\text{t} \times \{\text{(tick.3a)}\} \} \text{ desired own desire desired geterness

A=\{\text{(tick.3a)}\} \text{(tick own desire lovely considered of the geterness

A=\{\text{(tick.3a)}\} \\
A=\{\text{(del a constraint of this is not desired)}

A=\{\text{(del a constraint of this is not desi 5 = { 1. H { with 1, 2, H { with 0}, 3, H hann 1, 22, H found)} OBJECT DIAGRAMS: 105 m w 23.3 12 Saving the read published in Saving <55.047 <50.057 <40.0757 <40.0757 1 Jac

Last Lectures:

Contents & Goals

Links in System States

Only for the course of lectures 08/08 we change the definition of system states:

for associations

 $\langle r:\langle role_1:C_1,...,P_1,...,...\rangle,...,\langle role_n:C_n,...,P_n,...,...\rangle$

Definition. Let $\mathscr D$ be a structure of the (extended) signature $\mathscr S=(\mathscr S,\mathscr E,V,atr).$

A system state of $\mathscr S$ wrt. $\mathscr D$ is a <u>pair</u> (σ,λ) consisting of σ a type-consistent mapping $\sigma: \mathscr D(\mathscr S) \to (atr(\mathscr S) \to \mathscr D(\mathscr S)),$

• a mapping λ which assigns each association $\langle r:\langle role_1:C_1\rangle,\ldots,\langle role_n:C_n\rangle\rangle\in V$ a relation

(i.e. a set of type-consistent n-tuples of identities). $\lambda(r) \subseteq \mathscr{D}(C_1) \times \cdots \times \mathscr{D}(C_n)$

19,50

Studied syntax and semantics of associations in the general case.

This Lecture:

Educational Objectives: Capabilities for following tasks/questions. Cont d: Please explain this class diagram with associations.

- When is a class diagram a good class diagram?
 What are purposes of modelling guidelines? (Example?)
 Discuss the style of this class diagram.

- Effect of association semantics on OCL.
 Treat "the rest".
- Modelling guidelines, in particular for class diagrams (following [Ambler, 2005])
 Examples: modelling games (made-up and real-world examples) Where do we put OCL constraints?

Association/Link Example

 $\mathcal{S} = (\{Int\}, \{C, D\}, \{x: Int\})$ by default $\mathcal{S} = (\{Int\}, \{C, D\}, \{x: Int\})$ $(A.C.D): \langle c: C, 0...*, +, \{nnique\}, \times, 1 \rangle,$ $\langle n:D,0..*,+,\{\mathtt{unique}\},>,0\rangle\rangle\},$

A system state of $\mathcal S$ (some reasonable $\mathscr D$) is (σ,λ) with: $\sigma = \{1_C \mapsto \emptyset, 3_D \mapsto \{x \mapsto 1\}, 7_D \mapsto \{x \mapsto 2\}\}$

 $\{C \mapsto \emptyset, D \mapsto \{x\}\})$

 $\lambda = \{A.C.D \mapsto \{\{1_C, 3_D\}, \{1_C, 7_D\}\}\}$ object to is eached to 30 and 30 by A-C-N 20/50

WE WILL NOT BOWALLY DEPINE THY

Associations and OCL

OCL and Associations: Syntax

Recall: OCL syntax as introduced in Lecture 03, interesting part:

```
\begin{split} \exp r ::= \dots & \quad | \ r_1(expr_1) \ : \tau_C \to \tau_D \\ & \quad | \ r_2(expr_1) \ : \tau_C \to Set(\tau_D) \\ \end{split} \qquad \begin{array}{c} r_1 : D_{0,1} \in atr(C) \\ & \quad r_2 : D_* \in atr(C) \\ \end{split}
```

```
theo rows for tech reasons: order matters
\left| \left\langle (r:...,\langle robb:C,-...,\langle robb:D,\mu,-...,\langle robb:E,\mu,-...,\rangle \in V, \underline{robb:E}robb:\underline{P}_{i},\underline{rob}:\underline{F}robb:\underline{P}_{i},\underline{rob}:\underline{F}robb:\underline{P}_{i},\underline{rob}:\underline{F}robb:\underline{P}_{i},\underline{rob}:\underline{F}robb:\underline{P}_{i},\underline{rob}:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F}robb:\underline{F
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  if there is \langle r : \dots, \langle \overline{mbc} : D, \mu, \dots, \dots \rangle, \dots, \langle rbb' : C, \dots, \dots \rangle \in V or \langle r : \dots, \langle rbb' : C, \dots, \dots \rangle \in V, rbb \neq m
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Now becomes
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            expr := \dots \quad | \ role(expr_1) : \tau_C \to \tau_D| \ role(expr_1) : \tau_C \to Set(G)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ct puticipates in assoc. 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        \mu=0..1 or \mu=1 otherwise
```

OCL and Associations: Semantics

Recall: (Lecture 03)

```
\begin{split} *I[r_1(expr_1)][\sigma,\beta) &:= \begin{cases} u &\text{. if } u_1 \in \text{dom}(\sigma) \text{ and } \sigma(u_1)(r_1) = \{u\} \\ \bot &\text{. otherwise} \end{cases} \\ *I[r_2(expr_1)][\sigma,\beta) &:= \begin{cases} \sigma(u_1)(r_2) &\text{. if } u_1 \in \text{dom}(\sigma) \\ \bot &\text{. otherwise} \end{cases} \end{split}
                                                                                                                                                                                                                                                                                                                                                                         Assume expr_1: \tau_C for some C \in \mathscr{C}. Set \underline{u_1} := I[[expr_1]](\sigma,\beta) \in \mathscr{D}(\tau_C).
```

Now needed:

$I[\![role(expr_1)]\!]((\underline{\sigma,\lambda}),\beta)$

- We cannot simply write $\sigma(u)(vole)$. Recall: vole is (for the moment) not an attribute of object u (not in atr(C)).
- What we have is $\lambda(r)$ (with r, not with rotet) but it yields a set of n-tuples, of which some relate u and other some instances of D.
- $\circ \ role$ denotes the position of the D 's in the tuples constituting the value of r.

OCL and Associations: Syntax

Recall: OCL syntax as introduced in Lecture 03, interesting part:

```
\begin{split} \exp r ::= \dots & \mid r_1(\exp r_1) \quad :\tau_C \rightarrow \tau_D & r_1 : D_{0,1} \in atr(C) \\ \mid r_2(\exp r_1) \quad :\tau_C \rightarrow Set(\tau_D) & r_2 : D_* \in atr(C) \end{split}
```

```
\langle r:\dots,\langle role':C,\neg\neg,\neg,\neg\rangle,\dots,\langle role:D,\mu,\neg,\neg,\neg\rangle,\dots\rangle\in V, role\neq role'
                                                                                                                                                                                                                                                                                                                                Now becomes
                                                                                                                                                                                   \begin{split} expr ::= \dots & \mid role(expr_1) & :: \tau_C \to \tau_D \\ & \mid role(expr_1) & :: \tau_C \to Set(\tau_D) \end{split}
                                                             \langle r:\ldots,\langle role:D,\mu,,\_,\_-\rangle,\ldots,\langle role':C,,\_-,\_-,\_\rangle,\ldots\rangle\in V \text{ or }
                                                                                                                                                                                              \mu=0..1 or \mu=1 otherwise
```

Association name as such doesn't occur in OCL syntax, role names do.
 expr₁ has to denote an object of a class which "participates" in the association.

OCL and Associations: Semantics Cont'd

```
\textbf{Assume} \ expr_1: \tau_C \ \text{for some} \ C \in \mathscr{C}. \ \text{Set} \ u_1 := I[\![expr_1]\!]((\sigma,\lambda),\beta) \in \mathscr{D}(\tau_C).
```

$$*\ I[[role(expr_1)]]((\sigma,\lambda),\beta) := \begin{cases} u & \text{, if } u_1 \in \text{dom}(\sigma) \text{ and } L(role)(u_1,\lambda) = \{u\} \\ & \text{, otherwise} \end{cases}$$

$$\bullet \ I[\operatorname{robe}(\operatorname{cape}_{1})][(a,\lambda),\beta) := \begin{cases} L(\operatorname{robe})(u,\lambda) & \text{if } u_{1} \in \operatorname{dom}(r) \\ & \text{otherwise} \end{cases}$$
 where
$$\underset{f \text{ and } f}{\bullet} \underset{f \text{ and }$$

Given a set of $n\text{-tuples }A,\,A\downarrow i$ denotes the element-wise projection onto the i-th component. $\langle r: \dots \langle role_1: \neg \neg \neg \neg \neg \neg \neg \rangle, \dots \langle role_n: \neg \neg \neg \neg \neg \neg \neg \neg \rangle, \dots \rangle, \overrightarrow{role} = \underline{role_1}.$

OCL and Associations Syntax: Example

contact Plague inv. stat. (sect (sect (sect))>0
contact Plague inv. seft-p-3stat >0
contact Plague inv. seft-secton-3stat >0
contact Plague inv. seft-b-3stat >0 Figure 7.21 - Binary and ternary associations [OMG, 2007b, 44]. R

10/53

OCL and Associations Example

7,45

Navigability

Navigability is similar to visibility: expressions over non-navigable association ends $(\nu=\times)$ are basically type-correct, but forbidden.

Question: given

is the following OCL expression well-typed or not (wrt. navigability):

context D inv : self.role.x > 0

The standard says:

'-': navigation is possible Control

'-': navigation is fiftiging to each as the sace of the s

10/45

But: Pointers/references can faithfully be modelled by UML associations. So: In general, UML associations are different from pointers/references!

Associations: The Rest

,00 åt

The Rest

Recapitulation: Consider the following association:

- $\langle r:\langle role_1:C_1,\mu_1,P_1,\xi_1,\nu_1,o_1\rangle,\ldots,\langle role_n:C_n,\mu_n,P_n,\xi_n,\nu_n,o_n\rangle\rangle$
- Association name r and role names/types role_i/C_i induce extended system states λ.
- Multiplicity μ is considered in OCL syntax.
- Visibility ξ and navigability ν give rise to well-typedness rules.

Now the rest:

- Multiplicity \(\mu\): we propose to view them as constraints.
- Properties P_i: even more typing.
- Ownership o: getting closer to pointers/references.
- Diamonds: exercise.

11/6

Visibility

is the following OCL expression well-typed or not (wrt. visibility): context C inv : self.role.x > 0

 $\begin{array}{ll} (Assoc_1) & \overbrace{A,B \vdash expr_1 : \tau_C} \\ A_1B \vdash robe(expr_1) : \tau_D & \xi = +, \text{ or } \xi = - \text{ and } C = B \\ \langle r : \dots \langle robe : D, \mu, -\xi, -\rangle \dots \langle robe' : C, -, -, -\rangle, \dots \rangle \in V \end{array}$

9)45

Basically same rule as before: (analogously for other multiplicities)

Multiplicities as Constraints

Recall: The multiplicity of an association end is a term of the form:

$$\mu ::= * \mid N \mid N..M \mid N..* \mid \mu, \mu \tag{$N, M \in \mathbb{N}$}$$

Proposal: View multiplicities (except 0..1, 1) as additional invariants/constraints.

Recall: we can normalize each multiplicity to the form

where $N_i \leq N_{i+1}$ for $1 \leq i \leq 2k$, $N_1, \ldots, N_{2k} \in \mathbb{N}$, $N_{2k} \in \mathbb{N} \cup \{*\}$. $\mathcal{M} = N_1..N_2,...,N_{2k-1}..N_{2k}$

 $\mu_{\rm OCL} = {\rm context}\ C\ {\rm inv}:$ $(N_1 \leq role \text{--} \text{size}() \leq N_2) \text{ $\frac{\text{ov}}{\text{ov}}$ } \dots \text{ $\frac{\text{ov}}{\text{ov}}$ } (N_{2k-1} \leq role \text{--} \text{size}() \leq N_{2k})$

for each $\langle r : \dots, \langle rale : D, \mu_{n-n-1} \rangle, \dots, \langle rale' : C_{n-n-n-1} \rangle, \dots \rangle \in V$ or $\langle r : \dots, \langle rale : D, \mu_{n-n-1} \rangle, \dots \rangle \in V$ or $\langle r : \dots, \langle rale : E_{n-n-1} \rangle, \dots \rangle \in V$ or $\langle r : \dots, \langle rale : E_{n-n-1} \rangle, \dots \rangle \in V$ or $\langle r : \dots, \langle rale : E_{n-n-1} \rangle, \dots \rangle \in V$ or $\langle r : \dots, \langle rale : E_{n-n-1} \rangle, \dots \rangle \in V$ or $\langle r : \dots, \langle rale : E_{n-n-1} \rangle, \dots \rangle \in V$ or $\langle r : \dots, \langle rale : E_{n-n-1} \rangle, \dots \rangle \in V$ or $\langle r : \dots, \langle rale : E_{n-n-1} \rangle, \dots \rangle \in V$ or $\langle r : \dots, \langle rale : E_{n-n-1} \rangle, \dots \rangle \in V$ or $\langle r : \dots, \langle rale : E_{n-n-1} \rangle, \dots \rangle \in V$ or $\langle r : \dots, \langle rale : E_{n-n-1} \rangle, \dots \rangle \in V$ or $\langle r : \dots, \langle rale : E_{n-n-1} \rangle, \dots \rangle \in V$ or $\langle r : \dots, \langle rale : E_{n-n-1} \rangle, \dots \rangle \in V$ or $\langle r : \dots, \langle rale : E_{n-n-1} \rangle, \dots \rangle \in V$ or $\langle r : \dots, \langle rale : E_{n-n-1} \rangle, \dots \rangle \in V$ or $\langle r : \dots, \langle rale : E_{n-n-1} \rangle, \dots \rangle \in V$ or $\langle r : \dots, \langle rale : E_{n-n-1} \rangle, \dots \rangle \in V$ or $\langle r : \dots, \langle rale : E_{n-n-1} \rangle, \dots \rangle \in V$ or $\langle r : \dots, \langle rale : E_{n-n-1} \rangle, \dots \rangle \in V$ or $\langle r : \dots, \langle rale : E_{n-n-1} \rangle, \dots \rangle \in V$ or $\langle r : \dots, \langle rale : E_{n-n-1} \rangle, \dots \rangle \in V$ or $\langle r : \dots, \langle rale : E_{n-n-1} \rangle, \dots \rangle \in V$ or $\langle r : \dots, \langle rale : E_{n-n-1} \rangle, \dots \rangle \in V$ or $\langle r : \dots, \langle rale : E_{n-n-1} \rangle, \dots \rangle \in V$ or $\langle rale : E_{n-n-1} \rangle, \dots \rangle \in V$ or $\langle rale : E_{n-n-1} \rangle, \dots \rangle \in V$ or $\langle rale : E_{n-n-1} \rangle, \dots \rangle \in V$ or $\langle rale : E_{n-n-1} \rangle, \dots \rangle \in V$ or $\langle rale : E_{n-n-1} \rangle, \dots \rangle \in V$ or $\langle rale : E_{n-n-1} \rangle, \dots \rangle \in V$ or $\langle rale : E_{n-n-1} \rangle, \dots \rangle \in V$ Note: in n-ary associations with n>2, there is redundancy. $\langle r:...,\langle role':C,_,_,_,_,\rangle,...,\langle role:D,\mu,_,_,_\rangle,...\rangle \in V, role \neq role'.$

Why Multiplicities as Constraints?

More precise, can't we just use types? (cf. Slide 29)

```
• \mu = 0..1, \mu = 1:
```

many programming language have direct correspondences (the first corresponds to type pointer, the second to type reference) — this is why we excluded them.

could be represented by a set data-structure type without fixed bounds — no problem with our approach, we have $\mu_{QCL}=true$ anyway.

use array of size 4 — if model behaviour (or the implementation) adds 5th identity, we'll get a runtime error, and thereby see that the constraint is violated. Principally acceptable, but: checks for array bounds everywhere...?

• µ = 5.7; expresented by an array of size 7 — but: few programming languages/data structure libraries allow lower bounds for arrays (other than 0). If we have 5 identities and the model behaviour removes one, this should be a violation of the constraints imposed by the model.
The implementation which does this removal is wrong. How do we see this..?

15/46

Multiplicities as Constraints of Class Diagram

 $\langle r:\dots,\langle role:D,\mu,\neg,\neg,\neg\rangle,\dots,\langle role':C,\neg,\neg,\neg,\neg\rangle,\dots\rangle\in V \text{ or }$ $\langle r:\ldots,\langle role':C,\neg,\neg,\neg,\neg,\rangle,\ldots,\langle role:D,\mu,\neg,\neg,\neg,\neg,\rangle,\ldots\rangle\in V,$ valifiered black black

13/46

Multiplicities Never as Types...?

Well, if the $target\ platform$ is known and fixed, and the $target\ platform$ has, for instance,

- reference types,
- ullet range-checked arrays with positions $0,\dots,N$
- then we could simply restrict the syntax of multiplicities to set types,

 $\mu ::= 1 \mid 0..N \mid *$

and don't think about constraints (but use the obvious 1-to-1 mapping to types)...

In general, unfortunately, we don't know.

16/45

Multiplicities as Constraints Example

 $\mu_{\rm OCL} = {\rm context} \ C \ {\rm inv}:$ $(N_1 \leq mle - {\rm vsize}() \leq N_2) \ \ {\rm and} \ \ \dots \ {\rm and} \ \ (N_{2k-1} \leq mle - {\rm vsize}() \leq N_{2k})$

14/45

Properties

We don't want to cover association **properties** in detail, only some observations (assume binary associations):

	ordered, sequence	bag	unique)	Property
$\frac{des \ \text{od} \ \text{old}}{s_{\text{tot}}} = \frac{des}{s_{\text{tot}}} = \frac{des}{s_{\text{tot}}} = \frac{des}{s_{\text{tot}}}$	an r -link is a sequence of object identities (possibly including duplicates)	one object may have multiple r -links to a single other object	one object has at most one r -link to a single other object	Intuition
Signal friend	have $\lambda(r)$ yield sequences	have $\lambda(r)$ yield multi-sets	current setting	Semantical Effect

Properties

We don't want to cover association **properties** in detail, only some observations (assume binary associations):

only some open	only some observations (assume binary associations).	
Property	Intuition	Semantical Effect
unique	one object has at most one r-link to a current setting single other object	current setting
bag	one object may have $\mbox{multiple r-links to}$ have $\lambda(r)$ a single other object multi-sets	have $\lambda(r)$ yield multi-sets
ordered,	an r -link is a sequence of object identi-	have $\lambda(r)$ yield se-
sequence	ties (possibly including duplicates)	quences

ordered, sequence	bag	unique	Property
$\tau_D \rightarrow Seq(\tau_C)$	$\tau_D ightarrow Bag(au_C)$	$\tau_D \rightarrow Set(\tau_C)$	OCL Typing of expression $vale(expr)$

For subsets, redefines, union, etc. see [OMG, 2007a, 127].

17/46

Ownership

Intuitively it says:

Association r is not a "thing on its own" (i.e. provided by λ), but association end "vole" is owned by C (1) (That is, it's stored inside C object and provided by σ).

So: if multiplicity of role is 0.1 or 1, then the picture above is very dose to concepts of pointers/references.

Actually ownership is seddom seen in UML diagrams. Again: if target platform is clear, one may well live without (cf. [OMG, 2007b, 42] for more details).

Not clear to me:

18/46

19/45

Back to the Main Track

Where Shall We Put OCL Constraints?

(a) additional documents

(ii) Particular dedicated places.

OCL Constraints in (Class) Diagrams

(i) Notes: A UML note is a picture of the form text 1

text can principally be everything, in particular comments and constraints.

Sometimes, content is explicitly classified for clarity:

22/45

Back to the main track:

Recall: on some earlier slides we said, the extension of the signature is **only** to study associations in "full beauty".

For the remainder of the course, we should look for something simpler...

 from now on, we only use associations of the form (i) c 0..1

role

*

D

(ii) *c* * D

(And we may omit the non-navigability and ownership symbols.)

- \bullet Form (i) introduces $role:C_{0,1},$ and form (ii) introduces $role:C_{\star}$ in V.
- In both cases, role ∈ atr(C).
- We drop λ and go back to our nice σ with $\sigma(u)(role) \subseteq \mathcal{D}(D)$.

OCL in Notes: Conventions

If \mathscr{CD} consists of only \mathcal{CD} with the single class C, then • $Inv(\mathscr{CD}) = Inv(\mathcal{CD}) =$

Invariant in Class Diagram Example

26/45

Where Shall We Put OCL Constraints?

(ii) Particular dedicated places in class diagrams: (behav. feature: later)

For simplicity, we view the above as an abbreviation for

23/45

Semantics of a Class Diagram

Definition. Let $\mathscr{C}\mathscr{D}$ be a set of class diagrams. We say, the semantics of $\mathscr{C}\mathscr{D}$ is the signature it induces and the set of OCL constraints occurring in $\mathscr{C}\mathscr{D}$, denoted Given a structure $\mathcal D$ of $\mathcal S$ (and thus of $\mathscr C\mathcal D$), the class diagrams describe the system states $\Sigma \mathscr Z$, of which some may satisfy $Inv(\mathscr C\mathcal D)$. $[\![\mathscr{C}\mathscr{D}]\!] := \langle \mathscr{S}(\mathscr{C}\mathscr{D}), \mathit{Inv}(\mathscr{C}\mathscr{D}) \rangle.$

Invariants of a Class Diagram

 Let CD be a class diagram.
 As we (now) are able to recognise OCL constraints when we see them, we can define as the set $\{\varphi_1,\dots,\varphi_n\}$ of OCL constraints occurring in notes in \mathcal{CD} —after unfolding all abbreviations (cf. next slides).

- As usual: $Inv(\mathscr{C}\mathscr{D}) := \bigcup_{\mathcal{C}\mathcal{D} \in \mathscr{C}\mathscr{D}} Inv(\mathcal{C}\mathcal{D}).$
- Principally clear: $Inv(\,\cdot\,)$ for any kind of diagram.

25/45

References

References

[Ambler 2005] Ambler, S. W. (2005). The Elements of UML 20 Style. Cambridge University Press.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version 2.1.2. Technical Report formal/07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version 2.1.2. Technical Report formal/07-11-02.