— 14 — 2013-12-18 — main —

Sdtware Design, Modelling andAnalysisin UML

Ledure 14: Core Sate Machines |V
201312-18

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Contents & Goals

— 14 — 2013-12-18 — Sprelim —

Last Lecture:
o System configuration
o Transformer

o Action language: skip, update, send

This Lecture:
o Educational Objectives: Capabilities for following tasks/questions.
o What does this State Machine mean? What happens if | inject this event?
o Can you please model the following behaviour.
o What is: Signal, Event, Ether, Transformer, Step, RTC.

o Content:
o Transformers for Action Language
o Run-to-completion Step

o Putting It All Together

2/38

— 14 — 2013-12-18 — main

Transformer: Create

Transformer Cont’d

(G 3D AOTE v (s &) # (e €y

3/38

— 14 — 2013-12-18 — Sactlang —

abstract syntax concrete syntax
create(C, expr, v) eXpr v := naw ¢

intuitive semantics
Create an object of class C' and assign it to attribute v of the object
denoted by expression expr.

well-typedness
expr : 7p, v € atr(D), atr(C) = {{vi : 7, expr?) | 1 <i < n}
semantics

observables

(error) conditions

I[expr](o, B) not defined.

We use an “and assign”-action for simplicity — it doesn’t add or remove (*)

expressive power, but moving creation to the expression language raises all
kinds of other problems such as order of evaluation (and thus creation).

Also for simplicity: no parameters to construction (~ parameters of construc-
tor). Adding them is straightforward (but somewhat tedious).

438

Create Transformer Example

— 14 — 2013-12-18 — Sactlan

SMe: /...smi=new Cj;...
N
create(C, expr, v)
tcreate(C,ezpr,v)(U7€) = ... / t:g€)
“ S
7 | d:D
n=>_
. C'JAO)'Ce
& espression -)
5/38

How To Choaose New | dentiti es?

— 14 — 2013-12-18 — Sactlang —

Re-use: choose any identity that is not alive now, i.e. not in dom(o). oue

Doesn't depend on history. duoce
May “undangle” dangling references — may happen on some platforms.

Fresh: choose any identity that has not been alive ever, i.e. not in
dom(c) and any predecessor in current run.

Depends on history.
Dangling references remain dangling — could magk “dirty” effects of
platform.

6/38

Transformer: Create

/-__a
(ug = Iexpr](o,vd; d; = I[expr?](o,uy if expr) #

abstract syntax concrete syntax
create(C, expr,v)
intuitive semantics
Create an object of class C' and assign it to attribute v of the object
denoted by expression expr.
well-typedness
expr : 7p, v € atr(D), atr(C) = {{vy : 11, expr?) | 1 <i < n}
semantics id of necdy cranted okject
(0.0, (0 et ihatatnn of nes obyat

ifFO’IZO"[—UZ)HU(UQ)[UHﬂ]]U{’UH{Uini | 1 Sign}‘},

g = [u](e); ue 2(C) fresh, i.e. u & dom(o); NWVE
E‘ﬁ arbitrary

value from 2(r;) otherwise;

observables : q'!‘{*h X
Obscreate[uz] = {(Um, J_, (>k7 @)’ uﬁﬂmof s l‘?‘

(error) conditions

I[expr](o) not defined.

Transformer: Destroy

— 14 — 2013-12-18 — Sactlang —

abstract syntax concrete syntax

destroy(expr) delete. expr

intuitive semantics
Destroy the object denoted by expression expr.

well-typedness
expr :7c, C €€

semantics

observables
Obsdestroy[uz] = {(uxa J—v (+7 @), ’U,)}

(error) conditions

I[expr](o, B) not defined.

7/38

8/38

Destroy Transformer Example "

— 14 — 2013-12-18 — Sactlang —

SMe: ¢
/...;delete n;. ..
S1 ,-(So
expd
destroy(ezpr)
tdestroy(esz) [Uz]((LE) = o000
o [e.cnfuc destag

M

What to Do With the Remaining Objeds?

— 14 — 2013-12-18 — Sactlang —

® @
Assume object ug is destroyed. . . Y:c Lm"9 € e / %’
object u; may still refer to it via association 7: NEY),
@ allow dangling references? @
or remove ug from o(uq)(r)?

object ugp may have been the last one linking to object us:
@ leave uy alone?
or remove usy also? (“owbaaﬂ. wlochio”)

Plus: (temporal extensions of) OCL may have dangling references.

Our choice: Dangling references and no garbage collection!

This isin line with “expect the worst”, because there are target platforms which
don't provide garbage collection — and models shall (in general) be correct
without assumptions on target platform.

But: the more “dirty” effects we see in the model, the more expensive it often
is to analyse. Valid proposal for simple analysis: monotone frame semantics,
no destruction at all.

938

1038

Transformer: Destroy

— 14 — 2013-12-18 — Sactlang —

abstract syntax concrete syntax
destroy(expr)

intuitive semantics
Destroy the object denoted by expression expr.

well-typedness
expr : 170, C €€

tluz](o,¢) = (o', ¢) flud‘)tu rectr’chea,

where 0’ = 0|qom(o)\{u} With u = I[expr](o,a).

semantics

observables

Obsdestroy[um] = {(ura 1, (+7 w)’ u)}

(error) conditions

I[expr](o,u) not defined.

11/38

Sequential Composition d Transformers

— 14 — 2013-12-18 — Sactlang —

o Sequential composition t; oty of transformers t; and t5 is canonically

defined as ;A “dy alles 2" sop. compastin, of rbbirs
/_’_—'L—‘

(2 0 t1)[uz](0,) = tafus](t1[us](0, €))

with observation

ObS (150 [Uz](0, €) = Obsy, [uz)(0,€) U Obsy, [ug](t1(0, €)).

o Clear: not defined if one the two intermediate “micro steps” is not defined.

><:.~_><+'f,-dv}oéc w n!F

gl (€s0ten, (Eupiele (o;e)))

12/38

Transformers And Denaotationd Semantics

— 14 — 2013-12-18 — Sactlang

— 14 — 2013-12-18 — main —

Observation: our transformers are in principle the denotational semantics
of the actions/action sequences. The trivial case, to be precise.

. . ’t?oj Nz Xx-7
Note: with the previous examples, we can capture e G \é b5

empty statements, skips,
x£0J

assignments, 5 L
(-]
conditionals (by normalisation and auxiliary variables), E ;

create/destroy, Lr0] iz veq
but not possibly diverging loops.

Our (Simple) Approach: if the action language is, e.g. Java,
then (syntactically) forbid loops and calls of recursive functions.

Other Approach: use full blown denotational semantics.

No show-stopper, because loops in the action annotation can be converted into
transition cycles in the state machine.

1338

Sep andRun-to-completion Sep

1438

Transition Relation, Computation

— 14 — 2013-12-18 — Sstmrtc —

Definition. Let A be a set of actions and S a (not necessarily
finite) set of of states.
We call
— CSxAxS
a (labelled) transition relation.

Let So C S be a set of initial states. A sequence

aop al a
Sg —> 81 —> S92 — ...
‘/L—_Jl__J
with s; € S, a; € A is called computation of the labelled transi-

tion system (S, —,Sy) if and only if
initiation: sy € Sy

consecution: (s;,a;, 8;4+1) €— for i € Ny.

L)

Note: for simplicity, we only consider infinite runs.

Active \s. Passve Class/Objeds

— 14 — 2013-12-18 — Sstmrtc —

Note: From now on, assume that all classes are active for simplicity.

We'll later briefly discuss the Rhapsody framework which proposes a way
how to integrate non-active objects.

Note: The following RTC “algorithm” follows [Harel and Gery, 1997] (i.e.
the one realised by the Rhapsody code generation) where the standard is
ambiguous or leaves choices.

15/38

16/38

From Core Sate Machinesto LTS

— 14 — 2013-12-18 — Sstmrtc —

Definition. Let % = (9, %o, Vo, atro, &) be a signature with signals (all classes
active), 9 a structure of ., and (Eth, ready, ®,©,[]) an ether over ., and %.
Assume there is one core state machine M¢ per class C € €.

We say, the state machines induce the following labelled transition relation on states

— evoy stafe ~—— \v
(0,) 122050) 51 oy cous, Sud, v
if and only if

(i) an event with destination w is discarded,
(ii) an event is dispatched to w, i.e. stable object processes an event, or

(iii) run-to-completion processing by u commences,
i.e. object u is not stable and continues to process an event,

(iv) the environment interacts with object u,

s (cons,B) ”

if and only if
(v) s =# and cons = 0, or an error condition occurs during consumption of cons.

L

, o)
S = (32 U {#} x Eth) with actions A := (2@(%>x<@<£> o {L})Evs(g,@)xﬁ(‘f))\'xﬂ)(l?)

(i) Discarding An Event

,Snd
(0,) L5 1 o)
u
if
an FE-event (instance of signal E) is ready in ¢ for object u of a class &, i.e. if
u € dom(o) N Z2(C) AJup € Z(&) : up € ready(e,)
u is stable and in state machine state s, i.e. o(u)(stable) = 1 and o(u)(st) = s,
but there is no corresponding transition enabled (all transitions incident with
current state of u either have other triggers or the guard is not satisfied)
Y (s, F, expr, act,s’) €— (SMc) : F # EV I[expr](oy=0
and

the system configuration doesn't change, i.e. 0’ = o

the event ug is removed from the ether, i.e.

/
£ =eOUEg,

12-18 — Sstmrtc —

consumption of ug is observed, i.e.

cons = {(u, (E,0(ug)))}, Snd = 0.

— 14 — 2013-

1738

1838

Example: Discard

({(signal, env))

[x>0]/z:=2—1;n!J a

SMCZ .\@ G[$ > O]/x =y % ({(signal))
G,J

H/z:=y/x n C
. (ww‘/ | t 0,1 x,z: Int
3is “OM Sea y : Int ((env))
c:C
o z=1,2=0,y =2 ({Jslg) ~ G/:G
- 7
st = s1 (&)
stable = 1 f .
. . gl = EO vy
c: d U{ Ogdﬁj
7 alkict. does sfe. .
1eadyy endyy D
G v

Ju € dom(o) N 2(C)

F # EVI[expr](c) =0

— 14 — 2013-12-18 — Sstmrtc —

o(u)(stable) =1, o(u)(st) = s,

Jug € (&) : ug € ready(e,u)
Y (s, F, expr, act,s’) €— (SMc¢) :

o' =0, =e0ug
cons = {(u, (E,0(ug)))}, Snd =0

19/38

(i) Dispatch (7,) LeomeSnd) (o1 1y i

u € dom(o) N 2(C) AJup € 2(&) : ug € ready(e, u)

u is stable and in state machine state s, i.e. o(u)(stable) = 1 and o(u)(st) = s,

a transition is enabled, i.e.

(s, F, expr,act,s’) €= (SMc): F = EA I[[expr]](é,y): 1

where & = olu.params g — ug).
and

(¢’,€") results from applying tqc: to (o,€) and removing ug from the ether, i.e.

(O’N, El) é'tact(5'7 €O UE), yeuror-e OQﬂf Ué-

g’ = (0" [u.st — ', u.stable — b, u.params g — 0])| 26)\ {up}

where b depends:

Otherwise b = 0.

Consumption of ug an

— 14 — 2013-12-18 — Sstmrtc —

If u becomes stable in s’, then b = 1. It does become stable if and only if
there is no transition without trigger enabled for u in (¢/,¢’).

d the side effects of the action are observed, i.e.

cons = {(u, (E,o(ur)))}, Snd = Obs¢,,, (6, S ug).

20/38

<y [(signat, enuy)
H

Example: Dispatch

X

\ 1[x>0}/373=33—1;n!J
=y

SMCZ T G[$ > O]/x & ((signal))
[] 52 G.J
H/z:=y/x n G
0,1 z z: Int

y : Int ((env))

c:C
7 z=1,2=0,y=2 ({6'3/ 6)
st = 81 c
stable =1
g
[>
Ju € dom(c) N 2(C) o(u)(stable) =1, o(u)(st) = s,

Jug € (&) : ug € ready(e,u)

3 (s, F, expr, act,s') e— (SMc) :
F = EAI[eapr](5) = 1 o' = (0"[u.st — &', u.stable — b, u.params g — O))| o)\ {us}
cons = {(u, (E,0(ug)))}, Snd = Obs, (5, S ug)
212

(0",€") =tact(0,e S uR)

— 14 — 2013-12-18 — Sstmrtc —

¢ = olu.params g — ug).

(i) Commence Run-to-Completion

(0_7 5) (cons,Snd) (0/76,)
u

if

there is an unstable object u of a class %, i.e.

u € dom(o) N 2(C) A o(u)(stable) =0
there is a transition without trigger enabled from the current state
s=o(u)(st), i.e.
3 (s, -, expr, act,s’) €— (SMc) : [[expr](gu= 1

and

(o', €") results from applying t,.; to (o,¢), i.e.

(6",€") € tact[u)(o,€), o =c"[u.st — s u.stable — b]
where b depends as before.
Only the side effects of the action are observed, i.e.

cons = 0, Snd = Obs,,, (0, ¢€).

— 14 — 2013-12-18 — Sstmrtc —

22/38

g =¢&.

. ({(signal, env))
Example: Comnence o
[x>0]/z:=2—1;n!J
SMC’: T G[$ > O]/x =y & ({(signal))
(51] 52 G,J
H/z:=y/x n c
0,1 z z: Int
y : Int ((env))
o c:C
- r=2,2=0,y=2 (‘S%, {)"”“3) > O'/f
st = 89 c x=1,270 y={
stable = 0 =Sz
;L clolle = O
c vl /
—_— 6..'5 L— 5‘/:
¥
I Cl:: v
&/93 A
o Ju € dom(o) N 2(C) : o(u)(stable) =0 (0",€") = taet(o,€),
E 3(s,_, eapr, act, s') €— (SMc) : I[ezpr](o) = 1 o' = 0" u.st — s, u.stable — b]
< o(u)(stable) =1, o(u)(st) = s, cons =0, Snd = Obsy,,,(0,¢)
v 23/38
(iv) Environment Interaction
Assume that a set &, C & is designated as environment events and a set
of attributes v, C V is designated as input attributes.
Then
,Snd
(0,) L2 (o o1y
env
if
an environment event E € &epn, is spontaneously sent to an alive object
u € P(o), ie.
d=cU{ug—{vi—di|1<i<n}, & =c@ur
where ug ¢ dom(o) and atr(E) = {vi,...,vn}.
Sending of the event is observed, i.e. cons =0, Snd = {(env, E(d))}.
. or
E Values of input attributes change freely in alive objects, i.e.
R Vv €V Vu € dom(a) : o' (u)(v) # o(u)(v) = v € Vepo.
% and no objects appear or disappear, i.e. dom(c’) = dom(o).
= /

2438

Example: Environment

— 14 — 2013-12-18 — Sstmrtc —

({(signal, env))

[x>0]/z:=2—1;n!J a
E x > O ((signal))
G,J
H/z :=y/fc+1) n c
0,1 z z: Int
y : Int ((env))
o c:C
' z=0,2=0,y =2 (fHS,@? N 0"/-’
st = So [7
stable =1
e
g'=¢
e =cU{ug— {vi—d;|1<i<n} o u € dom(o)

o &/ =ePup where ug ¢ dom(o)
and atr(E) = {v1,...,u,}.

o cons =0, Snd = {(env, E(d))}.

(v) Error Condtions

— 14 — 2013-12-18 — Sstmrtc —

s (coms,Snd) #
if, in (i) or (iii), plas
o Ifexpr] is not defined for o, or oy
Jeapr] CT

o tqet is not defined for (o,¢), v

and

 consumption is observed according to (ii) or (iii), but Snd = 0.

Examples:
Blw/01/ 0!
:
Eltrue] /yoy

. @ Elexpr]|/z = x/O@

25/38

26/38

Example: Error Condtion

— 14 — 2013-12-18 — Sstmrtc —

SMe: Gz >0]/z =y

[x>0]/z:=2—1;n!J

(51]

H/z:=y/x

c:C
r=0,2=0,y =27
st = 89
stable =1

&

H

({(signal, env))

({(signal))
G.J

C

x,z: Int
y : Int ((env))

I[expr] not defined for o, or

tqct is not defined for (o, €)

consumption according to (ii) or (iii)

Snd = ()

Notions of Seps. The Sep

— 14 — 2013-12-18 — Sstmstep —

Note: we call one evolution (o, ¢)

(coms,Snd)
_

(o,¢€") a step.

u

Thus in our setting, a step directly corresponds to

one object (namely u) takes a single transition between regular states.

(We have to extend the concept of “single transition” for hierarchical state machines.)

That is: We're going for an interleaving semantics without true parallelism.

Remark: With only methods (later), the notion of step is not so clear.

For example, consider

¢y calls £() at cg, which calls g() at ¢; which in turn calls h() for cs.

Is the completion of h() a step?
Or the completion of £()7

Or doesn't it play a role?

It does play a role, because constraints/invariants are typically (= by convention)
assumed to be evaluated at step boundaries, and sometimes the convention is meant
to admit (temporary) violation in between steps.

27/38

2838

Notions of Seps. The Run-to-Completion Sep

— 14 — 2013-12-18 — Sstmstep —

What is a run-to-completion step...?

Intuition: a maximal sequence of steps, where the first step is a
dispatch step and all later steps are commence steps.

Note: one step corresponds to one transition in the state machine.

A run-to-completion step is in general not syntacically definable — one
transition may be taken multiple times during an RTC-step.

Example:
Elz > 0]/

Jri=x—1

2

Notions of Seps. The Run-to-Completion Sep Cont’d

— 14 — 2013-12-18 — Sstmstep —

Proposal: Let

(comsg,Sndo) (consp—1,5ndn—_1)

(On,en), n>0,

(00750)
ug Un—1

be a finite (') non-empty, maximal, consecutive sequence such that

object w is alive in oy,

=

up = u and (conso, Sndo) indicates dispatching to u, i.e. cons = {(u, 7+ d)},

there are no receptions by u in between, i.e.
cons; N{u} X Fvs(&,9) =0,i > 1,
Un—1 = u and w is stable only in o¢ and oy, i.e.
oo(u)(stable) = oy (u)(stable) =1 and o;(u)(stable) = 0 for 0 < i < n,

Let 0 = k1 < ko < --- < ky = n be the maximal sequence of indices such
that ug, = u for 1 <7 < N. Then we call the sequence

(00(u) =) ok, (u), 08, (W) - -, Oky (0) (= Tn-1(w))

a (1) run-to-completion computation of u (from (local) configuration og(u))

938

30/38

Divergence

— 14 — 2013-12-18 — Sstmstep —

We say, object u can diverge on reception cons from (local) configuration
oo(u) if and only if there is an infinite, consecutive sequence

(comsg,Sndg) (comsy,Sndq)
_ _

(00,€0) (01,€1)

such that u doesn’t become stable again.

Note: disappearance of object not considered in the definitions.
By the current definitions, it's neither divergence nor an RTC-step.

3138

Run-to-Completion Sep: Discusson.

— 14 — 2013-12-18 — Sstmstep —

What people may dislike on our definition of RTC-step is that it takes a global
and non-compositional view. That is:
In the projection onto a single object we still see the effect of interaction with
other objects.

Adding classes (or even objects) may change the divergence behaviour of
existing ones.

Compositional would be: the behaviour of a set of objects is determined by the
behaviour of each object “in isolation”.
Our semantics and notion of RTC-step doesn’t have this (often desired) property.

Can we give (syntactical) criteria such that any global run-to-completion step
is an interleaving of local ones?

Maybe: Strict interfaces. (Proof left as exercise...)
(A): Refer to private features only via “self”.
(Recall that other objects of the same class can modify private attributes.)

(B): Let objects only communicate by events, i.e.

don't let them modify each other's local state via links at all.
32/38

— 14 — 2013-12-18 — main

Putting It All Together

3338

The Missng Piece I nitial States

— 14 — 2013-12-18 — Stogether

Recall: a labelled transition system is (S, —, Sp). We have

S: system configurations (o, ¢)

(cons,Snd)
-

—: labelled transition relation (o, ¢) (o',e").

u

Wanted: initial states Sj.

Proposal:
Require a (finite) set of object diagrams OD as part of a UML model

(€D, 54 ,09).

And set
So = {(0,e) | 0 € GT1(OD),0D € 69, empty}.

Other Approach: (used by Rhapsody tool) multiplicity of classes.
We can read that as an abbreviation for an object diagram.

3438

Semantics of UML Model — SoFar

— 14 — 2013-12-18 — Stogether —

The semantics of the UML model
M= (CD,SH4,09)

where

some classes in 42 are stereotyped as ‘signal’ (standard), some signals and
attributes are stereotyped as ‘external’ (non-standard),

there is a 1-to-1 relation between classes and state machines,
09 is a set of object diagrams over €2,

is the transition system (S, —,Sy) constructed on the previous slide.

The computations of M are the computations of (S, —,.Sy).

35/38

OCL Constraints and Behaviour

— 14 — 2013-12-18 — Stogether —

Let M = (€2, 5% ,02) be a UML model.
We call M consistent iff, for each OCL constraint ezpr € Inv(¢ 92),
o [expr for each “reasonable point” (o,¢) of computations of M.

(Cf. exercises and tutorial for discussion of “reasonable point”.)

Note: we could define Inv(.Z#') similar to Inv(€).

Pragmatics:

In UML-as-blueprint mode, if ## doesn't exist yet, then M = (¢92,0, 09)
is typically asking the developer to provide “# such that

M = (€9,54,09) is consistent.

If the developer makes a mistake, then M’ is inconsistent.

Not common: if %4 is given, then constraints are also considered when choos-
ing transitions in the RTC-algorithm. In other words: even in presence of mis-
takes, the .2 never move to inconsistent configurations.

36,38

— 14 — 2013-12-18 — main —

References

3738

References

— 14 — 2013-12-18 — main —

[Crane and Dingel, 2007] Crane, M. L. and Dingel, J. (2007). UML vs. classical vs. rhapsody
statecharts: not all models are created equal. Software and Systems Modeling,
6(4):415-435.

[Damm et al., 2003] Damm, W., Josko, B., Votintseva, A., and Pnueli, A. (2003). A formal
semantics for a UML kernel language 1.2. I1ST/33522/WP 1.1/D1.1.2-Part1, Version 1.2.

[Fecher and Schénborn, 2007] Fecher, H. and Schénborn, J. (2007). UML 2.0 state
machines: Complete formal semantics via core state machines. In Brim, L., Haverkort,

B. R., Leucker, M., and van de Pol, J., editors, FMICS/PDMC, volume 4346 of LNCS,
pages 244-260. Springer.

[Harel and Gery, 1997] Harel, D. and Gery, E. (1997). Executable object modeling with
statecharts. IEEE Computer, 30(7):31-42.

[Harel and Kugler, 2004] Harel, D. and Kugler, H. (2004). The rhapsody semantics of
statecharts. In Ehrig, H., Damm, W., GroBe-Rhode, M., Reif, W., Schnieder, E., and
Westkamper, E., editors, Integration of Software Specification Techniques for Applications
in Engineering, number 3147 in LNCS, pages 325—-354. Springer-Verlag.

[OMG, 2007] OMG (2007). Unified modeling language: Superstructure, version 2.1.2.
Technical Report formal /07-11-02.

3838

