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Contents & Goals

Last Lectures:

• Studied syntax and semantics of associations in the general case.

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• Cont’d: Please explain this class diagram with associations.

• When is a class diagram a good class diagram?

• What are purposes of modelling guidelines? (Example?)

• Discuss the style of this class diagram.

• Content:

• Effect of association semantics on OCL.

• Treat “the rest”.

• Where do we put OCL constraints?

• Modelling guidelines, in particular for class diagrams (following [Ambler, 2005])

• Examples: modelling games (made-up and real-world examples)
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Links in System States

〈r : 〈role1 : C1, , P1, , , 〉, . . . , 〈rolen : Cn, , Pn, , , 〉

Only for the course of lectures 07/08 we change the definition of system states:

Definition. Let D be a structure of the (extended) signatureS = (T,C, V, atr ).

A system state of S wrt. D is a pair (σ, λ) consisting of
• a type-consistent mapping

σ : D(C ) 9 (atr(C ) 9 D(T )),

• a mapping λ which assigns each association
〈r : 〈role1 : C1〉, . . . , 〈rolen : Cn〉〉 ∈ V a relation

λ(r) ⊆ D(C1) × · · · ×D(Cn)

(i.e. a set of type-consistent n-tuples of identities).
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Association/Link Example

C

D

x : Int•×
0..∗

n

Signature:S = ({Int}, {C, D},{x : Int ,

〈A C D : 〈c : C, 0..∗, +, {unique},×, 1〉,

〈n : D, 0..∗, +, {unique}, >, 0〉〉},

{C 7→ ∅, D 7→ {x}})

A system state of S (some reasonable D) is (σ, λ) with:

σ = {1C 7→ ∅, 3D 7→ {x 7→ 1}, 7D 7→ {x 7→ 2}}

λ = {A C D 7→ {(1C , 3D), (1C , 7D)}}
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Associations and OCL
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OCL and Associations: Syntax

Recall: OCL syntax as introduced in Lecture 03, interesting part:

expr ::= . . . | r1(expr1) : τC → τD r1 : D0,1 ∈ atr(C)

| r2(expr1) : τC → Set(τD) r2 : D∗ ∈ atr(C)

Now becomes

expr ::= . . . | role(expr1) : τC → τD µ = 0..1 or µ = 1

| role(expr1) : τC → Set(τD) otherwise

if
〈r : . . . , 〈role : D, µ, , , , 〉, . . . , 〈role′ : C, , , , , 〉, . . . 〉 ∈ V or

〈r : . . . , 〈role ′ : C, , , , , 〉, . . . , 〈role : D, µ, , , , 〉, . . . 〉 ∈ V, role 6= role ′.
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OCL and Associations: Syntax

Recall: OCL syntax as introduced in Lecture 03, interesting part:

expr ::= . . . | r1(expr1) : τC → τD r1 : D0,1 ∈ atr(C)

| r2(expr1) : τC → Set(τD) r2 : D∗ ∈ atr(C)

Now becomes

expr ::= . . . | role(expr1) : τC → τD µ = 0..1 or µ = 1

| role(expr1) : τC → Set(τD) otherwise

if
〈r : . . . , 〈role : D, µ, , , , 〉, . . . , 〈role′ : C, , , , , 〉, . . . 〉 ∈ V or

〈r : . . . , 〈role ′ : C, , , , , 〉, . . . , 〈role : D, µ, , , , 〉, . . . 〉 ∈ V, role 6= role ′.

Note:

• Association name as such doesn’t occur in OCL syntax, role names do.

• expr
1

has to denote an object of a class which “participates” in the association.
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OCL and Associations Syntax: Example

expr ::= . . . | role(expr
1
) : τC → τD µ = 0..1 or µ = 1

| role(expr
1
) : τC → Set(τD) otherwise

if
〈r : . . . , 〈role : D, µ, , , , 〉, . . . , 〈role ′ : C, , , , , 〉, . . . 〉 ∈ V or

〈r : . . . , 〈role ′ : C, , , , , 〉, . . . , 〈role : D, µ, , , , 〉, . . . 〉 ∈ V, role 6= role
′

.

Figure 7.21 - Binary and ternary associations

Team

Year

Player

PlayedInYear

year

*

*season

* *

goalieteam

W

[OMG, 2007b, 44].

–
0
8

–
2
0
1
1
-1

2
-0

6
–

S
a
ss

o
co

cl
–

10/53

OCL and Associations: Semantics

Recall: (Lecture 03)

Assume expr1 : τC for some C ∈ C . Set u1 := IJexpr1K(σ, β) ∈ D(τC).

• IJr1(expr1)K(σ, β) :=

{

u , if u1 ∈ dom(σ) and σ(u1)(r1) = {u}

⊥ , otherwise

• IJr2(expr1)K(σ, β) :=

{

σ(u1)(r2) , if u1 ∈ dom(σ)

⊥ , otherwise

Now needed:

IJrole(expr1)K((σ, λ), β)

• We cannot simply write σ(u)(role).
Recall: role is (for the moment) not an attribute of object u (not in atr(C)).

• What we have is λ(r) (with r, not with role!) — but it yields a set of n-tuples,
of which some relate u and other some instances of D.

• role denotes the position of the D’s in the tuples constituting the value of r.
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OCL and Associations: Semantics Cont’d

Assume expr1 : τC for some C ∈ C . Set u1 := IJexpr1K((σ, λ), β) ∈ D(τC).

• IJrole(expr
1
)K((σ, λ), β) :=

{

u , if u1 ∈ dom(σ) and L(role)(u1, λ) = {u}

⊥ , otherwise

• IJrole(expr
1
)K((σ, λ), β) :=

{

L(role)(u1, λ) , if u1 ∈ dom(σ)

⊥ , otherwise

where

L(role)(u, λ) = {(u1, . . . , un) ∈ λ(r) | u ∈ {u1, . . . , un}} ↓ i

if

〈r : . . . 〈role1 : , , , , , 〉, . . . 〈rolen : , , , , , 〉, . . . 〉, role = rolei.

Given a set of n-tuples A, A ↓ i denotes the element-wise projection onto the
i-th component.
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OCL and Associations Example

IJrole(expr1)K((σ, λ), β) :=

{

L(role)(u1, λ) , if u1 ∈ dom(σ)

⊥ , otherwise

L(role)(u, λ) = {(u1, . . . , un) ∈ λ(r) | u ∈ {u1, . . . , un}} ↓ i

C

D

x : Int•×
0..∗

n

σ = {1C 7→ ∅, 3D 7→ {x 7→ 1}, 7D 7→ {x 7→ 2}}

λ = {A C D 7→ {(1C , 3D), (1C , 7D)}}

IJself . nK((σ, λ), {self 7→ 1C}) = IJn(self )K((σ, λ), {self 7→ 1C}) =
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Associations: The Rest
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Visibility

Not so surprising: Visibility of role-names is treated completely similar to visi-
bility of attributes, namely by typing rules.

Question: given

C

D

x : Int
1

ξ role

is the following OCL expression well-typed or not (wrt. visibility):

context C inv : self .role.x > 0

Basically same rule as before: (analogously for other multiplicities)

(Assoc1)
A, B ⊢ expr1 : τC

A, B ⊢ role(expr1) : τD

, µ = 0..1 or µ = 1,
ξ = +, or ξ = − and C = B

〈r : . . . 〈role : D, µ, , ξ, , 〉, . . . 〈role ′ : C, , , , , 〉, . . . 〉 ∈ V
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Navigability

Navigability is similar to visibility: expressions over non-navigable association
ends (ν = ×) are basically type-correct, but forbidden.

Question: given

C

x : Int D
role
×

is the following OCL expression well-typed or not (wrt. navigability):

context D inv : self .role.x > 0

The standard says:
• ’−’: navigation is possible

• ’>’: navigation is efficient

• ’×’: navigation is not possible

So: In general, UML associations are different from pointers/references!

But: Pointers/references can faithfully be modelled by UML associations.
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The Rest

Recapitulation: Consider the following association:

〈r : 〈role1 : C1, µ1, P1, ξ1, ν1, o1〉, . . . , 〈rolen : Cn, µn, Pn, ξn, νn, on〉〉

• Association name r and role names/types
rolei/Ci induce extended system states λ.

• Multiplicity µ is considered in OCL syntax.

• Visibility ξ and navigability ν give rise to well-typedness rules.

Now the rest:

• Multiplicity µ: we propose to view them as constraints.

• Properties Pi: even more typing.

• Ownership o: getting closer to pointers/references.

• Diamonds: exercise.
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Multiplicities as Constraints

Recall: The multiplicity of an association end is a term of the form:

µ ::= ∗ | N | N..M | N..∗ | µ, µ (N, M ∈ N)

Proposal: View multiplicities (except 0..1, 1) as additional invariants/constraints.

Recall: we can normalize each multiplicity to the form

N1..N2, . . . , N2k−1..N2k

where Ni ≤ Ni+1 for 1 ≤ i ≤ 2k, N1, . . . , N2k ∈ N, N2k ∈ N ∪ {∗}.

Define

µOCL = context C inv :

(N1 ≤ role -> size() ≤ N2) and . . . and (N2k−1 ≤ role -> size() ≤ N2k)

for each
〈r : . . . , 〈role : D, µ, , , , 〉, . . . , 〈role′ : C, , , , , 〉, . . . 〉 ∈ V or

〈r : . . . , 〈role ′ : C, , , , , 〉, . . . , 〈role : D, µ, , , , 〉, . . . 〉 ∈ V, role 6= role
′

.

Note: in n-ary associations with n > 2, there is redundancy.
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Multiplicities as Constraints of Class Diagram

Recall: CD = {CD1, . . . , CDn}

signature S (CD) invariants Inv(CD)

basic

(classes and

attributes)

extended

(visibility)

J · K
distinguish

From now on: Inv(CD) = {constraints occurring in notes} ∪
{

µOCL |

〈r : . . . , 〈role : D, µ, , , , 〉, . . . , 〈role′ : C, , , , , 〉, . . . 〉 ∈ V or

〈r : . . . , 〈role′ : C, , , , , 〉, . . . , 〈role : D, µ, , , , 〉, . . . 〉 ∈ V,

role 6= role ′, µ /∈ {0..1, 1}
}

.

–
0
9

–
2
0
1
3
-1

1
-2

5
–

S
a
ss

o
cr

es
t

–

13/45



Multiplicities as Constraints Example

µOCL = context C inv :

(N1 ≤ role -> size() ≤ N2) and . . . and (N2k−1 ≤ role -> size() ≤ N2k)

CD :
C

v : Int

role1

0..1

role2

4, 17

role3 3..∗

Inv(CD) =

• {context C inv : 4 ≤ role2 -> size() ≤ 4 or 17 ≤ role2 -> size() ≤ 17}
= {context C inv : role2 -> size() = 4 or role2 -> size() = 17}

• ∪ {context C inv : 3 ≤ role3 -> size()}
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Why Multiplicities as Constraints?

More precise, can’t we just use types? (cf. Slide 29)

• µ = 0..1, µ = 1:
many programming language have direct correspondences (the first corresponds

to type pointer, the second to type reference) — this is why we excluded them.

• µ = ∗:
could be represented by a set data-structure type without fixed bounds — no

problem with our approach, we have µOCL = true anyway.

• µ = 0..3 :
use array of size 4 — if model behaviour (or the implementation) adds 5th

identity, we’ll get a runtime error, and thereby see that the constraint is

violated. Principally acceptable, but: checks for array bounds everywhere...?

• µ = 5..7 :
could be represented by an array of size 7 — but: few programming
languages/data structure libraries allow lower bounds for arrays (other than 0).
If we have 5 identities and the model behaviour removes one, this should be a
violation of the constraints imposed by the model.

The implementation which does this removal is wrong. How do we see this...?
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Multiplicities Never as Types...?

Well, if the target platform is known and fixed, and the target platform has,
for instance,

• reference types,

• range-checked arrays with positions 0, . . . , N ,

• set types,

then we could simply restrict the syntax of multiplicities to

µ ::= 1 | 0..N | ∗

and don’t think about constraints
(but use the obvious 1-to-1 mapping to types)...

In general, unfortunately, we don’t know.
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Properties

We don’t want to cover association properties in detail,
only some observations (assume binary associations):

Property Intuition Semantical Effect

unique one object has at most one r-link to a
single other object

current setting

bag one object may have multiple r-links to
a single other object

have λ(r) yield
multi-sets

ordered,
sequence

an r-link is a sequence of object identi-
ties (possibly including duplicates)

have λ(r) yield se-
quences
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Properties

We don’t want to cover association properties in detail,
only some observations (assume binary associations):

Property Intuition Semantical Effect

unique one object has at most one r-link to a
single other object

current setting

bag one object may have multiple r-links to
a single other object

have λ(r) yield
multi-sets

ordered,
sequence

an r-link is a sequence of object identi-
ties (possibly including duplicates)

have λ(r) yield se-
quences

Property OCL Typing of expression role(expr)

unique τD → Set(τC)

bag τD → Bag(τC)

ordered, sequence τD → Seq(τC)

For subsets, redefines, union, etc. see [OMG, 2007a, 127].
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Ownership

C D•
role

r
×

Intuitively it says:

Association r is not a “thing on its own” (i.e. provided by λ),
but association end ‘role’ is owned by C (!).
(That is, it’s stored inside C object and provided by σ).

So: if multiplicity of role is 0..1 or 1, then the picture above is very close to
concepts of pointers/references.

Actually, ownership is seldom seen in UML diagrams. Again: if target platform
is clear, one may well live without (cf. [OMG, 2007b, 42] for more details).

Not clear to me:

C1 C2

...

Cn

role
•⋄

r
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Back to the Main Track
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Back to the main track:

Recall: on some earlier slides we said, the extension of the signature is only

to study associations in “full beauty”.
For the remainder of the course, we should look for something simpler...

Proposal:

• from now on, we only use associations of the form

(i) C D•
0..1

role
×

(ii) C D•
∗

role
×

(And we may omit the non-navigability and ownership symbols.)

• Form (i) introduces role : C0,1, and form (ii) introduces role : C∗ in V .

• In both cases, role ∈ atr(C).

• We drop λ and go back to our nice σ with σ(u)(role) ⊆ D(D).
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OCL Constraints in (Class) Diagrams
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Where Shall We Put OCL Constraints?

Two options:

(i) Notes.

(ii) Particular dedicated places.

(i) Notes:

A UML note is a picture of the form

text

text can principally be everything, in particular comments and constraints.

Sometimes, content is explicitly classified for clarity:

OCL:

expr
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OCL in Notes: Conventions

C

. . .

. . .

expr

stands for

C

. . .

. . .

context C inv : expr
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Where Shall We Put OCL Constraints?

(ii) Particular dedicated places in class diagrams: (behav. feature: later)

C

ξ v : τ {p1, . . . , pn} {expr}

ξ f(v1 : τ, . . . , vn : τn) : τ {p1, . . . , pn} {pre : expr
1

post : expr
2
}

For simplicity, we view the above as an abbreviation for

C

ξ v : τ {p1, . . . , pn}

expr

context f pre : expr1 post : expr2
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Invariants of a Class Diagram

• Let CD be a class diagram.

• As we (now) are able to recognise OCL constraints when we see them,
we can define

Inv(CD)

as the set {ϕ1, . . . , ϕn} of OCL constraints occurring in notes in CD —
after unfolding all abbreviations (cf. next slides).

• As usual: Inv(CD) :=
⋃

CD∈CD Inv(CD).

• Principally clear: Inv( · ) for any kind of diagram.
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Invariant in Class Diagram Example

C

v : τ {v > 3}

If CD consists of only CD with the single class C, then

• Inv(CD) = Inv(CD) =
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Semantics of a Class Diagram

Definition. Let CD be a set of class diagrams.

We say, the semantics of CD is the signature it induces and the
set of OCL constraints occurring in CD , denotedJCDK := 〈S (CD), Inv(CD)〉.

Given a structure D ofS (and thus of CD), the class diagrams de-
scribe the system states ΣDS , of which some may satisfy Inv(CD).

In pictures: CD = {CD1, . . . , CDn}

signature S (CD) invariants Inv(CD)

basic

(classes and

attributes)

extended

(visibility)

J · K
distinguish
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