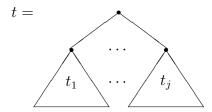
§2 Pumping Lemma (S. 44-48)

Lemma 2.2 Sei t ein endlicher Baum mit dem Verzweigungsgrad $\leq k$, in dem jeder Pfad die Länge $\leq m$ hat. Dann ist in t die Anzahl der Blätter $\leq k^m$.

Beweis: Induktion über $m \in \mathbb{N}$:

m=0: t besteht nur aus $k^0=1$ Knoten.

 $m \to m+1$: t besitzt j Unterbäume t_1, \ldots, t_j mit $j \le k$, in denen die Pfade die Länge $\le m$ haben:



Nach Induktionsvoraussetzung ist für jeden der Unterbäume t_1, \ldots, t_j die Anzahl der Blätter $\leq k^m$. Damit gilt in t:

Anzahl der Blätter $\leq j \cdot k^m \leq k \cdot k^m = k^{m+1}$.

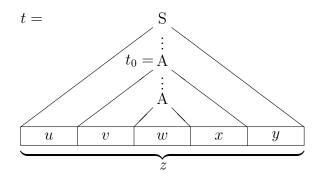
Satz 2.1 Zu jeder kontextfreien Sprache $L \subseteq T^*$ existiert eine Zahl $n \in \mathbb{N}$, so dass es für alle Wörter $z \in L$ mit $|z| \ge n$ eine Zerlegung z = uvwxy mit folgenden Eigenschaften gibt:

- (i) $vx \neq \varepsilon$,
- (ii) $|vwx| \leq n$,
- (iii) für alle $i \in \mathbb{N}$ gilt: $uv^i wx^i y \in L$.

Beweis: Sei G eine kontextfreie Grammatik (oBdA. in CNF) mit L(G) = L. Wir setzen $k = 2, m = |N|, n = k^{m+1}$. Sei jetzt $z \in L$ mit $|z| \ge n$. Dann gibt es einen Ableitungsbaum t von S nach z in G. Nach der Wahl von k und |z| hat t einen Verzweigungsgrad $\le k$ und $\ge k^{m+1}$ Blätter. Also gibt es nach dem vorangegangenen Lemma in t einen Pfad der Länge $\ge m+1$. Auf diesem Pfad liegen $\ge m+1$ innere Knoten, so dass es eine Wiederholung eines Nichtterminalsymbols bei der Beschriftung dieser Knoten gibt (Schubfachprinzip). Wir benötigen diese Wiederholung in einer speziellen Lage.

Unter einem Wiederholungsbaum in t verstehen wir einen Unterbaum von t, in dem sich die Beschriftung der Wurzel bei einem weiteren Knoten wiederholt. Wir wählen jetzt in t einen minimalen Wiederholungsbaum t_0 , d.h. einen solchen, der keinen weiteren Wiederholungsbaum als echten Unterbaum enthält. In t_0 hat jeder Pfad eine Länge $\leq m+1$.

Sei A die Wurzelbeschriftung von t_0 . Dann hat t folgende Struktur:



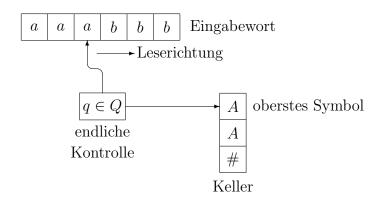
Aus dieser Struktur erhalten wir eine Zerlegung z = uvwxy mit $S \vdash_G^* uAy \vdash_G^* uvAxy \vdash_G^* uvwxy. \tag{*}$

Wir zeigen, dass diese Zerlegung von z den Bedingungen des Pumping Lemmas genügt:

- (i) $vx \neq \varepsilon$ (CNF).
- (ii) Nach der Wahl von t_0 und dem vorangegangenen Lemma gilt $|vwx| \le k^{m+1} = n$.
- (iii) Aus (*) folgt sofort, dass für alle $i \in \mathbb{N}$ gilt: $uv^i w x^i y \in L(G)$.

§3 Kellerautomaten (S. 49-58)

Erweiterung des ε -NEA um einen unbeschränkt großen Speicher mit eingeschränktem Zugriff: Keller/Stack (LIFO) mit Operationen pop und push Bei jedem Schritt: pop, d.h. wenn man den Stack nicht verändern will, muss man wieder pushen



Def. 3.1 Ein (nichtdeterministischer) Kellerautomat (oder Pushdown-Automat), kurz KA (oder auch PDA), ist eine Struktur

$$\mathcal{K} = (\Sigma, Q, \Gamma, \rightarrow, q_0, Z_0, F)$$

mit folgenden Eigenschaften:

- (i) Σ ist das Eingabealphabet,
- (ii) Q ist eine endliche Menge von Zuständen,
- (iii) Γ ist das Kelleralphabet,
- (iv) $\rightarrow \subseteq Q \times \Gamma \times (\Sigma \cup \{\varepsilon\}) \times Q \times \Gamma^*$ ist die Transitionsrelation,
- (v) $q_0 \in Q$ ist der Anfangszustand,
- (vi) $Z_0 \in \Gamma$ ist das Startsymbol des Kellers,
- (vii) $F \subseteq Q$ ist die Menge der Endzustände.

typische Zeichen: $a, b, c \in \Sigma, u, v, w \in \Sigma^*, \alpha \in \Sigma \cup \{\varepsilon\}, q \in Q, Z \in \Gamma, \gamma \in \Gamma^*$ Statt $(q, Z, \alpha, q', \gamma') \in \rightarrow$ schreiben wir meistens $(q, Z) \stackrel{\alpha}{\rightarrow} (q', \gamma')$.

Vorgehen: zuerst pop, dann Entscheidung ob ε oder Symbol lesen, dann Transition wählen, dann Zustand wechseln und push; stoppe bei leerem Stack oder keiner Transition

```
input w; // input word global q := q_0; // current state global st := Z_0; // stack while (w \neq \varepsilon) if (|st| == 0) stop();
```

```
\begin{split} Z &:= pop(s); \\ a &:= first(w); \\ transitions &:= \rightarrow (q, Z, \varepsilon) \cup \rightarrow (q, Z, a); \\ if &(|transitions| == 0) \\ &stop(); \\ (q, Z, \alpha, q', \gamma) &:= choose(transitions); \\ if &(\alpha \in \Sigma) \\ &pop(w); \\ q &:= q'; \\ push(s, \gamma); \end{split}
```

Def. 3.2 Sei $\mathcal{K} = (\Sigma, Q, \Gamma, \rightarrow, q_0, Z_0, F)$ ein KA.

- (i) Unter einer Konfiguration von \mathcal{K} verstehen wir ein Paar $(q, \gamma) \in Q \times \Gamma^*$, das den momentanen Zustand q und den momentanen Kellerinhalt γ von \mathcal{K} bescheibt.
- (ii) Für jedes $\alpha \in \Sigma \cup \{\varepsilon\}$ ist $\stackrel{\alpha}{\to}$ eine 2-stellige Relation auf den Konfigurationen von \mathcal{K} , die wie folgt definiert ist:

$$(q, \gamma) \stackrel{\alpha}{\to} (q', \gamma')$$
, falls $\exists Z \in \Gamma$, $\exists \gamma_0, \gamma_1 \in \Gamma^*$:
 $\gamma = Z\gamma_0 \text{ und } (q, Z, \alpha, q', \gamma_1) \in \to \text{ und } \gamma' = \gamma_1\gamma_0$

- (iii) Für jedes Wort $w \in \Sigma^*$ ist $\stackrel{w}{\Rightarrow}$ eine 2-stellige Relation auf den Konfigurationen von \mathcal{K} , die induktiv definiert ist:
 - $(q, \gamma) \stackrel{\varepsilon}{\Rightarrow} (q', \gamma')$, falls $\exists n \ge 0 : (q, \gamma) \underbrace{\stackrel{\varepsilon}{\rightarrow} \circ \ldots \circ \stackrel{\varepsilon}{\rightarrow}}_{n \text{ Mal}} (q', \gamma')$
 - $(q, \gamma) \stackrel{aw}{\Rightarrow} (q', \gamma')$, falls $(q, \gamma) \stackrel{\varepsilon}{\Rightarrow} \circ \stackrel{a}{\rightarrow} \circ \stackrel{w}{\Rightarrow} (q', \gamma')$, für alle $a \in \Sigma$.

zwei Varianten von Sprach-Akzeptanz:

Def. 3.2 Sei
$$\mathcal{K} = (\Sigma, Q, \Gamma, \rightarrow, q_0, Z_0, F)$$
 ein KA und $w \in \Sigma^*$.

(i) \mathcal{K} akzeptiert w, falls $\exists q \in F \quad \exists \gamma \in \Gamma^* : \quad (q_0, Z_0) \stackrel{w}{\Longrightarrow} (q, \gamma)$. Die von \mathcal{K} akzeptierte (oder erkannte) Sprache ist

$$L(\mathcal{K}) = \{ w \in \Sigma^* \mid \mathcal{K} \text{ akzeptiert } w \}.$$

(ii) K akzeptiert w mit dem leeren Keller, falls

$$\exists q \in Q : (q_0, Z_0) \stackrel{w}{\Longrightarrow} (q, \varepsilon).$$

Die von K mit leerem Keller akzeptierte (oder erkannte) Sprache ist

$$L_{\varepsilon}(\mathcal{K}) = \{ w \in \Sigma^* \mid \mathcal{K} \text{ akzeptiert } w \text{ mit leerem Keller } \}.$$

Bsp.: $L = \{a^n b^n\}$. Setze $\mathcal{K} = (\{a, b\}, \{q_0, q_1, q_2\}, \{A, Z\}, \rightarrow, q_0, Z, \{q_0\})$ mit

- $\begin{array}{cccc} (1) & (q_0,Z) & \stackrel{a}{\rightarrow} & (q_1,AZ) \\ (2) & (q_1,A) & \stackrel{a}{\rightarrow} & (q_1,AA) \end{array}$
- $(3) \qquad (q_1, A) \quad \xrightarrow{b} \quad (q_2, \varepsilon)$ $(4) \qquad (q_2, A) \quad \xrightarrow{b} \quad (q_2, \varepsilon)$ $(5) \qquad (q_2, Z) \quad \xrightarrow{\varepsilon} \quad (q_0, \varepsilon)$

Lemma 3.4 (Top des Kellers) Sei $\mathcal{K} = (\Sigma, Q, \Gamma, \rightarrow, q_0, Z_0, F)$ ein Kellerautomat. Dann gilt für alle $w \in \Sigma^*$, $q, q' \in Q$, $Z \in \Gamma$ und $\gamma \in \Gamma^*$:

wenn
$$(q, Z) \stackrel{w}{\Longrightarrow} (q', \varepsilon)$$
, so auch $(q, Z\gamma) \stackrel{w}{\Longrightarrow} (q', \gamma)$.

Satz 3.5

- (1) Zu jedem KA \mathcal{A} kann ein KA B mit $L(\mathcal{A}) = L_{\varepsilon}(B)$ konstruiert werden.
- (2) Zu jedem KA \mathcal{A} kann ein KA B mit $L_{\varepsilon}(\mathcal{A}) = L(B)$ konstruiert werden.

Bew.: Sei $\mathcal{A} = (\Sigma, Q, \Gamma, \rightarrow_{\mathcal{A}}, q_0, Z_0, F)$.

Zu (1): Die Beweisidee ist einfach: B arbeitet wie A und leert von Endzuständen aus den Keller. Es muss jedoch darauf geachtet werden, dass B keinen leeren Keller erhält durch Eingabewörter, die A nicht akzeptiert. Deshalb benutzt B ein zusätzliches Symbol # zur Markierung des Kellerbodens. Genauer konstruieren wir:

$$B = (\Sigma, Q \cup \{q_B, q_{\varepsilon}\}, \Gamma \cup \{\#\}, \rightarrow_B, q_B, \#, \emptyset)$$

mit $q_B, q_{\varepsilon} \notin Q$ und $\# \notin \Gamma$ und folgender Transitionsrelation:

Dann gilt für alle $w \in \Sigma^*, q \in F$ und $\gamma \in \Gamma^*$:

$$(q_0, Z_0) \stackrel{w}{\Longrightarrow}_{\mathcal{A}} (q, \gamma)$$

gdw.

$$(q_B, \#) \xrightarrow{\varepsilon}_B (q_0, Z_0 \#) \xrightarrow{w}_{\mathcal{A}} (q, \gamma \#) \xrightarrow{\varepsilon}_B (q_{\varepsilon}, \varepsilon).$$

(Für die "wenn-dann" - Richtung wird das Top - Lemma angewandt.) Mit einer Analyse der Anwendbarkeit der neuen Transitionen in B erhält man daraus $L(A) = L_{\varepsilon}(B)$.

Zu (2): Beweisidee: B arbeitet wie A, benutzt aber ein zusätzliches Symbol # zur Markierung des Kellerbodens. Sobald A seinen Keller geleert hat, liest B das Symbol # und geht in einen Endzustand über. Die genaue Konstruktion von B ist eine Übungsaufgabe.