Contents & Goals

Last Lecture:
- Motivation: model-based development of things (houses, software) to cope with complexity, detect errors early
- Model-based (or -driven) Software Engineering
- UML Mode of the Lecture: Blueprint.

This Lecture:
- **Educational Objectives:** Capabilities for these tasks/questions:
 - Why is UML of the form it is?
 - Shall one feel bad if not using all diagrams during software development?
 - What is a signature, an object, a system state, etc.?
 - What’s the purpose of signature, object, etc. in the course?
 - How do Basic Object System Signatures relate to UML class diagrams?
- **Content:**
 - Brief history of UML
 - Basic Object System Signature, Structure, and System State
Why (of all things) UML?

• Pre-Note: being a modelling languages doesn’t mean being graphical (or: being a visual formalism [Harel]).

• [Kastens and Büning, 2008] consider as examples:
 • Sets, Relations, Functions
 • Terms and Algebras
 • Propositional and Predicate Logic
 • Graphs
 • XML Schema, Entity Relation Diagrams, UML Class Diagrams
 • Finite Automata, Petri Nets, UML State Machines

• **Pro:** visual formalisms are found appealing and easier to **grasp.** Yet they are not necessarily easier to **write!**

• **Beware:** you may meet people who dislike visual formalisms just for being graphical — maybe because it is easier to “trick” people with a meaningless picture than with a meaningless formula.

 More serious: it’s maybe easier to misunderstand a picture than a formula.
A Brief History of UML

- Boxes/lines and finite automata are used to visualise software for ages.
- **1970’s**, Software Crisis™
 — Idea: learn from engineering disciplines to handle growing complexity.
 Languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams
- Mid 1980’s: Statecharts [Harel, 1987], StateMate™ [Harel et al., 1990]

A Brief History of UML

- Boxes/lines and finite automata are used to visualise software for ages.
- **1970’s**, Software Crisis™
 — Idea: learn from engineering disciplines to handle growing complexity.
 Languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams
- Mid 1980’s: Statecharts [Harel, 1987], StateMate™ [Harel et al., 1990]
- Early 1990’s, advent of Object-Oriented-Analysis/Design/Programming
 — Inflation of notations and methods, most prominent:
 - **Object-Modeling Technique** (OMT) [Rumbaugh et al., 1990]
A Brief History of UML

- Boxes/lines and finite automata are used to visualise software for ages.

- 1970’s, Software Crisis™
 - Idea: learn from engineering disciplines to handle growing complexity.
 - Languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams

- Mid 1980’s: Statecharts [Harel, 1987], StateMate™ [Harel et al., 1990]

- Early 1990’s, advent of Object-Oriented-Analysis/Design/Programming
 - Inflation of notations and methods, most prominent:
 - Object-Modeling Technique (OMT) [Rumbaugh et al., 1990]
 - Booch Method and Notation [Booch, 1993]
 - Object-Oriented Software Engineering (OOSE) [Jacobson et al., 1992]
 - Each “persuasion” selling books, tools, seminars…

- Late 1990’s: joint effort UML 0.x, 1.x
 - Standards published by Object Management Group (OMG), “international, open membership, not-for-profit computer industry consortium”.

- Since 2005: UML 2.x
Figure A.5 - The taxonomy of structure and behavior diagram
Common Expectations on UML

- Easily writeable, readable even by customers
- Powerful enough to bridge the gap between idea and implementation
- Means to tame complexity by separation of concerns ("views")
- Unambiguous
- Standardised, exchangeable between modelling tools
- UML standard says how to develop software
- Using UML leads to better software
- ...

We will see...

Seriously: After the course, you should have an own opinion on each of these claims. In how far/in what sense does it hold? Why? Why not? How can it be achieved? Which ones are really only hopes and expectations? ...?
Recall:

- **Overall aim**: a formal language for software blueprints.
- **Approach**:
 1. Common semantical domain.
 2. UML fragments as syntax.
 3. Abstract representation of diagrams.
 4. Informal semantics: UML standard
 5. Assign meaning to diagrams.
 6. Define, e.g., consistency.

UML: Semantic Areas

Figure 6.1 - A schematic of the UML semantic areas and their dependencies

[OMG, 2007b, 11]
Basic Object System Signature

Definition. A (Basic) Object System Signature is a quadruple

\(\mathcal{S} = (T, C, V, atr) \)

where

- \(T \) is a set of (basic) types,
- \(C \) is a finite set of classes,
- \(V \) is a finite set of typed attributes, i.e., each \(v \in V \) has type
 - \(\tau \in \mathcal{T} \) or
 - \(C_{0,1} \) or \(C_{\ast} \), where \(C \in \mathcal{C} \)
 (written \(v : \tau \) or \(v : C_{0,1} \) or \(v : C_{\ast} \)),
- \(atr : \mathcal{C} \rightarrow 2^V \) maps each class to its set of attributes.

Note: Inspired by OCL 2.0 standard [OMG, 2006], Annex A.
Basic Object System Signature Example

\[\mathcal{I} = (\mathcal{T}, \mathcal{C}, \mathcal{V}, \text{atr}) \]

- (basic) types \(\mathcal{T} \) and classes \(\mathcal{C} \), (both finite),
- typed attributes \(\mathcal{V}, \tau \) from \(\mathcal{T} \) or \(C_{0,1} \) or \(C_* \), \(C \in \mathcal{C} \),
- \(\text{atr} : \mathcal{C} \rightarrow 2^\mathcal{V} \) mapping classes to attributes.

Example:

\[\mathcal{I}_0 = (\{\text{Int}\}, \{C, D\}, \{x : \text{Int}, p : C_{0,1}, n : C_*, C \mapsto \{p, n\}, D \mapsto \{x\}\}) \]
Basic Object System Structure

Definition. A Basic Object System Structure of \(S = (T, C, V, atr) \) is a domain function \(D \) which assigns to each type a domain, i.e.

- \(\tau \in T \) is mapped to \(D(\tau) \),
- \(C \in C \) is mapped to an **infinite** set \(D(C) \) of **(object)** identities.

Note: Object identities only have the “=” operation; object identities of different classes are disjoint, i.e. \(\forall C, D \in C : C \neq D \) \(\Rightarrow \) \(D(C) \cap D(D) = \emptyset \).

- \(C_* \) and \(C_{0,1} \) for \(C \in C \) are mapped to \(2^{D(C)} \).

We use \(D(C) \) to denote \(\bigcup_{C \in C} D(C) \); analogously \(D(C_*) \).

Note: We identify objects and object identities, because both uniquely determine each other (cf. OCL 2.0 standard).

Basic Object System Structure Example

Wanted: a structure for signature

\[S_0 = (\{\text{Int}\}, \{C, D\}, \{x : \text{Int}, p : C_{0,1}, n : C_*\}, \{C \mapsto \{p, n\}, D \mapsto \{x\}\}) \]

Recall: by definition, seek a \(D \) which maps

- \(\tau \in T \) to some \(D(\tau) \),
- \(c \in C \) to some identities \(D(C) \) (infinite, disjoint for different classes),
- \(C_* \) and \(C_{0,1} \) for \(C \in C \) to \(D(C_{0,1}) = D(C_*) = 2^{D(C)} \).

\[
\begin{align*}
D(\text{Int}) &= \mathbb{Z} \\
D(C) &= \mathbb{N}^\times \{d \} \Leftrightarrow \{f, g, \ldots\} \\
D(D) &= \mathbb{N}^\times \{x \} \Leftrightarrow \{f, g, \ldots\} \\
D(C_{0,1}) &= D(C_*) = 2^{D(C)} \\
D(D_{0,1}) &= D(D_*) = 2^{D(D)}
\end{align*}
\]
Definition. Let \mathcal{P} be a structure of $\mathcal{I} = (\tau, \mathcal{C}, V, \text{atr})$. A system state of \mathcal{I} wrt. \mathcal{P} is a type-consistent mapping

$$\sigma : \mathcal{P}(\mathcal{C}) \rightarrow (V \rightarrow (\mathcal{P}(\tau) \cup \mathcal{P}(\mathcal{D}_u)))$$

That is, for each $u \in \mathcal{P}(\mathcal{C})$, $C \in \mathcal{C}$, if $u \in \text{dom}(\sigma)$

- $\text{dom}(\sigma(u)) = \text{atr}(C)$
- $\sigma(u)(v) \in \mathcal{P}(\tau)$ if $v : \tau, \tau \in \tau$
- $\sigma(u)(v) \in \mathcal{P}(D_u)$ if $v : D_0, 1$ or $v : D_u$ with $D \in \mathcal{C}$

We call $u \in \mathcal{P}(\mathcal{C})$ alive in σ if and only if $u \in \text{dom}(\sigma)$. We use $\Sigma^\mathcal{P}_\mathcal{I}$ to denote the set of all system states of \mathcal{I} wrt. \mathcal{P}.

\[\mathcal{P}(A) = \{A, A, A, A, A\} \]
\[\mathcal{P}(B) = \{B, B, B, B\} \]
\[\mathcal{P}(\sigma) = \{1, 2, 3, \ldots\} \]
\[\mathcal{P}(5) = \{1, 2, 3, \ldots\} \]

\[\mathcal{P}(\mathcal{A}_u) = 2^{\mathcal{D}(\mathcal{A}_u)} \text{ e.g. } \{A, A\} \in \mathcal{D}(\mathcal{A}_u)\]
System State Example

Signature, Structure:

\[S_0 = (\{\text{Int}\}, \{C, D\}, \{x: \text{Int}, p: C_{0,1}, n: C_*\}, \{C \mapsto \{p, n\}, D \mapsto \{x\}\}) \]

\[\mathcal{D}(\text{Int}) = \mathbb{Z}, \quad \mathcal{D}(C) = \{1_C, 2_C, 3_C, \ldots\}, \quad \mathcal{D}(D) = \{1_D, 2_D, 3_D, \ldots\} \]

Wanted: \(\sigma : \mathcal{D}(C) \rightarrow (V \rightarrow (\mathcal{D}(\mathcal{T}) \cup \mathcal{D}(C_*))) \) such that for all \(v \in \text{dom}(\sigma) \):

- \(\text{dom}(\sigma(u)) = \text{atr}(C) \),
- \(\sigma(u)(v) \in \mathcal{D}(\tau) \) if \(v: \tau, \tau \in \mathcal{T} \),
- \(\sigma(u)(v) \in \mathcal{D}(C_*) \) if \(v: D_* \) with \(D \in \mathcal{C} \).

Concrete, explicit:

\[\sigma = \{1_C \mapsto \{p \mapsto \emptyset, n \mapsto \{5_C\}\}, 5_C \mapsto \{p \mapsto \emptyset, n \mapsto \emptyset\}, 1_D \mapsto \{x \mapsto 23\}\}. \]

Alternative: **symbolic** system state

\[\sigma = \{c_1 \mapsto \{p \mapsto \emptyset, n \mapsto \{c_2\}\}, c_2 \mapsto \{p \mapsto \emptyset, n \mapsto \emptyset\}, d \mapsto \{x \mapsto 23\}\} \]
You Are Here.

Course Map

\[CD, SM \]

\[\mathcal{F} = (\mathcal{I}, \mathcal{E}, V, \text{attr}) \]

\[SM \]

\[\varphi \in \text{OCL} \]

\[expr \]

\[CD, SD \]

\[M = \Sigma_{\mathcal{F}, A_{\mathcal{F}}, \rightarrow_{SM}} \]

\[\pi = (\sigma_0, \varepsilon_0) \xrightarrow{(\text{cons}_0, \text{Snd}_0)} (\sigma_1, \varepsilon_1) \ldots \]

\[B = (Q_{SD}, q_0, A_{\mathcal{F}}, \rightarrow_{SD}, F_{SD}) \]

\[w_\pi = ((\sigma_i, \text{cons}_i, \text{Snd}_i))_{i \in \mathbb{N}} \]

\[G = (N, E, f) \]

\[\mathcal{D} \]

\[\mathcal{G} = (\mathcal{N}, \mathcal{E}, \mathcal{f}) \]

\[\mathcal{UML} \]

Mathematics
References

