Software Design, Modelling and Analysis in UML

Lecture 02: Semantical Model

2014-10-23

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany
Contents & Goals

Last Lecture:

- Motivation: model-based development of things (houses, software) to cope with complexity, detect errors early
- Model-based (or -driven) Software Engineering
- UML Mode of the Lecture: Blueprint.

This Lecture:

- **Educational Objectives:** Capabilities for these tasks/questions:
 - Why is UML of the form it is?
 - Shall one feel bad if not using all diagrams during software development?
 - What is a signature, an object, a system state, etc.? What’s the purpose of signature, object, etc. in the course?
 - How do Basic Object System Signatures relate to UML class diagrams?

- **Content:**
 - Brief history of UML
 - Basic Object System Signature, Structure, and System State
Why (of all things) UML?
Pre-Note: being a *modelling* languages doesn’t mean being graphical (or: being a visual formalism [Harel]).

[Kastens and Büning, 2008] consider as examples:
- Sets, Relations, Functions
- Terms and Algebras
- Propositional and Predicate Logic
- Graphs
- XML Schema, Entity Relation Diagrams, UML Class Diagrams
- Finite Automata, Petri Nets, UML State Machines

Pro: visual formalisms are found appealing and easier to *grasp*. Yet they are not necessarily easier to *write*!

Beware: you may meet people who dislike visual formalisms just for being graphical — maybe because it is easier to “trick” people with a meaningless picture than with a meaningless formula. More serious: it’s maybe easier to misunderstand a picture than a formula.
A Brief History of UML

- Boxes/lines and finite automata are used to visualise software for ages.

- 1970’s, **Software Crisis**™
 — Idea: learn from engineering disciplines to handle growing complexity.
 Languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams

- Mid 1980’s: **Statecharts** [Harel, 1987], **StateMate**™ [Harel et al., 1990]
A Brief History of UML

- Boxes/lines and finite automata are used to visualise software for ages.

- **1970’s, Software Crisis™**
 — Idea: learn from engineering disciplines to handle growing complexity.
 Languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams

- Mid 1980’s: Statecharts [Harel, 1987], StateMate™ [Harel et al., 1990]

- Early 1990’s, advent of Object-Oriented-Analysis/Design/Programming
 — Inflation of notations and methods, most prominent:

 - **Object-Modeling Technique (OMT)** [Rumbaugh et al., 1990]
A Brief History of UML

- Boxes/lines and finite automata are used to visualise software for ages.
- **1970’s**, Software Crisis
 - Idea: learn from engineering disciplines to handle growing complexity.
 - Languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams
- **Mid 1980’s**: Statecharts [Harel, 1987], StateMate [Harel et al., 1990]
- **Early 1990’s**, advent of Object-Oriented -Analysis/Design/Programming
 - Inflation of notations and methods, most prominent:
 - **Object-Modeling Technique (OMT)** [Rumbaugh et al., 1990]
 - **Booch Method and Notation** [Booch, 1993]
A Brief History of UML

- Boxes/lines and finite automata are used to visualise software for ages.

- **1970’s, Software Crisis™**
 — Idea: learn from engineering disciplines to handle growing complexity.
 Languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams

- Mid **1980’s**: Statecharts [Harel, 1987], StateMate™ [Harel et al., 1990]

- Early **1990’s**, advent of Object-Oriented-Analysis/Design/Programming
 — Inflation of notations and methods, most prominent:
 - **Object-Modeling Technique** (OMT) [Rumbaugh et al., 1990]
 - **Booch Method and Notation** [Booch, 1993]
 - **Object-Oriented Software Engineering** (OOSE) [Jacobson et al., 1992]

Each “persuasion” selling books, tools, seminars...

- Late **1990’s**: joint effort **UML 0.x, 1.x**

 Standards published by **Object Management Group** (OMG), “international, open membership, not-for-profit computer industry consortium”.

- Since **2005**: **UML 2.x**
Figure A.5 - The taxonomy of structure and behavior diagram
Figure A.5 - The taxonomy of structure and behavior diagram
Common Expectations on UML

- Easily writeable, readable even by customers
- Powerful enough to bridge the gap between idea and implementation
- Means to tame complexity by separation of concerns (“views”)
- Unambiguous
- Standardised, exchangeable between modelling tools
- UML standard says how to develop software
- Using UML leads to better software
- ...

We will see...

Seriously: After the course, you should have an own opinion on each of these claims. In how far/in what sense does it hold? Why? Why not? How can it be achieved? Which ones are really only hopes and expectations? ...?
Course Map Revisited
Recall:

- **Overall aim:** a formal language for software blueprints.
- **Approach:**
 1. Common semantical domain.
 2. UML fragments as syntax.
 3. Abstract representation of diagrams.
 4. Informal semantics: UML standard
 5. Assign meaning to diagrams.
 6. Define, e.g., consistency.
Figure 6.1 - A schematic of the UML semantic areas and their dependencies

[OMG, 2007b, 11]
Common Semantical Domain
Definition. A (Basic) Object System Signature is a quadruple $\mathcal{I} = (\mathcal{T}, \mathcal{C}, \mathcal{V}, \text{atr})$ where

- \mathcal{T} is a set of (basic) types,
- \mathcal{C} is a finite set of classes,
- \mathcal{V} is a finite set of typed attributes, i.e., each $v \in \mathcal{V}$ has type $\tau \in \mathcal{T}$ or $C_{0,1}$ or C_*, where $C \in \mathcal{C}$ (written $v : \tau$ or $v : C_{0,1}$ or $v : C_*$),
- $\text{atr} : \mathcal{C} \to 2^\mathcal{V}$ maps each class to its set of attributes.

Note: Inspired by OCL 2.0 standard [OMG, 2006], Annex A.
Basic Object System Signature Example

\[\mathcal{S} = (\mathcal{T}, \mathcal{C}, V, \text{atr}) \] where

- (basic) types \(\mathcal{T} \) and classes \(\mathcal{C} \), (both finite),
- typed attributes \(V, \tau \) from \(\mathcal{T} \) or \(C_{0,1} \) or \(C_* \), \(C \in \mathcal{C} \),
- \(\text{atr} : \mathcal{C} \rightarrow 2^V \) mapping classes to attributes.

Example:

\[\mathcal{S}_0 = (\{\text{Int}\}, \{C, D\}, \{x : \text{Int}, p : C_{0,1}, n : C_*\}, \{C \mapsto \{p, n\}, D \mapsto \{x\}\}) \]
\[\mathcal{I} = (\mathcal{T}, \mathcal{C}, V, \text{atr}) \text{ where} \]

- (basic) types \(\mathcal{T} \) and classes \(\mathcal{C} \), (both finite),
- typed attributes \(V, \tau \) from \(\mathcal{T} \) or \(C_{0,1} \) or \(C_* \), \(C \in \mathcal{C} \),
- \(\text{atr} : \mathcal{C} \rightarrow 2^V \) mapping classes to attributes.

Example:

\[\mathcal{I}_1 = (\{\text{\#}\}, \{\text{A, B, \#}, \text{\#}\}, \{y: B, p: B_{01}, q: B_{01}, r: C_{01}\}, \{A \rightarrow \emptyset, \text{B} \rightarrow \{p, r\}, \text{A} \rightarrow \{p\}, \text{B} \rightarrow \{y\}\} \]
Definition. A Basic Object System Structure of \(\mathcal{S} = (\mathcal{T}, \mathcal{C}, V, \text{atr}) \) is a domain function \(\mathcal{D} \) which assigns to each type a domain, i.e.

- \(\tau \in \mathcal{T} \) is mapped to \(\mathcal{D}(\tau) \),
- \(C \in \mathcal{C} \) is mapped to an infinite set \(\mathcal{D}(C) \) of (object) identities. Note: Object identities only have the “=” operation; object identities of different classes are disjoint, i.e. \(\forall C, D \in \mathcal{C} : C \neq D \rightarrow \mathcal{D}(C) \cap \mathcal{D}(D) = \emptyset \).
- \(C^* \) and \(C_{0,1} \) for \(C \in \mathcal{C} \) are mapped to \(2^{\mathcal{D}(C)} \).

We use \(\mathcal{D}(\mathcal{C}) \) to denote \(\bigcup_{C \in \mathcal{C}} \mathcal{D}(C) \); analogously \(\mathcal{D}(\mathcal{C}^*) \).

Note: We identify objects and object identities, because both uniquely determine each other (cf. OCL 2.0 standard).
Wanted: a structure for signature

\[S_0 = (\{ \text{Int} \}, \{ C, D \}, \{ x : \text{Int}, p : C_{0,1}, n : C^* \}, \{ C \mapsto \{ p, n \}, D \mapsto \{ x \} \}) \]

Recall: by definition, seek a \(D \) which maps

- \(\tau \in \mathcal{T} \) to some \(D(\tau) \),
- \(c \in \mathcal{C} \) to some identities \(D(C) \) (infinite, disjoint for different classes),
- \(C^* \) and \(C_{0,1} \) for \(C \in \mathcal{C} \) to \(D(C_{0,1}) = D(C^*) = 2^{D(C)} \).

\[
\begin{align*}
D(\text{Int}) &= \mathbb{Z} \\
D(C) &= \mathbb{N}^+ \times \{ C \} \simeq \{ 1_C, 2_C, \ldots \} \\
D(D) &= \mathbb{N}^+ \times \{ D \} \simeq \{ 1_D, 2_D, \ldots \} \\
D(C_{0,1}) &= D(C^*) = 2^{D(C)} \\
D(D_{0,1}) &= D(D^*) = 2^{D(D)}
\end{align*}
\]
$\mathcal{Y}_1 = \{ \{a\}, \{A, B, \square, \triangle\}, \{y : p : \mathbb{R}_0, y : \square_{0,1}, r : \mathbb{N}, \{A = \emptyset, B \rightarrow \{p, r\}, \square \rightarrow f, \triangle \rightarrow \{y\}\} \}

\mathcal{D}(\mathcal{Y}) = \{a, b, c, d\} \quad \text{[could also be \{rose, tulip, lily, jasmine\}]}

\mathcal{D}(A) = \{A, AA, AAA, \ldots\}

\mathcal{D}(B) = \{B, BB, BBB, \ldots\}

\mathcal{D}(\square) = \{1, 2, 3, 4, \ldots\}

\mathcal{D}(\triangle) = \{1, 2, 3, \ldots\}

\mathcal{D}(A^\infty) = 2^{\mathcal{D}(A)} \quad \text{e.g. \{AA\} \in \mathcal{D}(A^\infty)\}
Definition. Let \(\mathcal{D} \) be a structure of \(\mathcal{I} = (\mathcal{T}, \mathcal{C}, V, \text{atr}) \). A system state of \(\mathcal{I} \) wrt. \(\mathcal{D} \) is a type-consistent mapping
\[
\sigma : \mathcal{D}(\mathcal{C}) \rightarrow (V \rightarrow (\mathcal{D}(\mathcal{T}) \cup \mathcal{D}(\mathcal{C}^*))).
\]
That is, for each \(u \in \mathcal{D}(\mathcal{C}), C \in \mathcal{C} \), if \(u \in \text{dom}(\sigma) \)
- \(\text{dom}(\sigma(u)) = \text{atr}(C) \)
- \(\sigma(u)(v) \in \mathcal{D}(\tau) \) if \(v : \tau, \tau \in \mathcal{T} \)
- \(\sigma(u)(v) \in \mathcal{D}(\mathcal{D}^*) \) if \(v : \mathcal{D}_{0,1} \) or \(v : \mathcal{D}^* \) with \(\mathcal{D} \in \mathcal{C} \)

We call \(u \in \mathcal{D}(\mathcal{C}) \) alive in \(\sigma \) if and only if \(u \in \text{dom}(\sigma) \).

We use \(\Sigma^\mathcal{D}_{\mathcal{I}} \) to denote the set of all system states of \(\mathcal{I} \) wrt. \(\mathcal{D} \).
System State Example

Signature, Structure:

\[S_0 = (\{\text{Int}\}, \{C, D\}, \{x : \text{Int}, p : C_{0,1}, n : C_\ast\}, \{C \mapsto \{p, n\}, D \mapsto \{x\}\}) \]

\[\mathcal{D}(\text{Int}) = \mathbb{Z}, \quad \mathcal{D}(C) = \{1_C, 2_C, 3_C, \ldots\}, \quad \mathcal{D}(D) = \{1_D, 2_D, 3_D, \ldots\} \]

Wanted: \(\sigma : \mathcal{D}(C) \rightarrow (V \rightarrow (\mathcal{D}(\mathcal{T}) \cup \mathcal{D}(C_\ast)))) \) such that for all \(v \in \text{dom}(\sigma) \)

- \(\text{dom}(\sigma(u)) = \text{atr}(C) \),
- \(\sigma(u)(v) \in \mathcal{D}(\tau) \) if \(v : \tau, \tau \in \mathcal{T} \),
- \(\sigma(u)(v) \in \mathcal{D}(C_\ast) \) if \(v : D_\ast \) with \(D \in \mathcal{C} \).

- \(\sigma_\varnothing = \emptyset \)
- \(\sigma_2 = \{1_C \mapsto \{p \mapsto \{x\}, n \mapsto \{5_C, 6_C, 3\}\}, 2D \mapsto \{x \mapsto 3\}\} \)

- \(\sigma_2(C_\ast)(v) = \begin{cases} \{1_C\}, & \text{if } v = p \\ \{5_C, 6_C\}, & \text{if } v = n \end{cases} \)
System State Example

Signature, Structure:

\[S_0 = (\{ \text{Int} \}, \{ C, D \}, \{ x : \text{Int}, p : C_{0,1}, n : C_* \}, \{ C \mapsto \{ p, n \}, D \mapsto \{ x \} \}) \]

\[\mathcal{D}(\text{Int}) = \mathbb{Z}, \quad \mathcal{D}(C) = \{ 1_C, 2_C, 3_C, \ldots \}, \quad \mathcal{D}(D) = \{ 1_D, 2_D, 3_D, \ldots \} \]

Wanted: \(\sigma : \mathcal{D}(C) \not\rightarrow (V \not\rightarrow (\mathcal{D}(T) \cup \mathcal{D}(C_*))) \) such that

- \(\text{dom}(\sigma(u)) = \text{attr}(C) \),
- \(\sigma(u)(v) \in \mathcal{D}(\tau) \) if \(v : \tau, \tau \in T \),
- \(\sigma(u)(v) \in \mathcal{D}(C_*) \) if \(v : D_* \) with \(D \in C \).

Concrete, explicit:

\[\sigma = \{ 1_C \mapsto \{ p \mapsto \emptyset, n \mapsto \{ 5_C \} \}, 5_C \mapsto \{ p \mapsto \emptyset, n \mapsto \emptyset \}, 1_D \mapsto \{ x \mapsto 23 \} \} \]

Alternative: symbolic system state

\[\sigma = \{ c_1 \mapsto \{ p \mapsto \emptyset, n \mapsto \{ c_2 \} \}, c_2 \mapsto \{ p \mapsto \emptyset, n \mapsto \emptyset \}, d \mapsto \{ x \mapsto 23 \} \} \]
You Are Here.
\[\mathcal{I} = (\mathcal{T}, \mathcal{C}, V, \text{atr}), \mathcal{SM} \]

\[M = (\Sigma_{\mathcal{I}}, A_{\mathcal{I}}, \rightarrow_{\mathcal{SM}}) \]

\[\pi = (\sigma_0, \varepsilon_0) \xrightarrow{(\text{cons}_0, \text{Snd}_0)} (\sigma_1, \varepsilon_1) \cdots \]

\[w_\pi = ((\sigma_i, \text{cons}_i, \text{Snd}_i))_{i \in \mathbb{N}} \]

\[G = (N, E, f) \]
References

