Contents & Goals

Last Lecture:
- OCL Semantics (nearly complete)

This Lecture:
- **Educational Objectives:** Capabilities for following tasks/questions.
 - What does it mean that an OCL expression is satisfiable?
 - When is a set of OCL constraints said to be consistent?
 - What is an object diagram? What are object diagrams good for?
 - When is an object diagram called partial? What are partial ones good for?
 - When is an object diagram an object diagram (wrt. what)?
 - How are system states and object diagrams related?
 - Can you think of an object diagram which violates this OCL constraint?

- **Content:**
 - OCL: consistency, satisfiability
 - Object Diagrams
 - Example: Object Diagrams for Documentation
OCL Semantics Cont’d[OMG, 2006]
Putting It All Together

OCL Syntax 1/4: Expressions

| expr ::= |
| w : τ(w) |
| expr₁ = expr₂ : τ × τ → Bool |
| oclIsUndefined(expr₁) : τ → Bool |
| {expr₁,…,exprₙ} : τ × … × τ → Set(τ) |
| isEmpty(expr₁) : Set(τ) → Bool |
| size(expr₁) : Set(τ) → Int |
| allInstancesC : Set(τ_C) |
| v(expr₁) : τ_C → τ(v) |
| r₁(expr₁) : τ_C → τ_D |
| r₂(expr₁) : τ_C → Set(τ_D) |

Where, given $\mathcal{I} = (\mathcal{T}, \mathcal{C}, \mathcal{F})$, we have:

- $W \supseteq \{\text{self}\}$ is a set of logical variables, w has type $\tau(w)$.
- τ is any type from $\mathcal{I} \cup \mathcal{F} \cup \{\text{Set}(\tau_0) | \tau_0 \in T_B \cup \mathcal{C}\}$.
- T_B is a set of basic types.
- τ_0 denotes the set of all types.
- $\text{Set}(\tau_0)$ denotes the set of all types.

For example:

| expr ::= | ...
| true, false : Bool |
| expr₁ {and, or, implies} expr₂ : Bool × Bool → Bool |
| not expr₁ : Bool → Bool |
| 0, −1, 1, −2, 2, … : Int |
| OclUndefined : τ |
| expr₁ {+, −, …} expr₂ : Int × Int → Int |
| expr₁ {<, ≤, …} expr₂ : Int × Int → Bool |

Generalised notation:

| expr ::= | ω(expr₁,…,exprₙ) : τ₁ × … × τₙ → τ |

with $ω \in \{+, −, …\}$

OCL Syntax 2/4: Constants, Arithmetical Operators

| expr ::= |
| w : τ(w) |
| expr₁ = expr₂ : τ × τ → Bool |
| oclIsUndefined(expr₁) : τ → Bool |
| {expr₁,…,exprₙ} : τ × … × τ → Set(τ) |
| isEmpty(expr₁) : Set(τ) → Bool |
| size(expr₁) : Set(τ) → Int |
| allInstancesC : Set(τ_C) |
| v(expr₁) : τ_C → τ(v) |
| r₁(expr₁) : τ_C → τ_D |
| r₂(expr₁) : τ_C → Set(τ_D) |

OCL Syntax 3/4: Iterate

| expr ::= | … | expr₁->iterate(w₁ : τ₁ ; w₂ : τ₂ = expr₂ | expr₃) |

or, with a little renaming,

| expr ::= | … | expr₁->iterate(iter : τ₁; result : τ₂ = expr₂ | expr₃) |

where:

- $expr₁$ is of a collection type (here: a set $\text{Set}(\tau_0)$ for some τ_0).

OCL Syntax 4/4: Context

| context ::= context w₁ : τ₁,…,wₙ : τₙ inv : expr |

where $w \in W$ and $τ_i \in T_{Φ}, 1 \leq i \leq n, n \geq 0$.
(vi) Putting It All Together...

\[
expr ::= w | \omega(expr_1, \ldots, expr_n) | \text{allInstances}_C | v(expr_1) | r_1(expr_1) \\
| r_2(expr_1) | expr_1 \rightarrow \text{iterate}(v_1 : \tau_1 ; v_2 : \tau_2 = expr_2 | expr_3)
\]

\[
\beta : \mathcal{W} \rightarrow \bigcup \mathcal{T}
\]

- \(I[w](\sigma, \beta) := \beta(w)\)
- \(I[\omega(expr_1, \ldots, expr_n)](\sigma, \beta) := I(\omega)(I[expr_1](\sigma, \beta), \ldots, I[expr_n](\sigma, \beta))\)
- \(I[\text{allInstances}_C](\sigma, \beta) := \text{dom}(\sigma) \cap \mathcal{D}(C)\)

Note: in the OCL standard, \(\text{dom}(\sigma)\) is assumed to be **finite**.

Again: doesn’t scare us.
(vi) Putting It All Together...

\[
expr ::= w \mid \omega(expr_1, \ldots, expr_n) \mid \text{allInstances}_C \mid v(expr_1) \mid r_1(expr_1) \\
| r_2(expr_1) \mid expr_1 \rightarrow \text{iterate}(v_1 : \tau_1 \ ; \ v_2 : \tau_2 = expr_2 \mid expr_3)
\]

Assume \(expr_1 : \tau_C\) for some \(C \in \mathcal{C}\). Set \(u_1 := I[expr_1](\sigma, \beta) \in \mathcal{D}(\tau_C)\).

- \(I[v(expr_1)](\sigma, \beta) := \begin{cases}
(\sigma(v_1))(v) & \text{if } u_1 \in \text{dom}(\sigma) \\
\bot_{\tau_C} & \text{otherwise}
\end{cases}\)

- \(I[r_1(expr_1)](\sigma, \beta) := \begin{cases}
\sigma(u_1)(r_1) & \text{if } u_1 \in \text{dom}(\sigma) \text{ and } \sigma(u_1)(r_1) = \{u\}
\\
\bot_{\tau_2} & \text{otherwise}
\end{cases}\)

- \(I[r_2(expr_1)](\sigma, \beta) := \begin{cases}
(\sigma(v_1))(v_2) & \text{if } u_1 \in \text{dom}(\sigma) \\
\bot_{\tau_2(\tau_2)} & \text{otherwise}
\end{cases}\)

(Recall: \(\sigma\) evaluates \(r_2\) of type \(C_*\) to a set)
(vi) Putting It All Together...

\[expr ::= w \mid \omega(expr_1, \ldots, expr_n) \mid \text{allInstances}_C \mid v(expr_1) \mid r_1(expr_1) \]
\[\mid r_2(expr_1) \mid expr_1 \rightarrow \text{iterate}(v_1 : \tau_1 ; v_2 : \tau_2 = expr_2 \mid expr_3) \]

- Base set
- Iterator
- Rule
- Initial value
- Iteration expression

\[I[[expr_1 \rightarrow \text{iterate}(v_1 : \tau_1 ; v_2 : \tau_2 = expr_2 \mid expr_3)]](\sigma, \beta) \]

\[:= \begin{cases} & I[[expr_2]](\sigma, \beta) \quad \text{, if } I[[expr_1]](\sigma, \beta) = \emptyset \\ & \text{iterate}(\text{hlp}, v_1, v_2, expr_3, \sigma, \beta') \quad \text{, otherwise} \end{cases} \]

where \(\beta' = \beta[\text{hlp} \mapsto I[[expr_1]](\sigma, \beta), v_2 \mapsto I[[expr_2]](\sigma, \beta)] \) and

\[\text{iterate}(\text{hlp}, v_1, v_2, expr_3, \sigma, \beta') \]
\[:= \begin{cases} & I[[expr_3]](\sigma, \beta'[v_1 \mapsto x]) \quad \text{, if } \beta'(\text{hlp}) = \{x\} \\ & I[[expr_3]](\sigma, \beta'') \quad \text{, if } \beta'(\text{hlp}) = X \cup \{x\} \text{ and } X \neq \emptyset \\ \end{cases} \]

where \(\beta'' = \beta'[v_1 \mapsto x, v_2 \mapsto \text{iterate}(\text{hlp}, v_1, v_2, expr_3, \sigma, \beta'[\text{hlp} \mapsto X])] \)

Quiz: Is (our) \(I \) a function?
Example

\[\sigma : \begin{array}{c}
\begin{array}{c}
3_{TM} \vdash TM \\
\text{name} = \text{Name} \\
\text{age} = 27
\end{array}
\end{array} \]

\[\beta : 5_{TM} \vdash \{ 3_{TM} \} \]

\[\begin{align*}
\text{I} \text{C}_{\text{self}_{TM}} \text{. age} \geq 18 & \text{I} \text{C}_{\text{self}_{TM}} \text{. age} \geq 18 \\
& \text{I} \text{C}_{\text{age}(\text{self}_{TM}), 18} \\
& \text{I} \text{C}_{\text{duration}(\text{self}_{TM}), 27} \\
& \text{I} \text{C}_{\text{duration}(\text{self}_{TM})} \\
& \text{I} \text{C}_{\text{duration}(\text{self}_{TM}), 27} \\
\end{align*} \]

- **context** TeamMember **inv**: age => 18
- **context** Meeting **inv**: duration > 0
OCL Satisfaction Relation
In the following, \(\mathcal{S} \) denotes a signature and \(\mathcal{D} \) a structure of \(\mathcal{S} \).

Definition (Satisfaction Relation).

Let \(\varphi \) be an OCL constraint over \(\mathcal{S} \) and \(\sigma \in \Sigma_{\mathcal{D}} \) a system state. We write

- \(\sigma \models \varphi \) if and only if \(I[\varphi](\sigma, \emptyset) = \text{true} \).
- \(\sigma \not\models \varphi \) if and only if \(I[\varphi](\sigma, \emptyset) = \text{false} \).

Note: In general we can’t conclude from \(\neg (\sigma \models \varphi) \) to \(\sigma \not\models \varphi \) or vice versa.
Definition (Consistency). A set \(Inv = \{\varphi_1, \ldots, \varphi_n\} \) of OCL constraints over \(\mathcal{I} \) is called consistent (or satisfiable) if and only if there exists a system state of \(\mathcal{I} \) wrt. \(\mathcal{D} \) which satisfies all of them, i.e. if

\[
\exists \sigma \in \Sigma_{\mathcal{D}} : \sigma \models \varphi_1 \land \ldots \land \sigma \models \varphi_n
\]

and inconsistent (or unrealizable) otherwise.
context Location inv :
 name = 'Lobby' implies meeting -> isEmpty()

context Meeting inv :
 title = 'Reception' implies location . name = "Lobby"

allInstances(Meeting) -> exists(w : Meeting | w . title = 'Reception')
Deciding OCL Consistency

- Whether a set of OCL constraints is satisfiable or not is in general not as obvious as in the made-up example.

- **Wanted**: A procedure which decides the OCL satisfiability problem.

- **Unfortunately**: in general undecidable.

 Otherwise we could, for instance, solve diophantine equations

\[
c_1 x_1^{n_1} + \cdots + c_m x_m^{n_m} = d.
\]

Encoding in OCL:

\[
\text{allInstances}_C \rightarrow \exists (w : C \mid c_1 \ast w.x_1^{n_1} + \cdots + c_m \ast w.x_m^{n_m} = d).
\]

- **And now?** Options:

 - Constrain OCL, use a less rich fragment of OCL.
 - Revert to finite domains — basic types vs. number of objects.

 [Cabot and Clarisó, 2008]
OCL Critique
OCL Critique

- **Expressive Power**: “Pure OCL expressions only compute primitive recursive functions, but not recursive functions in general.” [Cengarle and Knapp, 2001]

- **Evolution over Time**: “finally self.x > 0”
 Proposals for fixes e.g. [Flake and Müller, 2003]. (Or: sequence diagrams.)

- **Real-Time**: “Objects respond within 10s”
 Proposals for fixes e.g. [Cengarle and Knapp, 2002]

- **Reachability**: “After insert operation, node shall be reachable.”
 Fix: add transitive closure.
OCL Critique

- **Concrete Syntax**

 “The syntax of OCL has been criticized – e.g., by the authors of Catalysis [...] – for being hard to read and write.

 - OCL’s expressions are stacked in the style of Smalltalk, which makes it hard to see the scope of quantified variables.

 - Navigations are applied to atoms and not sets of atoms, although there is a collect operation that maps a function over a set.

 - Attributes, [...], are partial functions in OCL, and result in expressions with undefined value.” [Jackson, 2002]
Where Are We?
\[\varphi \in \text{OCL} \]

\[\mathcal{S} = (\mathcal{T}, \mathcal{C}, V, \text{atr}), \text{SM} \]

\[M = (\Sigma_{\mathcal{S}}, A_{\mathcal{S}}, \rightarrow_{\text{SM}}) \]

\[\pi = (\sigma_0, \varepsilon_0) \xrightarrow{\text{cons}_0, \text{Snd}_0} (\sigma_1, \varepsilon_1) \cdots \xrightarrow{u_0} w_\pi = ((\sigma_i, \text{cons}_i, \text{Snd}_i))_{i \in \mathbb{N}} \]

\[B = (Q_{SD}, q_0, A_{\mathcal{S}}, \rightarrow_{SD}, F_{SD}) \]

\[G = (N, E, f) \]

\[\mathcal{O} \mathcal{D} \]
Object Diagrams
Definition. A node-labelled graph is a triple

\[G = (N, E, f) \]

consisting of

- vertexes \(N \),
- edges \(E \),
- node labeling \(f : N \to X \), where \(X \) is some label domain,
Definition. Let D be a structure of signature $\mathcal{I} = (T, C, V, atr)$ and $\sigma \in \Sigma^D$ a system state.

Then any node-labelled graph $G = (N, E, f)$ where

- nodes are identities (not necessarily alive), i.e. $N \subset D(C)$ finite,
- edges correspond to “links” of objects, i.e.
 $$E \subseteq N \times \{v : \tau \in V \mid \tau \in \{C_{0,1}, C_* \mid C \in C\}\} \times N,$$
 $$\forall (u_1, r, u_2) \in E : u_1 \in \text{dom}(\sigma) \land u_2 \in \sigma(u_1)(r),$$
- objects are labelled with attribute valuations and non-alive identities with “X”, i.e.
 $$X = \{X\} \cup (V \rightarrow (D(T) \cup D(C_*))))$$
 $$\forall u \in N \cap \text{dom}(\sigma) : f(u) \subseteq \sigma(u)$$
 $$\forall u \in N \setminus \text{dom}(\sigma) : f(u) = \{X\}$$

is called object diagram of σ.

Object Diagram: Example

\[N \subset \mathcal{D}(\mathcal{C}) \text{ finite, } E \subset N \times V_{0,1,*} \times N, \quad X = \{X\} \cup (V \rightarrow (\mathcal{D}(\mathcal{T}) \cup \mathcal{D}(\mathcal{C}_*))) \]

\[\forall (u_1, r, u_2) \in E : u_1 \in \text{dom}(\sigma) \land u_2 \in \sigma(u_1)(r), \quad f(u) \subseteq \sigma(u) \text{ or } f(u) = \{X\} \]

\[\mathcal{I} = (\{\text{Int}\}, \{C\}, \{v_1 : \text{Int}, v_2 : \text{Int}, r : C_*\}, \{C \mapsto \{v_1, v_2, r\}\}), \quad \mathcal{D}(\text{Int}) = \mathbb{Z} \]

\[\sigma = \{u_1 \mapsto \{v_1 \mapsto 1, v_2 \mapsto 2, r \mapsto \{u_2\}\}, u_2 \mapsto \{v_1 \mapsto 3, v_2 \mapsto 4, r \mapsto \emptyset\}\} \]

• Then \(G = (N, E, f) \) with

\[N = \{(u_1, u_2)\}, \quad E = \{(u_1, r, u_2)\}, \quad f = \{u_1 \mapsto \{v_1 \mapsto 1, v_2 \mapsto 2\}, \quad u_2 \mapsto \{v_1 \mapsto 3, v_2 \mapsto 4\}\} \]
Object Diagram: Example

\[N \subset \mathcal{D}(\mathcal{C}) \text{ finite, } \quad E \subset N \times V_{0,1,*} \times N, \quad X = \{X\} \cup (V \to (\mathcal{D}(\mathcal{I}) \cup \mathcal{D}(\mathcal{C}_*))) \]

\[\forall (u_1, r, u_2) \in E : u_1 \in \text{dom}(\sigma) \land u_2 \in \sigma(u_1)(r), \quad f(u) \subseteq \sigma(u) \text{ or } f(u) = \{X\} \]

\[\mathcal{I} = (\{\text{Int}\}, \{C\}, \{v_1 : \text{Int}, v_2 : \text{Int}, r : C_*\}, \{C \mapsto \{v_1, v_2, r\}\}), \quad \mathcal{D}(\text{Int}) = \mathbb{Z} \]

\[\sigma = \{u_1 \mapsto \{v_1 \mapsto 1, v_2 \mapsto 2, r \mapsto \{u_2\}\}, u_2 \mapsto \{v_1 \mapsto 3, v_2 \mapsto 4, r \mapsto \emptyset\}\} \]

- Then \(G = (N, E, f) \) with

\[= (\{u_1, u_2\}, \{(u_1, r, u_2)\}, \{u_1 \mapsto \{v_1 \mapsto 1, v_2 \mapsto 2\}, u_2 \mapsto \{v_1 \mapsto 3, v_2 \mapsto 4\}\}, \]

is an object diagram of \(\sigma \) wrt. \(\mathcal{I} \) and any structure \(\mathcal{D} \) with \(\mathcal{D}(\text{Int}) \supseteq \{1, 2, 3, 4\} \).
Object Diagram: Example

\[N \subset \mathcal{D}(C) \text{ finite, } \quad E \subset N \times V_{0,1,*} \times N, \quad X = \{X\} \cup (V \rightarrow (\mathcal{D}(T) \cup \mathcal{D}(C_*))) \]

\[\forall (u_1, r, u_2) \in E : u_1 \in \text{dom}(\sigma) \land u_2 \in \sigma(u_1)(r), \quad f(u) \subseteq \sigma(u) \text{ or } f(u) = \{X\} \]

\[\mathcal{I} = (\{\text{Int}\}, \{C\}, \{v_1 : \text{Int}, v_2 : \text{Int}, r : C_*\}, \{C \mapsto \{v_1, v_2, r\}\}), \quad \mathcal{D}(\text{Int}) = \mathbb{Z} \]

\[\sigma = \{u_1 \mapsto \{v_1 \mapsto 1, v_2 \mapsto 2, r \mapsto \{u_2\}\}, u_2 \mapsto \{v_1 \mapsto 3, v_2 \mapsto 4, r \mapsto \emptyset\}\} \]

- Then \(G = (N, E, f) \) with

\[= (\{u_1, u_2\}, \{(u_1, r, u_2)\}, \{u_1 \mapsto \{v_1 \mapsto 1, v_2 \mapsto 2\}, u_2 \mapsto \{v_1 \mapsto 3, v_2 \mapsto 4\}\}, \]

is an object diagram of \(\sigma \) wrt. \(\mathcal{I} \) and any structure \(\mathcal{D} \) with \(\mathcal{D}(\text{Int}) \supseteq \{1, 2, 3, 4\} \).

- Node: we may equivalently (!) represent \(G \) graphically as follows:
Object Diagrams: More Examples?

N \subset \mathcal{D}(C) \text{ finite}, \quad E \subset N \times V_{0,1,*} \times N, \quad X = \{X\} \cup (V \mapsto (\mathcal{D}(\mathcal{T}) \cup \mathcal{D}(\mathcal{C}_*)))

\forall (u_1, r, u_2) \in E : u_1 \in \text{dom}(\sigma) \land u_2 \in \sigma(u_1)(r), \quad f(u) \subseteq \sigma(u) \text{ or } f(u) = \{X\}

\mathcal{S} = (\{\text{Int}\}, \{C, D\}, \{x : \text{Int}, p : C_{0,1}, n : C_\ast\}, \{C \mapsto \{p, n\}, D \mapsto \{x\}\}), \mathcal{D}(\text{Int}) = \mathbb{Z}

\sigma = \{1_C \mapsto \{p \mapsto \emptyset, n \mapsto \{5_C\}\}, 5_C \mapsto \{p \mapsto \emptyset, n \mapsto \emptyset\}, 1_D \mapsto \{x \mapsto 23\}\}

\checkmark \text{ obj. diagram for } \sigma

\times \text{ not an obj. diag. of } \sigma

\checkmark
Definition. Let \(G = (N, E, f) \) be an object diagram of system state \(\sigma \in \Sigma_D \).

We call \(G \) **complete** wrt. \(\sigma \) if and only if

- \(G \) is **object complete**, i.e. \(G \) consists of all alive objects, i.e. \(N \supseteq \text{dom}(\sigma) \),
- \(G \) is **attribute complete**, i.e. \(G \) comprises all “links” between alive objects, i.e. if \(u_2 \in \sigma(u_1)(r) \) for some \(u_1, u_2 \in \text{dom}(\sigma) \) and \(r \in V \), then \((u_1, r, u_2) \in E \), and
- each node is labelled with the values of all \(T \)-typed attributes, i.e. for each \(u \in \text{dom}(\sigma) \),

\[
f(u) = \sigma(u)|_{V_T} \cup \{ r \mapsto (\sigma(u)(r) \setminus N) \mid r \in V : \sigma(u)(r) \setminus N \neq \emptyset \}
\]

where \(V_T := \{ v : \tau \in V \mid \tau \in \mathcal{T} \} \).

Otherwise we call \(G \) **partial**.
Complete vs. Partial Examples

- \(N = \text{dom}(\sigma) \), if \(u_2 \in \sigma(u_1)(r) \), then \((u_1, r, u_2) \in E\),
- \(f(u) = \sigma(u)|_{V_T} \cup \{r \mapsto (\sigma(u)(r) \setminus N) \setminus \sigma(u)(r) \setminus N\} \)

Complete or partial?

\[
\sigma = \{1_C \mapsto \{p \mapsto \emptyset, n \mapsto \{5_C\}\}, 5_C \mapsto \{p \mapsto \emptyset, n \mapsto \emptyset\}, 1_D \mapsto \{x \mapsto 23\}\}
\]

- \(1_C : C \)
 \[
 \begin{array}{l}
 p = \emptyset \\
 n = \{5_C\}
 \end{array}
 \]

- \(5_C : C \)
 \[
 \begin{array}{l}
 n = \emptyset \\
 p = \emptyset
 \end{array}
 \]

- \(1_D : D \)
 \[
 \begin{array}{l}
 x = 23
 \end{array}
 \]

- \(1_C : C \)
 \[
 \begin{array}{l}
 p = \emptyset \\
 n = \emptyset
 \end{array}
 \]

- \(5_C : C \)
 \[
 \begin{array}{l}
 n = \emptyset \\
 p = \emptyset
 \end{array}
 \]

- \(1_D : D \)
 \[
 \begin{array}{l}
 x = 23
 \end{array}
 \]

Complete: \(\checkmark \)
Partial: \(\times \)
Special Notation

- \(\mathcal{S} = (\{\text{Int}\}, \{C\}, \{n, p : C_*\}, \{C \mapsto \{n, p\}\}) \).

- Instead of

 \[
 1_C : C \quad 5_C : C \quad n \quad 1_C : C
 \]

 we want to write

 \[
 1_C : C \quad 5_C : C \quad n \quad 1_C : C
 \]

 \[
 p = \emptyset \quad n = \emptyset
 \]

 or

 \[
 1_C : C \quad 5_C : C \quad n \quad 1_C : C
 \]

 \[
 p \quad n
 \]

 to explicitly indicate that attribute \(p : C_* \) has value \(\emptyset \) (also for \(p : C_{0,1} \)).
Complete/Partial is Relative

- **Claim:**
 - Each finite system state has **exactly one complete** object diagram.
 - A finite system state can have **many partial** object diagrams.

- Each object diagram G represents a set of system states, namely

$$G^{-1} := \{ \sigma \in \Sigma^{\mathcal{D}} | G \text{ is an object diagram of } \sigma \}$$

- **Observation:**
 - If somebody **tells us**, that a given (consistent) object diagram G
 - is **meant to be complete**,
 - and if it is not inherently incomplete (e.g. missing attribute values),
 then we can uniquely reconstruct the corresponding system state.
 In other words: G^{-1} is then a singleton.
Find the 10 differences! (Both diagrams are meant to be complete.)

Definition. Let σ be a system state. We say attribute $v \in V_{0,1,*}$ has a dangling reference in object $u \in \text{dom}(\sigma)$ if and only if the attribute’s value comprises an object which is not alive in σ, i.e. if

$$\sigma(u)(v) \not\subset \text{dom}(\sigma).$$

We call σ closed if and only if no attribute has a dangling reference in any object alive in σ.

Observation: Let G be the (!) complete object diagram of a closed system state σ. Then the nodes in G are labelled with \mathcal{T}-typed attribute/value pairs only.
UML Object Diagrams
UML Notation for Object Diagrams

\[id : class \]

\[v_1 = d_1 \]
\[\vdots \]
\[v_n = d_n \]

We assume:
- different “boxes”
- different identities

We assume: different “boxes”
- different identities

optional

mandatory

“compartment”
optional

optional
We slightly deviate from the standard (for reasons):

- In the course, $C_{0,1}$ and C_\ast-typed attributes **only** have sets as values. UML also considers multisets, that is, they can have $u_1 : C_{u_2} : C$

- We allow to give the valuation of $C_{0,1}$- or C_\ast-typed attributes in the **values compartment**.

- Allows us to indicate that a certain r is not referring to another object.

- Allows us to represent “dangling references”, i.e. references to objects which are not alive in the current system state.

- We introduce a graphical representation of \emptyset values.
References

