14-12-04

Software Design, Modelling and Analysis in UML

Lecture 11: Core State Machines I

2014-12-04

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitit Freiburg, Germany

The Rest

Recapitulation: Consider the following association:

(r: (roley : Cy, 1, Pr, &1, v1,01), -, (roleq = Co, i, Poy &ny Vny 00))

e Association name r and role names/types
role;/C; induce extended system states \.

o Multiplicity y is considered in OCL syntax.

o Visibility £/Navigability v: well-typedness.

Now the rest:

o Multiplicity j: we propose to view them as constraints.
« Properties P;: even more typing.

» Ownership o: getting closer to pointers/references.

« Diamonds: exercise.

428

Contents & Goals

Last Lecture:

o Associations (up to some rest)

This Lecture

o Educational Objectives: Capabilities for following tasks/questions.

= What does this State Machine mean? What happens if | inject this event?
= Can you please model the following behaviour.

* What is: Signal, Event, Ether, Transformer, Step, RTC

o Content:

track

o Associations cont'd, back to m:

» Core State Machines
o UML State Machine syntax

0 248
Visibility o,
Visibility of role-names is tfeated similar to attributes, by typing rules.
. . Ok
Question: given -¢)<
¢ o elfg.c.cole T oK
1 o
xm. Jole e

is the following OCL expression well-typed or not (wrt. visi
context C'inv : self.role.xz > 0
Basically the same rule as before (similar for other multiplicities):

role(w) L TC = TD p=0.lorp=1,

role(expry(w)): 7¢ = Tp p=0.1orpu=1, expri(w) : 7c,
w:Te,, and Cp = Coré =+

3 (ro...(role:D,p, &), ...(role' : C,_,

Associations: The Rest

Navigability

Navigability is similar to visibility: expressions over non-navigable association
ends (v = x) are basically type-correct, but forbidden.

role

is the following OCL expression well-typed or not (wrt. naviga

Question: given

context D inv : self.role.z > 0

The standard says: navigation is...

. ..possible o>

.efficient o 'x": ..not possible

So: In general, UML associations are different from pointers/ references!

But: Pointers/references can faithfully be modelled by UML associations.

The Rest of the Rest

Recapitulation: Consider the following association:

e Asso

(r: (roley : C1, i, P, &1,v1,01), - ., (rolen = Co, i, Po,yén, vy 0n))

tion name r and role names/types
role; /C; induce extended system states A.

Multiplicity 1 is considered in OCL syntax.

Visibility ¢/Navigability v: well-typedness.

Now the rest:

Multiplicity y: we propose to view them as constraints.
Properties P;: even more typing.
Ownership o: getting closer to pointers/references.

Diamonds: exercise.

Multiplicities as Constraints Example

15y (role) = context C inv
(N1 < role =>size() < N) or ... or (Nay—1 < role ->size() < Nox)

Inv(CD) =

o fomdet C e Ylolepelily o Lpkpoeltl?, (¢)

10748

Multiplicities as Constraints

Recall: The mul

Proposal: View mul

Recall: we can normalize each mul

a term of the form:

(N, M € IN)

iplicity 4 to the form

M= NiNa, oo Nypo1. Ny

where N; < Niyi for 1 <i <2k, Ni,.o..,Nop 1 €N, Nop € NU{x}.

84
Why Multiplicities as Constraints?
More precise, can't we just use types? (cf. Slide 26)
o u=0.1p=1
many programming language have direct ct d (the first corresponds to
type pointer, the second to type reference) — therefore treated specially.
o p=x%

could be represented by a set data-structure type without fixed bounds — no
problem with our approach, we have jioct = true anyway.

p=0.3: 3

use array of size ¥ — if model behaviour (or the implementation) adds 5th
we'll get a runtime error, and thereby see that the constraint is violated.
Principally acceptable, but: checks for array bounds everywhere...?
pn=>5.7:

could be represented by an array of size 7 — but: few programming
languages/data structure libraries allow lower bounds for arrays (other than 0).
If we have 5 identities and the model behaviour removes one, this should be a
violation of the constraints imposed by the model.

The implementation which does this removal is wrong. How do we see this...?

11/

Multiplicities as Constraints

s (except 0..1, 1) as additional invariants/constraints.

WNay ooy NogoroNak
(Nop 1 €N, Ny € NU{}.

=
where N; < Nijy for 1 <i <2k, N,

Define 5, (role) := context C'inv :

(Ny < role => <.or (Nggoy < role =>size() <

omit if Naj = =

e (role! 1 Cy L),) EV or
s {role: Do,y),...) € Virole # role'.

. Toe u=0° Cordal Cinv: ol Is Unkefpmel (oLe)

And define

11ScL (role) == context C'inv : not(oclisUndefined(role))

for each 1= 1.

Note: in n-ary associations with n > 2, there is redundancy.

Multiplicities Never as Types...?

Well, if the target platform is known and fixed,
and the target platform has, for instance,

o reference types,

o range-checked arrays with positions 0, ...

* set types,

then we could simply restrict the syntax of multipl
p=1]0.N |

and don't think about constraints
(but use the obvious 1-to-1 mapping to types)...

©In general, unfortunately, we don't know.

Multiplicities as Constraints of Class Diagram Properties Properties

We don't want to cover association properties in detail,

We don’t want to cover association properties in det:

Recall/Later: X X .) X
only some observations (assume binary associations): only some observations (assume binary associations):
€% ={CD,,....CD,}
\ (8] / _u.Snm;,\ _=E_:_W: - . Semantical Effect _U.Buma _:..:_..,M.: - . Semantical Effect
signature #(€2) invariants In(% %) unique one object has at most one r-link to a . unique one object has at most one r-link to a .
- ~_ single other object current setting single other object current setting
basic distinguish extended bag one object may have multiple r-links to | have ~ A(r) yield bag one object may have multiple r-links to have A(r) yield
(classes and a single other object multi-sets a single other object multi-sets
attributes) . an r-link is a sequence of object identi- | have A(r) yield se- an r-link is a sequence of object identi- have A(r) yield se-
n é it uamxmm‘/ ties (possibly including duplicates) quences ordered, ties (possibly including duplicates) quences
\ -
does ot allow - o
From now on: /nv(¢'7) = {constraints occurring in notes} U T%‘ (role) | . .
. ocL LYY TR) Property OCL Typing of expression role(ezpr)
oy @ § unique Tp = Set(rc)
i bag Tp — Bag(7c)
. ordered, sequence 7p — Seq(7¢)

For subsets, redefines, union, etc. see [OMG, 2007a, 127].

¢ ._ ole : Dy,), (role’ : C, .y, -,),...) €V or
: (oo (role! : Cyoyyy)y {r0le = Dty),) €V = sy
g role # role’, i ¢ {0..1}}. o |3 fsept

T 13/28 14/28 1418
Ownership Back to the main track:
7 - Recall: on some earlier slides we said, the extension of the signature is only
to study associations in “full beauty”..
For the remainder of the course, we should look for something simpler.
Intuitively it says:
. Proposal:
Back to the Main Track -
1. o from now on, we only use associations of the form
's stored inside C object and provided by o).
X 0.1
So: if multiplicity of role is 0..1 or 1, then the picture above is very close to concepts (i) 7 c T& D 7
of pointersreferences. o.%
Actually, ownership is seldom seen in UML diagrams. Again: if target platform is (i) 7 c T|26 D 7
role

clear, one may well live without (cf. [OMG, 2007b, 42] for more details).

(And we may omit the non-navigability and ownership symbols.)

¢ Not clear to me:
o Form (i) introduces role : Cy, and form (ii) introduces role : C in V.

o In both cases, role € atr(C).

» We drop A and go back to our nice o with o(u)(role) C Z(D).

15, 0 16/

OCL Constraints in (Class) Diagrams

Where Shall We Put OCL Constraints?

(i) Particular dedicated places in class diagrams: (behav. feature: later)

Where Shall We Put OCL Constraints?

T8 BIUY deumets
(i) Notes.
(ii) Particular dedicated places.

(i) Notes: m&&w ex)

A UML note is a picture of the form

can principally be everything, in particular comments and constraints.

Sometimes, content is expl

itly classified for clarity:

1848 b epr 19/

Invariants of a Class Diagram

o Let CD be a class diagram.

o As we (now) are able to recognise OCL constraints when we see them, we
can define
Inv(CD)

as the set {¢1,..., ¢} of OCL constraints occurring in notes in CD —
after unfolding all abbreviations (cf. next slides).

o As usual: InV(€9) = Uepego Inv(CD).

o Principally clear: Inv(-) for any kind of diagram.

OCL in Notes: Conventions

stands for

context C'inv : expr

20/48
Invariant in Class Diagram Example
If €% consists of only CD with the single class C, then
o InV(¢7) = Inv(CD) =,
7 234

Constraints vs. Types

Semantics of a Class Diagram Pragmatic

Find the 10 differences:
A set of class diagrams 4’7 with invariants Inv(% %) describes the structure [¢
|2t {z=3Vva>17}
of system states. 7
Together with the invariants it can be used to state:

Recall: a UML model is an image or pre-image of a software system.

2(T) = {3}
U{neN|n>1T}

Definition. Let €% be a set of class diagrams.
We say, the semantics of 7 is the signature it induces and the
set of OCL constraints occurring in ¢’%, denoted

o =4 is well-typed in the left context, a system state satisfying z = 4
violates the constraints of the diagram.

e & =4 is not even well-typed in the right context, there cannot be a system

[69] = (#(€2), In(%P)).

* Pre-image: Dear programmer, please provide an implementation which
uses only system states that satisfy Inv(4'7).

Given a structure Z of . (and thus of %), the class diagrams de-

scribe the system states £%, of which some may satisfy In(¢'2). Post-if) intai in the existi t I t
7 ¢ rost-image: Uear :mm«\Az\‘_m_: ainer, in the existing system, only system state with o(u)(z) = 4 because o(u)(z) is supposed to be in Z(T) (by
states which satisfy Inv(¢'7) are used.
definition of system state).
In pictures: —
(The exact meaning of “use” will become clear when we study behaviour — intuitively: the system states that

Rule-of-thumb:

are reachable from the initial system state(s) by calling methods or firing transitions in state-machines.)

' €7 ={CDi.. .
3) _— / 3 Example: highly abstract model of traffic lights controller. o If something “feels like” a type (one criterion: has a natural
signature (€' 7) invariants In(¢'%) . ' " i
3 \ / ,ﬁl 2 pm—— correspondence in the application domain), then make it a type.
3 basic distinguish extended i ! e If something is a requirement or restriction of an otherwise useful type,
(classes and ! then make it a constraint.
b attributes) 24718 25/48 26/48
UML State Machines Roadmap: Chronologically
Eln#0)/z:=z+Lin!F (i) What do we (have to) cover? shile dhat doyine
51 2 o UML State Machine Diagrams Syntax.
Lo
Flz:=0 /ni=0 % (ii) Def. Signature with signals. e ke omice
Def.: Core state machine. ~. v.WW
B

(iv) Map UML State Machine Diagram:
to core state machines.

UML State Machines Brief History:

Semantics:
The Basic Causality Model

Def.: Ether (aka. event pool) Y 5 Y
Def.: System configuration. !

-

nowadays also in Matlab/Simulink, etc.
From UML 1x on: State Machines (in S Gueé Digprans)
(not the official name, but understood: UML-Statecharts)

Late 1990's: tool Rhapsody with code-generation for state machi

. Event.
: Transformer. o
Transition system, computation

< (x) Transition relation induced by core state machine. bﬁ
g (N

= Note: there is a common core, but each dialect interprets some constructs
Def.: step, run-to-completion step.

' subtly different [Crane and Dingel, 2007]. (Would be too easy otherwise. ..)
7 284

14-

Later: Hierarchical state machines, 2040

T 2748

11 - 2014-12:04 - main

UML State Machines: Syntax

30748

Signature With Signals

2.04 - Sstmsyn

11 - 2014

Definition. A tuple
S =(Z.€, V. atr, &), & C € a set of signals,
is called signature (with signals) if and only if
(7,€,V,atr)

is a signature (as before).

Note: Thus conceptually, a signal is a class and can have attributes of plain
type and associations.

32/48

11 - 2014-12-04 - Sstmsyn -

UML State-Machines: What do we have to cover?

[
S e e

3148
Signature With Signals: Example
Ao,m{g ﬁmii
£ ¥
of x: €
[T —7
— o |
Y (1, fEERS, \
Mx.;sm\ n“N{ r

£ {Cra,EngFrfeid, cb i),
feFel)
T 3348

1120141204 - Sstmsyn -

UML State-Machines: What do we have to cover?

P]
e, et sesiston i s v S v

22| Proven approach:

Start out simple, consider the essence, namely

"« basic/leaf states

255 e transitions,

then extend to cover the complicated rest.

™

L — e

Core State Machine

Definition.
A core state machine over signature ./ = (Z,6,V, atr,&) is a
tuple

M = (S,50,~)
where
© S is a non-empty, finite set of (basic) states,
o 50 € S is an initial state, &% 0" datunting
e and Shike X B \\ &%
Oea CSx(£U{})xE Acty xS
‘an?mfi\v\ X (£ U{}) x Expry x Act. 5 X
& trigger guard action

is a labelled transition relation.

We assume a set Ezpr ., of boolean expressions (may be OCL, may
be something else) and a set Act of actions over ..

1120141204 - Sstmsyn

3148

From UML to Core State Machines: By Example

_Um n annot

annot = | (event)["’ (event)]* [[{guard) '] ['/' (action)]]
with
o event € &,
o guard € Expr, (default: true, assumed to be in Expr)
o action € Acty (default: skip, assumed to be in Act»)
* maps to

3 M(SM) = ({s :@T/m_\q (s1, event, guard, action, s3))

S s0 -

References

Crane and Dingel, 2007] Crane, M. L. and Dingel, J. (2007). UML vs.
classical vs. rhapsody statecharts: not all models are created equal.
Software and Systems Modeling, 6(4):415-435.

[Harel, 1987] Harel, D. (1987). Statecharts: A visual formalism for complex
systems. Science of Computer Programming, 8(3):231-274.

[Harel et al., 1990] Harel, D., Lachover, H., et al. (1990). Statemate: A
working environment for the development of complex reactive systems.
IEEE Transactions on Software Engineering, 16(4):403-414.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure,
version 2.1.2. Technical Report formal/07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure,
version 2.1.2. Technical Report formal/07-11-02.

[Stérrle, 2005] Stérrle, H. (2005). UML 2 fiir Studenten. Pearson Studium

