2014-12:16

3

Software Design, Modelling and Analysis in UML

Lecture 13: Core State Machines 111

2014-12-16

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitit Freiburg, Germany

Contents & Goals

Last Lecture:
 Basic causality model
o Ether

This Lecture:

o Educational Objectives: Capal

* What does this State Machine mean? What happens if | inject this event?

» Can you please model the following behaviour.
o What is: Signal, Event, Ether, Transformer, Step, RTC.

« Content:
» System configuration
o Transformer
» Examples for transformer

ies for following tasks/questions.

System Configuration, Ether, Transformer

15.3.12 StateMachine oma, 2007, 563

_Ether aka. Event Pool Ether: Examples

« £
‘m) Gy
.
© A (single, global, shared, reliable) FIFO queue is an ether.
« Bin= (D)X D)X ey £= o), bl lme)
T ek of d pike soumcs s Guef care)xD@)

« The order of dequeuing is not defined,
leaving open the possibility of modeling
different priority-based schemes.

Definition. Let . = (Z,%,V, atr, &) be a signature with signals
and 7 a structure.

We call a tuple (Eth, ready, &, &, an ether over . and 7 if

* Run-to-completion may be implemented

i i et woud dn o £ ov=
and only if it provides ?»._m iyt :&Q. el o M&& o ready{ (ve)o€ v) uﬁm\bx ¥ CE rhley) o in various ways. [...]
o a ready operation which yields a set of m\m_z that 3¢ ready for a given o olgwe)=elue) T «.VTJ/?&
object, i.e. o ooz,) = Mw\ﬁii x“ﬂ o(fl=c 55

ready : Eth x 9(€) — 27€)

* a operation to Fumﬂ%;.%ﬁﬁm&.ﬂ:’& nm_‘fw ‘mr\muw__wwm.an ie.
& ve o evet pw/ 5’
@ : Bth x 9(€) x 9(&) — Eth

e all ge] peiis fne o g Hoele

One FIFO queue per active object is an ether.

§

Lossy queue (& becomes a relation then).

© a operation to remove an event, .
&N €a ‘n
© : Bth x 9(8) — Eth

One-place buffer.

« Priority queue.

 Multi-queues (one per sender).

© an operation to clear the ether for a given object,

o Trivial example: sink, “black hole”.

: Bth x 9(6) — Eth.

460

Ether and [OMG, 2007b]

The standard nguishes, e.g., SignalEvent [OMG, 2007b, 450],
Reception [OMG, 2007b, 447].

A signal event represents the receipt of an asynchronous signal instance.
A signal event may, for example, cause a state machine to trigger a
transition. [OMG, 2007b, 449] [..]

Semantic Variation Points

The means by which requests are transported to their target depend on
the type of requesting action, the target, the properties of the
communication medium, and numerous other factors.

In some cases, this is instantaneous and completely reliable while in
others it may involve transmission delays of variable duration, loss of
requests, reordering, or duplication.

(See also the discussion on page 421.) [OMG, 2007b, 450]

Our ether is a general representation of the possible choices.

= Often seen minimal requirement: order of sending by one object is preserved
But: we'll later brieflv discuss “discarding” of events. !

Signals? Events...? Ether...?!

The idea is the following:

ignals are types (classes).

Instances of signals (in the standard sense) are kept in the system state
component o of system configurations (o, ¢).

Identities of signal instances are kept in the ether.

Each signal instance is in particular an event — somehow “a recording that
this signal occurred” (without caring for its identity)

The main difference between signal instance and event:

Events don’t have an identity.

o Why is this useful? In particular for reflective descriptions of behaviour, we
are typically not interested in the identity of a signal instance, but only

whether [, and which parameters it carries.

2014-

960

Events Are Instances of Signals

(Zo. %0, Vo, atr, &) and let E € & be a signal.

Let atr(E) = {v1,...,vn}. We cal
e= (B, {v1 - di,...,vn > dn}),
or shorter (if mapping is clear from context)
(B, (dy,. .- dy)) or (E,d),

an event (or an instance) of signal £ (if type-consistent).

We use Euvs(&y, Zo) to denote the set of all events of all signals in .% wrt.

Definition. Let %, be a structure of the signature with signals .%, =

Dy.

% As we always try to maximize confusion.

" By our existing naming convention, u € 7(E) is also called instance of the
= (signal) class F in system configuration (7, ¢) if u € dom(c)
o The corresponding event is then (E, o(u)).

“1a-

System Configuration

Definition. Let .% = (%, %o, Vo, atro, &) be a
structure of .7, (Eth, ready, &, &, an ether over . and Z.
Furthermore assume there is one core state machine AM¢ per class C' € €.

A system configuration over ., %o, and Eth is a pair

for el cliss (0,€) € 2% x Eth

U {(stc : Sa

Me
U {(paramsg : Eo1,+,0,0) | E € &,

{C > atro(C) \E
U {stable, stc} U {paramsy | E € &3} | C € &Jn,\ Sy)

: o shiles of b wadine of chis
3 © 2= U{Sye ~ S(Mc) | C € %} and SE wily oy losks . S

ignature with signals, 7 a

,+,50,0) | C €€ of clss &

o o(u)(r) N 2(4s) = 0 for each u € dom(c) and 1 € Vp.€ insbawcy ar i pov

8/60

5.

10760

o (B

< sl ¥
N a%3 g/
Bl)

é:

det el

(y,2%)

o
(s¢) E?E

System Configuration: Example

o = (F. o, Vo, atro, 8), Do; (0,€) € 5% x Eth where
G |0 7= A0S |Cet) G,
Vi U {(stable : Bool,—, true,0)} U {(stc : Spre, +,50.0) | C € €}
U {(paramsyg : Eo,1.+,0,0) | E € &},
{C = atro(C) U {stable, stc} U {paramsy; | E € &} | C € €}, &)
mmT ° 7= U{Sy, — S(Mc) | C € €}, and
 o(u)(r) N Z(&) = 0 for each u € dom(o) and r € V.

$=fiud, Fe(fhe2atlutsns,
Tt ? fdem, 1CET,
ke, <, Su,a.bi ed
o) uishide: 8al§
stw. v sk se}
Faih, v mm.wmur
i ter) (LT ol e
i permesg, P,
Enid,

serl) 5 C (ue!

System Configuration Step-by-Step

f

13

o We start with some signature with signals ., = (%, 6y, Vj, atrg. &).

o A system configuration is a pair (o, =) which
comprises a system state o wrt. % (not wrt. .#3).

o Such a system state o wrt. .’ provides, for each object u € dom(|

» values for the explicit attributes in Vp,
o values for a number of implicit attributes, namely

o a stability flag, i.e. o(u)(stable) is a boolean value,

« a current (state machine) state, i.e. o(u)(st) denotes one of the
states of core state machine M¢,

* a temporary association to access event parameters for each class,
i.e. o(u)(paramsy) is defined for each E € &.

« For convenience require: there is no link to an event except for paramsp.

12/60

Why Transformers?

2014-

13

o Recall the (simplified) syntax of transition annotations:

[Cevent) ([(guard) '] [/ (action)]]

annot

o Clear: (event) is from & of the corresponding signature.
o But: What are (guard) and (action)?

= UML can be viewed as being in exp
(providing (guard)) and action language (providing (action)).

Examples:

o Expression Language:
« OCL
o Java, C++, ... expressions

Action Language:
* UML Action Semantics, “Executable UML"
o Java, C++, ...statements (plus some event send action)

. 15/60

014-12-16 - Sstmsenf -

Stability

Eln #0)/x =

e ?
Where are we' G

Fla:=0

Definition.

Let (0,€) be a system configuration over some %, %, Eth. Wanted: a labelled transition relation

We call an object u € dom(c) N Z(%p) stable in o if and only if

(0, ¢) Leons51d (o)
5

o(u)(stable) = true.
on system configuration, labelled with the consumed and sent events,

(o', €') being the result (or effect) of one object u, taking a transition of
s state machine from the current state machine state o(u,)(stc).

« Have: system configuration (o,) comprising current state machine state
and stability flag for each object, and the ether.

* Plan:

(i) Introduce transformer as the semantics of action annotions
Intuitively, (0',¢’) is the effect of applying the transformer
of the taken transition.
(i) Explain how to choose transitions depending on & and when to stop taking

y”, 13/60 transitions — the run-to-completion “algorithm”. 14/60
Transformer < feeho. & el na dotvism Transformers as Abstract Actions! | =yt
oL
Definition. In the following, we assume that we're given H?&\SL =
Let MW\ the set of mMWmNS nnﬁ_w_:mzo:m over some .%, %, Eth. « an expression language Eapr for guards, and , if Hﬂwwwm@ii
We call a relation Q&M&WR&. M&u»m\ © an action language Act for actions, ez kﬂxﬁ%!:ﬂ
tS 9(8) x (EF x Bth) A\M/U\NM\XF\@I_\,NV “n and that we're given V. c\nk&&n\\t :cd&«

216 - Strafo -

~13- 2014

G0
a (system configuration) :.mzmmo(qliv‘qﬂf «\.«%t\&r
bnfore ecer, Ae achn

© a semantics for boolean expressions in form of a partial function

I[-1(-,) : Bapr — (2 x 9(€) + B)
In the following, we assume that each application of a transformer ¢ to some
system configuration (a ¢) for object «, is associated with,a set of observations
dof wadl—, _\..}wn.ikr\, o of ten,
Obs[u,](o,¢) € w@,.ixﬁwvxms%: {24 L D) X P (€1 Gy buhtoahn)
T ™ Nt ggobals o
An observation (g, e, (E.d), was) € Obsi[us)(0,2) " conde
represents the information that, as a
an event (1) (E,d) has been sent from . to uy

which evaluates expressions in a given system configuration,

Assuming I to be partial is a way to treat “undefined” during runtime. If I is not defined
by), we want to go

(for instance because of dangli fe e igation or divis
to a desi ‘error” system ic

L
&
&

o a transformer for each action: for each act € Act, we assume to have

Special cases: creation/destruction. ‘ taet € 2(€) x (£% x Eth) x (£% x Eth)

Expression/Action Language Examples

2014-12-16 - Strafo

3

We can make the assumptions from the previous slide
because instances exist:

for OCL, we have the OCL semantics from Lecture 03. Simply remove the
pre-images which map to “1".

for Java, the operational semantics of the SWT lecture uniquely defines

t for of Java

We distinguish the following kinds of transformers:
 skip: do nothing — recall: this is the default action

send: modifies ¢ — interesting, because state machines are built around
sending/consuming events

create/destroy: modify domain of o — not specific to state machines, but let's
discuss them here as we're at it

update: modify own or other objects’ local state — boring

18/60

Transformer: Skip

abstract syntax concrete syntax
skip skip
intuitive semantics
do nothing
well-typedness

semantics

tluz)(0,€) = {(e,€)}

Obssyspluz)(o,e) =0

observables

(error) conditions

21/60

A Simple Action Language

_s#ﬁ}ﬁ:&

Aoty = 1 sl
v Qm&»\p\%& v, eﬂiv _ Oy, el man_\m_\\m
v fsid (uptr, €, €30, | uph, o, coctey, Eeil
U et (Cupi,v) | CECNE, v, €0LEngn, ve VS
<I§§m§u | e € QL Gpe|

W}hb& optas i (s &t 1t2)
o viz nw &;
o (vl -

Transformer: Update

abstract syntax concrete syntax
update(ezpry, v, €xpry) Pl oV 1= Gplz
intuitive semantics
Update attribute v in the object denoted by expry to the
value denoted by expr,.
well-typedness oz T S
eapry i 7¢ and v: 7€ atr(C,
capry, expry obey visibility and navigability

L)

1 where o' = o[u = o (u)[v — I[ezpry](o, &) with L cabu

oLt w=Ieapry] (0. G By U.&.L& A
observables okt t

“ Obsupanso(erpry ey lic] = 0 & AN %)

(error) conditions
Not defined if I[ezpry](c,4) or I[ezpra](c.u) not defined.

“ia-

1960

semantics elld ors uot
tuptsse(espr ey [12] (0,€) = {(o", T} cheepe

22/60

Transformer Examples: Presentation

abstract syntax concrete syntax
op
intuitive semantics

well-typedness

semantics
((0,€),(0",€")) € top[ua] iff ...
or
topluz)(0,2) = {(",=")] where

observables
Obsoplus] = {...}, not a relation, depends on choice
(error) conditions

Not defined if ...

References

Harel and Gery, 1997] Harel, D. and Gery, E. (1997). Executable object
modeling with statecharts. IEEE Computer, 30(7):31-42.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure,
version 2.1.2. Technical Report formal/07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure,
version 2.1.2. Technical Report formal/07-11-02.

