Software Design, Modelling and Analysis in UML

Lecture 13: Core State Machines III

2014-12-16

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany
Contents & Goals

Last Lecture:
- Basic causality model
- Ether

This Lecture:
- **Educational Objectives:** Capabilities for following tasks/questions.
 - What does this State Machine mean? What happens if I inject this event?
 - Can you please model the following behaviour.
 - What is: Signal, Event, Ether, Transformer, Step, RTC.

- **Content:**
 - System configuration
 - Transformer
 - Examples for transformer
System Configuration, Ether, Transformer
Definition. Let $\mathcal{S} = (\mathcal{T}, \mathcal{C}, V, atr, \mathcal{E})$ be a signature with signals and \mathcal{D} a structure.

We call a tuple $(Eth, \text{ready}, \oplus, \ominus, [\cdot])$ an ether over \mathcal{S} and \mathcal{D} if and only if it provides

- a ready operation which yields a set of events that are ready for a given object, i.e.
 \[\text{ready} : Eth \times \mathcal{D}(\mathcal{C}) \to 2^{\mathcal{D}(\mathcal{E})} \]

- a operation to insert an event destined for a given object, i.e.
 \[\oplus : Eth \times \mathcal{D}(\mathcal{C}) \times \mathcal{D}(\mathcal{E}) \to Eth \]

- a operation to remove an event, i.e.
 \[\ominus : Eth \times \mathcal{D}(\mathcal{E}) \to Eth \]

- an operation to clear the ether for a given object, i.e.
 \[[\cdot] : Eth \times \mathcal{D}(\mathcal{C}) \to Eth. \]
Ether: Examples

- A (single, global, shared, reliable) FIFO queue is an ether:
 - \(\text{Eth} = (\mathcal{D}(\mathcal{E}) \times \mathcal{D}(\mathcal{E}))^* \) e.g. \(\mathcal{E} = (\text{v}, \text{e}_1), (\text{v}, \text{f}_1), (\text{w}, \text{e}_2) \)
 - the set of all finite sequences of pairs \((\text{u}, \text{e}) \in \mathcal{D}(\mathcal{E}) \times \mathcal{D}(\mathcal{E}) \)
 - \(\text{ready}(\text{v}, \text{e}_1) \cap \text{v} = \text{u} \text{ then } \text{ready}(\text{e}, \text{v}) = \emptyset \)
 - \(\Theta(\epsilon, \text{f}) = \epsilon \text{ empty seq.} \)
 - \([\cdot] \): remove all \((\text{u}, \text{e}) \) pairs from a given sequence

- One FIFO queue per active object is an ether.
- Lossy queue (\(\oplus \) becomes a relation then).
- One-place buffer.
- Priority queue.
- Multi-queues (one per sender).
- Trivial example: sink, “black hole”.
- ...
15.3.12 StateMachine [OMG, 2007b, 563]

- The order of dequeuing is not defined, leaving open the possibility of modeling different priority-based schemes.
- Run-to-completion may be implemented in various ways. [...]
Ether and [OMG, 2007b]

The standard distinguishes, e.g., **SignalEvent** [OMG, 2007b, 450], **Reception** [OMG, 2007b, 447].

On **SignalEvents**, it says

> A signal event represents the receipt of an asynchronous signal instance. A signal event may, for example, cause a state machine to trigger a transition. [OMG, 2007b, 449] [...]

Semantic Variation Points

The means by which requests are transported to their target depend on the type of requesting action, the target, the properties of the communication medium, and numerous other factors.

In some cases, this is instantaneous and completely reliable while in others it may involve transmission delays of variable duration, loss of requests, reordering, or duplication.

(See also the discussion on page 421.) [OMG, 2007b, 450]

Our **ether** is a general representation of the possible choices. **Often seen minimal requirement**: order of sending by one object is preserved. But: we’ll later briefly discuss “discarding” of events.
Definition. Let \mathcal{D}_0 be a structure of the signature with signals $\mathcal{I}_0 = (\mathcal{T}_0, \mathcal{C}_0, V_0, atr_0, \mathcal{E})$ and let $E \in \mathcal{E}_0$ be a signal.

Let $atr(E) = \{v_1, \ldots, v_n\}$. We call

$$e = (E, \{v_1 \mapsto d_1, \ldots, v_n \mapsto d_n\}),$$

or shorter (if mapping is clear from context)

$$(E, (d_1, \ldots, d_n)) \text{ or } (E, \vec{d}),$$

an event (or an instance) of signal E (if type-consistent).

We use $Evs(\mathcal{E}_0, \mathcal{D}_0)$ to denote the set of all events of all signals in \mathcal{I}_0 wrt. \mathcal{D}_0.

As we always try to maximize confusion...:

- By our existing naming convention, $u \in \mathcal{D}(E)$ is also called instance of the (signal) class E in system configuration (σ, ε) if $u \in \text{dom}(\sigma)$.
- The corresponding event is then $(E, \sigma(u))$.

\[
\begin{align*}
\mathcal{C} & \quad \langle \text{signal} \rangle \quad E \\
& \quad x : \text{int} \quad a : \text{bool} \\
\end{align*}
\]

\[
\begin{align*}
\sigma : & \quad \{ v : \text{C} \} \\
2 \exists \xi : E & \quad x = 13 \\
& \quad a = \text{true} \\
\end{align*}
\]

\[
\begin{align*}
\mathcal{M}_i : & \quad E \quad [\text{produce} \quad \exists x \geq 0] \\
& \quad (v, 2 \exists \xi) \\
\end{align*}
\]

\[
\begin{align*}
\sigma, \xi & \quad \text{do get identity} \\
\{ 2 \exists \xi : E, x = 13, a = \text{true} \} & \quad \{ \ldots \} \\
\end{align*}
\]

\[
\begin{align*}
(\sigma, \xi) & \quad \xrightarrow{u} (\sigma', \xi') \\
\text{which object} & \quad \text{takes trans. edge} \\
\end{align*}
\]
Signals? Events...? Ether...?!

The idea is the following:

- **Signals** are types (classes).

- **Instances of signals** (in the standard sense) are kept in the system state component \(\sigma \) of system configurations \((\sigma, \varepsilon)\).

- **Identities** of signal instances are kept in the ether.

- Each signal instance is in particular an event — somehow “a recording that this signal occurred” (without caring for its identity).

- The main difference between **signal instance** and **event**:

 Events don’t have an identity.

- Why is this useful? In particular for reflective descriptions of behaviour, we are typically not interested in the identity of a signal instance, but only whether it is an “E” or “F”, and which parameters it carries.
System Configuration

Definition. Let $S_0 = (T_0, C_0, V_0, atr_0, E)$ be a signature with signals, D_0 a structure of S_0, $(Eth, ready, \oplus, \ominus, [\cdot])$ an ether over S_0 and D_0. Furthermore assume there is one core state machine M_C per class $C \in C$.

A system configuration over S_0, D_0, and Eth is a pair $(\sigma, \varepsilon) \in \Sigma_D \times Eth$

where

- $S = (T_0 \cup \{S_{MC} \mid C \in C\}, C_0,$
- $V_0 \cup \{\langle stable : Bool, -, true, \emptyset \rangle\}$
- $\cup \{\langle st_C : S_{MC}, +, s_0, \emptyset \rangle \mid C \in C\}$
- $\cup \{\langle params_E : E_{0,1}, +, \emptyset, \emptyset \rangle \mid E \in E\}$,
- $\{C \mapsto atr_0(C)$$
- \cup \{stable, st_C\} \cup \{params_E \mid E \in E\} \mid C \in C\}$,
- $E_0)$
- $D = D_0 \cup \{S_{MC} \mapsto S(M_C) \mid C \in C\}$, and
- $\sigma(u)(r) \cap D(E) = \emptyset$ for each $u \in \text{dom}(\sigma)$ and $r \in V_0$.

Additional notes:

- A new type for each class.
- If Bool & T_0 then add it and have $D(\text{Bool}) = \text{B}$.
- Initial state of state machine S_{MC}.
- Initial state of state machine MC.
- Set of states of state machine of class C.
- The only links to S_{MC} instances are via params.
System Configuration: Example

\[S_0 = (T_0, C_0, V_0, atr_0, \mathcal{C}), D_0; \quad (\sigma, \varepsilon) \in \Sigma_\mathcal{G} \times Eth \text{ where} \]

- \(S = (T_0 \cup \{S_{MC} \mid C \in \mathcal{C}\}, C_0, V_0 \cup \{\langle stable : \text{Bool}, -, \text{true}, \emptyset \rangle \} \cup \{\langle st_C : S_{MC}, +, s_0, \emptyset \rangle \mid C \in \mathcal{C} \}
\cup \{\langle params_E : E_{0,1}, +, \emptyset, \emptyset \rangle \mid E \in \mathcal{E}_0 \},
\{C \mapsto atr_0(C) \cup \{stable, st_C\} \cup \{params_E \mid E \in \mathcal{E}_0 \} \mid C \in \mathcal{C}, \mathcal{E}_0\}
\]

- \(D = D_0 \cup \{S_{MC} \mapsto S(M_C) \mid C \in \mathcal{C}\}, \text{ and} \)

- \(\sigma(u)(r) \cap D(\mathcal{E}_0) = \emptyset \) for each \(u \in \text{dom}(\sigma) \) and \(r \in V_0. \)
We start with some signature with signals $\mathcal{I}_0 = (\mathcal{I}_0, \mathcal{C}_0, V_0, atr_0, \mathcal{E})$.

A **system configuration** is a pair (σ, ε) which comprises a system state σ wrt. \mathcal{I} (not wrt. \mathcal{I}_0).

Such a **system state** σ wrt. \mathcal{I} provides, for each object $u \in \text{dom}(\sigma)$,

- values for the **explicit attributes** in V_0,
- values for a number of **implicit attributes**, namely
 - a **stability flag**, i.e. $\sigma(u)(\text{stable})$ is a boolean value,
 - a **current (state machine) state**, i.e. $\sigma(u)(st)$ denotes one of the states of core state machine M_C,
 - a temporary association to access **event parameters** for each class, i.e. $\sigma(u)(\text{params}_E)$ is defined for each $E \in \mathcal{E}$.

For convenience require: there is **no link to an event** except for params_E.
Definition.
Let (σ, ε) be a system configuration over some I_0, D_0, Eth.

We call an object $u \in \text{dom}(\sigma) \cap D(C_0)$ **stable in σ** if and only if

$$\sigma(u)(\text{stable}) = \text{true}.$$
Where are we?

- **Wanted**: a labelled transition relation

\[
(\sigma, \varepsilon) \xrightarrow{(\text{cons}, \text{Snd})}_{u_x} (\sigma', \varepsilon')
\]

on system configuration, labelled with the **consumed** and **sent** events,

\((\sigma', \varepsilon')\) being the result (or effect) of **one object** \(u_x\) taking a transition of **its** state machine from the current state machine state \(\sigma(u_x)(st_C)\).

- **Have**: system configuration \((\sigma, \varepsilon)\) comprising current state machine state and stability flag for each object, and the ether.

- **Plan**:

 (i) Introduce **transformer** as the semantics of action annotations. **Intuitively**, \((\sigma', \varepsilon')\) is the effect of applying the transformer of the taken transition.

 (ii) Explain how to choose transitions depending on \(\varepsilon\) and when to stop taking transitions — the **run-to-completion “algorithm”**.
Why Transformers?

- **Recall** the (simplified) syntax of transition annotations:

 \[
 \text{annot ::= [\langle \text{event} \rangle [\[' \langle \text{guard} \rangle \']] \['/\] \langle \text{action} \rangle]]}
 \]

- **Clear**: \langle \text{event} \rangle is from \(\mathcal{E} \) of the corresponding signature.

- **But**: What are \langle \text{guard} \rangle and \langle \text{action} \rangle?

 - UML can be viewed as being **parameterized** in **expression language** (providing \langle \text{guard} \rangle) and **action language** (providing \langle \text{action} \rangle).

 - **Examples**:
 - **Expression Language**:
 - OCL
 - Java, C++, ... expressions
 - ...
 - **Action Language**:
 - UML Action Semantics, "Executable UML"
 - Java, C++, ... statements (plus some event send action)
 - ...
Definition.
Let Σ^D the set of system configurations over some I_0, D_0, Eth.
We call a relation

$$t \subseteq D(C) \times (\Sigma^D \times Eth) \times (\Sigma^D \times Eth)$$

a (system configuration) transformer.

- In the following, we assume that each application of a transformer t to some system configuration (σ, ε) for object u_x is associated with a set of observations $Obs_t[u_x](\sigma, \varepsilon) \in 2^{D(C) \times D(E) \times \text{Evs}(E \cup \{*,+\},D) \times D(C)}$.

- An observation $(u_{src}, u_e, (E, \vec{d}), u_{dst}) \in Obs_t[u_x](\sigma, \varepsilon)$ represents the information that, as a “side effect” of u_x executing t, an event (!) (E, \vec{d}) has been sent from u_{src} to u_{dst}.

Special cases: creation/destruction.
Transformers as Abstract Actions!

In the following, we assume that we’re given

- an expression language $Expr$ for guards, and
- an action language Act for actions,

and that we’re given

- a semantics for boolean expressions in form of a partial function

\[I[\cdot](\cdot, \cdot) : Expr \rightarrow (\Sigma_F \times D(C) \rightarrow \mathbb{B}) \]

which evaluates expressions in a given system configuration,

Assuming I to be partial is a way to treat “undefined” during runtime. If I is not defined (for instance because of dangling-reference navigation or division-by-zero), we want to go to a designated “error” system configuration.

- a transformer for each action: for each $act \in Act$, we assume to have

\[t_{act} \subseteq D(C) \times (\Sigma_F \times Eth) \times (\Sigma_F \times Eth) \]
We can make the assumptions from the previous slide because **instances exist**:

- for OCL, we have the OCL semantics from Lecture 03. Simply remove the pre-images which map to “⊥”.
- for Java, the operational semantics of the SWT lecture uniquely defines transformers for sequences of Java statements.

We distinguish the following kinds of transformers:

- **skip**: do nothing — recall: this is the default action
- **send**: modifies ε — interesting, because state machines are built around sending/consuming events
- **create/destroy**: modify domain of σ — not specific to state machines, but let’s discuss them here as we’re at it
- **update**: modify own or other objects’ local state — boring
A Simple Action Language

In the following we use

\[
\text{Act}_y := \{ \text{skip} \}
\]

\[
\cup \{ \text{update}(\text{exp}_1, v, \text{exp}_2) \mid \text{exp}_1, \text{exp}_2 \in \text{OCLExp}, v \in V \}
\]

\[
\cup \{ \text{send}(\text{exp}_1, E, \text{exp}_2) \mid \text{exp}_1, \text{exp}_2 \in \text{OCLExp}, E \in E \}
\]

\[
\cup \{ \text{create}(C, \text{exp}_1, v) \mid C \in C \setminus E, \text{exp}_1 \in \text{OCLExp}, v \in V \}
\]

\[
\cup \{ \text{destroy}(\text{exp}) \mid \text{exp} \in \text{OCLExp} \}
\]

\[
\text{Exp}_y : \text{OCL expressions}
\]

if \((\text{new } C \neq \text{NULL})\) ...

\[
v := \text{new } C;
\]

if \((v \neq \text{NULL})\) ...
Transformer Examples: Presentation

<table>
<thead>
<tr>
<th>abstract syntax</th>
<th>concrete syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{op})</td>
<td>(\text{op})</td>
</tr>
</tbody>
</table>

Intuitive Semantics

...

Well-typedness

...

Semantics

\[
((σ, ε), (σ', ε')) \in t_{\text{op}}[u_x] \text{ iff } ...
\]

or

\[
t_{\text{op}}[u_x](σ, ε) = \{(σ', ε')\} \text{ where } ...
\]

Observables

\[
\text{Obs}_{\text{op}}[u_x] = \{\ldots\}, \text{ not a relation, depends on choice}
\]

Error Conditions

Not defined if ...
Transformer: Skip

<table>
<thead>
<tr>
<th>abstract syntax</th>
<th>concrete syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>skip</code></td>
<td><code>skip</code></td>
</tr>
</tbody>
</table>

Intuitive Semantics

do nothing

Well-typedness

./.

Semantics

\[
t[u_x](\sigma, \varepsilon) = \{(\sigma, \varepsilon)\}
\]

Observables

\[
Obs_{\text{skip}}[u_x](\sigma, \varepsilon) = \emptyset
\]

(Error) Conditions

...
Transformer: Update

abstract syntax

\[
\text{update}(\text{expr}_1, v, \text{expr}_2)
\]

concrete syntax

\[
\text{expr}_1 \cdot v := \text{expr}_2
\]

intuitive semantics

Update attribute \(v\) in the object denoted by \(\text{expr}_1\) to the value denoted by \(\text{expr}_2\).*

well-typedness

\[
\text{expr}_1 : \tau_C \quad \text{and} \quad v : \tau \in \text{atr}(C) ; \quad \text{expr}_2 : \tau ;
\]

\(\text{expr}_1, \text{expr}_2\) obey visibility and navigability.

semantics

\[
\begin{align*}
\text{t}_{\text{update}}(\text{expr}_1, v, \text{expr}_2)[u_x](\sigma, \varepsilon) &= \{ (\sigma', \varepsilon) \} \\
\text{where} \quad \sigma' &= \sigma[u \mapsto \sigma(u)[v \mapsto I[\text{expr}_2](\sigma, v_x)]] \quad \text{with} \\
& \quad u = I[\text{expr}_1](\sigma, v_x) \quad \text{(object denoted by expr1 (refrigerator to } v_x)\text{)}
\end{align*}
\]

observables

\[
\text{Obs}_{\text{update}}(\text{expr}_1, v, \text{expr}_2)[u_x] = \emptyset
\]

error conditions

Not defined if \(I[\text{expr}_1](\sigma, v_x)\) or \(I[\text{expr}_2](\sigma, v_x)\) not defined.

- Change local state of object \(u\)
References
