2015-01-08

15

Software Design, Modelling and Analysis in UML

Lecture 15: Hierarchical State Machines [

o Cole Stale Macives ¥

2015-01-08

Q

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitit Freiburg, Germany

Transformer: Create

abstract syntax concrete syntax
create(C, expr,v) exprev 1z wwC
intuitive semantics
Create an object of class C' and assign it to attribute v of the
object denoted by expression expr.
well-typedness
expr: p, v € atr(D),
atr(C) = {{vf : 7, expr®) | 1 <i <n}
semantics

observables

(error) conditions
I[eapr?](o, u) not defined for some i.

0 Nor: x = (w O)x b d)s;

PN Gl (09

i NEEDEd: uap, 1= hew &

“15-

Contents & Goals

Last Lecture:
« RTC-Rules: Discard, Dispatch, Commence, (& Step, RTC

This Lecture:

o Educational Objectives: Capal s for following tasks/questions.

» What does this State Machine mean? What happens if | inject this event?
« Can you please model the following behaviour.

* What is: initial state

* What does this hierarchical State Machine mean? What may happen if |
ject this event?

» What is: AND-State, OR-State, pseudo-state, entry/exit/do, final state, ..

o Content:
o Transformer: Create and Destroy, Divergence
o Putting It All Together

o Hierarchical State Machines Syntax
2/a2

Transformer: Create

abstract syntax concrete syntax
create(C, expr.v)

Create an object of class C' and assign it to attribute v of the
object denoted by expression expr
well-typedness
expr: Tp, v € atr(D),
atr(C) = {(vi : i, expr?) [1< i < n}
semantics

observables

(error) conditions
I[eapr?] (o, u) not defined for some i

« We use an “and assign”-action for simplicity — it doesn’t add or remove ex-
pressive power, but moving creation to the expression language raises all kinds
of other problems such as order of evaluation (and thus creation)

» Also for simplicity: no parameters to construction (~ parameters of constructor).
Adding them is straightforward (but somewhat tedious).

Missing Transformers: Create and Destroy

Create Transformer Example

SMe:

/R = new CERD

create(C, eapr,v)

teraate(Cieaprin) U] (0,€) = ..

o

I

Create Transformer Example

SMc: /R = new O

create(C, capr, v)

2)(0,6) = -

tereate(C,cxpr,

| ok
: ~00k) @
2 (won- dit: Lo

Transformer: Destroy

abstract syntax concrete syntax
destroy(expr
¥ (epr) dolefe o
ive semantics
Destroy the object denoted by expression expr.
well-typedness

inte

expr:7c, C€C
semantics

observables \J chstoctnn.,

Obsgestroy(tte] = {(ua, L, (+,0),u)}
(error) conditions [y
I[eapr](o, u;) not defined.

How To Choose New Identities?

* Re-use: choose any identity that is not alive now,

e
» Doesn't depend on history. X &\Q
2,

e May "undangle” dangling references — may happen on some platforms. <

» Fresh: choose any identity that has not been alive ever, i.e. not in dom
and any predecessor in current run.
o Depends on history.
o Dangling references remain dangling — could mask “dirty” effects of
platform.

“15-

6/42

Destroy Transformer Example

SMe: [[Raetete =

=

destroy(ezpr)

taastroy(espr) U] (@,€) = ..o [

0 902

Transformer: Create

abstract syntax concrete syntax
create(C, expr,v)
intuitive semantics
Create an object of class C' and assign it to attribute v of the
object denoted by expression expr.
well-typedness
7p, v € atr(D),

exp

semantics

i olject %wup.P 'y

and d; € 9(r,) otherwise (non-determinism).

bles —— cetey

w)}

ok | (error) conditions R —aef d
I[eapr](0, uz) not defined.

(e oy

What to Do With the Remaining Objects?

will -

Cis-

Assume object uy is nmm:ovﬁn&. vz -

may still refer to it via association n \
"

g references?

o or remove g from o (u1)(n)?

* object ug may have been the last one linking to object us:
 leave uy alone?
© or remove uy also?

o Plus: (temporal extensions of) OCL may have dangling references.

Our choice:
This is in line with “expect the worst”, because there are target platforms which
don't provide garbage collection — and models shall (in general) be correct without
assumptions on target platform.

Dangling references and no garbage collection!

But: the more “dirty” effects we see in the model, the more expensive it often is to
analyse. Valid proposal for simple analysis: monotone frame semantics, no
destruction at

Transformer: Destroy Notions of Steps: The Step

abstract syntax concrete syntax Note: we call one evolution (0,2) ———— (o”,') a step.
destroy(expr)
intuitive semantics
Destroy the object denoted by expression expr.
well-typedness

(cons,Snd)
u

Thus in our setting, a step directly corresponds to
one object (namely u) takes a single transition between regular states.
coprimc, CEC Step and Run-to-completion Step (We have to extend the concept of “single transition” for hierarchical state machines.)

tlug)(o,€) = (o', €) *._\L..? hicha That is: We're going for an interleaving semantics without true parallelism.
where 0" = 0| qom(o) (a) With u = I[eapr] (o, us). Remark: With only methods (later), the notion of step is not so clear.
observables For example, consider
Obsaestroy[tia] = {(ua, L, (+,0),u)} o o cal
(error) conditions
Iexpr](o, uz) not defined.

semantics

£() at ¢, which calls gO) at ¢; which in turn calls h() for co.

o Is the completion of h() a step?

o Or the completion of £()?

 Or doesn't it play a role?

It does play a role, because constraints /invariants are typically (= by convention)
assumed to be evaluated at step boundaries, and sometimes the convention is meant
to admit (temporary) violation in between steps. 13/2

1
-1

1122 12142

Notions of Steps: The Run-to-Completion Step Notions of Steps: The RTC Step Cont’d Divergence

Proposal: Let

What is a run-to-completion step...? We say, object u can diverge on reception cons from (local

configuration

o Intuition: a maximal sequence of steps, where the first step is a dispatch (00, 20) LeomsniSndn), - LeomsnaSndn 1) (g, 0(u) if and only if there is an infinite, consecutive sequence
step and all later steps are commence steps. o Un—1 (conso,Sndo) cons1,Sndy
» Note: one step corresponds to one transition in the state machine. be a finite (1), non-empty, maximal, consecutive sequence such that (0,20} (on,e1)
A run-to-completion step is in general not syntacically definable — one © object u is alive in oy, such that u doesn't become stable again.
transition may be taken multiple times during an RTC-step. o ug = u and (conso, Sndy) indicates dispatching to u, i.e. cons = {(u, & d)},
[x>03 Ai=x-17 o there are no receptions by u in between, i.e.
Example: * Note: disappearance of object not considered in the definitions.

cons; N {u} x Bus(&,97) =0,i>1, 2 B
By the current definitions, it’s neither divergence nor an RTC-step.

e D

 w,_1 =uand uis stable only in oo and 7.,

0(u)(stable) = 0, (u) (stable) = 1 and o;(u)(stable) = 0 for 0 < i < n,

Let 0= k; < ky < - < ky = n be the maximal sequence of indices such that
i, = ufor 1 <i < N. Then we call the sequence

g (00(u) =) o1, (u),0ky (1) -, Oy (1) (= Onr(u))

2015-01-08

T 14/22 “ a(!) run-to-comple

n computation of u (from (local) configuration oo(u)). 1. 2 16/

Run-to-Completion Step: Discussion.

What people may
global and non-compo:

In the projection onto a single object we still see the effect of interaction with

other objects.

Adding classes (or even objects) may change the divergence behaviour of existing
ones

Compositional would be: the behaviour of a set of objects is determined by the
behaviour of each object “in isolation
Our semantics and notion of RTC-step doesn’t have this (often desired) property.

Can we give (syntactical) criteria such that any global run-to-completion step
is an interleaving of local ones?

Maybe: Strict interfaces. (Proof left as exercise.

o (A): Refer to private features only via “se
(Recall that other objects of the same class can modify p

o (B): Let objects only communicate by events, i.e.
don't let them modify each other's local state via links at all.

ate attributes.)

References

410

Crane and Dingel, 2007] Crane, M. L. and Dingel, J. (2007). UML vs. classical vs.
rhapsody statecharts: not all models are created equal. Software and Systems
Modeling, 6(4):415-435.

[Damm et al., 2003] Damm, W., Josko, B., Votintseva, A., and Pnueli, A. (2003). A
formal semantics for a UML kernel language 1.2. 1ST/33522/WP
1.1/D1.1.2-Partl, Version 1.2

[Fecher and Schénborn, 2007] Fecher, H. and Schénborn, J. (2007). UML 2.0 state
machines: Complete formal semantics via core state machines. In Brim, L.,
Haverkort, B. R., Leucker, M., and van de Pol, J., editors, FMICS/PDMC, volume
4346 of LNCS, pages 244-260. Springer.

[Harel and Kugler, 2004] Harel, D. and Kugler, H. (2004). The rhapsody semantics
of statecharts. In Ehrig, H., Damm, W., GroBe-Rhode, M., Reif, W., Schnieder, E.,
and Westkamper, E., editors, /i ion of Software i Te i for
Applications in Engineering, number 3147 in LNCS, pages 325-354
Springer-Verlag.

[OMG, 2007] OMG (2007). Unified modeling language: Superstructure, version
2.1.2. Technical Report formal /07-11-02

. [Stérrle, 2005] Stérrle, H. (2005). UML 2 fiir Studenten. Pearson Studium

42/42

