Software Design, Modelling and Analysis in UML

Lecture 15: Hierarchical State Machines I

or: Core State Machines V

2015-01-08

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany
Contents & Goals

Last Lecture:
- RTC-Rules: Discard, Dispatch, Commence, Step, RTC

This Lecture:
- Educational Objectives: Capabilities for following tasks/questions.
 - What does this State Machine mean? What happens if I inject this event?
 - Can you please model the following behaviour.
 - What is: initial state.
 - What does this hierarchical State Machine mean? What may happen if I inject this event?
 - What is: AND-State, OR-State, pseudo-state, entry/exit/do, final state, ...

- Content:
 - Transformer: Create and Destroy, Divergence
 - Putting It All Together
 - Hierarchical State Machines Syntax
Missing Transformers: Create and Destroy
Transformer: Create

<table>
<thead>
<tr>
<th>abstract syntax</th>
<th>concrete syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>create($C, expr, v$)</td>
<td>$\text{expr} \cdot v \leftarrow \text{new} \cdot C$</td>
</tr>
</tbody>
</table>

Intuitive Semantics

Create an object of class C and assign it to attribute v of the object denoted by expression $expr$.

Well-Typedness

\[
\text{expr} : \tau_D, \ v \in \text{atr}(D), \\
\text{atr}(C) = \{ (v_i : \tau_i, \text{expr}_i^0) \mid 1 \leq i \leq n \}
\]

Semantics

...

Observables

...

(Error) Conditions

\[I[\text{expr}_i^0](\sigma, u) \] not defined for some i.

So note: \[x := (\text{new} \cdot C).x + (\text{new} \cdot C).y; \]

If needed: \[\text{tmp}_1 := \text{new} \cdot C; \]
\[\text{tmp}_2 := \text{new} \cdot C; \]
\[x := \text{tmp}_1.x + \text{tmp}_2.y; \]

So note: \[\text{new} \cdot \text{Circle}(0.5); \]

If needed: \[\text{tmp} := \text{new} \cdot \text{Circle}; \]
\[\text{tmp} \cdot \text{in}(0.5); \]
Transformer: Create

<table>
<thead>
<tr>
<th>Abstract Syntax</th>
<th>Concrete Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>create(C, expr, v)</code></td>
<td><code>create(C, expr, v)</code></td>
</tr>
</tbody>
</table>

Intuitive Semantics

Create an object of class `C` and assign it to attribute `v` of the object denoted by expression `expr`.

Well-Typedness

\[
expr : \tau_D, \ v \in \text{atr}(D), \\
\text{atr}(C) = \{ \langle v_i : \tau_i, expr_i^0 \rangle | 1 \leq i \leq n \}
\]

Semantics

...

Observables

...

(Error) Conditions

\[I[expr_i^0](\sigma, u_x) \text{ not defined for some } i.\]

- We use an “and assign”-action for simplicity — it doesn’t add or remove expressive power, but moving creation to the expression language raises all kinds of other problems such as order of evaluation (and thus creation).
- Also for simplicity: no parameters to construction (\(\sim\) parameters of constructor). Adding them is straightforward (but somewhat tedious).
Create Transformer Example

\[S M_C : \]

\[s_1 \xrightarrow{\text{n := new } C} s_2 \]

\[
\text{create}(C, expr, v) \\
\quad t_{\text{create}(C,expr,v)}[u_x](\sigma, \varepsilon) = \ldots
\]

\[
\begin{array}{c}
\sigma: \\
\hline
\text{d : D} \\
\text{n = } \emptyset
\end{array}
\]

\[
\begin{array}{c}
\epsilon: \\
\end{array}
\]

\[
\begin{array}{c}
\text{d', D} \\
\text{13 e : C} \\
\text{x = 0} \\
\text{y = 3}
\end{array}
\]

\[
\begin{array}{c}
\text{d : D} \\
\text{14 e : C} \\
\text{x' = 0} \\
\text{y' = 3}
\end{array}
\]

\[
\begin{array}{c}
\text{d : D} \\
\text{x = 0} \\
\text{y = 3}
\end{array}
\]
Create Transformer Example

SM_C:

\[
\begin{align*}
\text{create}(C, \text{expr}, v) \\
t_{\text{create}}(C, \text{expr}, v)[u_x](\sigma, \varepsilon) &= \ldots
\end{align*}
\]

σ:

\[
\begin{array}{c}
d : D \\
n = \emptyset
\end{array}
\]

ε:

$\in D(C) \setminus \text{dom } \sigma$

(by init. value ε expression)

$\in D(x(y)) = D(\text{Int})$

(non-det. choice)
How To Choose New Identities?

- **Re-use**: choose any identity that is not alive now, i.e. not in \(\text{dom}(\sigma) \).
 - Doesn’t depend on history.
 - May “undangle” dangling references – may happen on some platforms.

- **Fresh**: choose any identity that has not been alive ever, i.e. not in \(\text{dom}(\sigma) \) and any predecessor in current run.
 - Depends on history.
 - Dangling references remain dangling – could mask “dirty” effects of platform.
Transformer: Create

<table>
<thead>
<tr>
<th>abstract syntax</th>
<th>concrete syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>create($C, expr, v$)</td>
<td></td>
</tr>
</tbody>
</table>

Intuitive Semantics

Create an object of class C and assign it to attribute v of the object denoted by expression $expr$.

Well-Typedness

$$expr : \tau_D, \; v \in \text{atr}(D), \quad \text{atr}(C) = \{ \langle v_i^1 : \tau_i^1, expr_0^i \rangle \mid 1 \leq i \leq n \}$$

Semantics

$$((\sigma, \varepsilon), (\sigma', \varepsilon')) \in t \iff \sigma' = \sigma[u_0 \mapsto \sigma(u_0)[v \mapsto u]] \cup \{ u \mapsto \{ v_i \mapsto d_i \mid 1 \leq i \leq n \} \}, \quad \varepsilon' = [u](\varepsilon); \quad u \in \mathcal{D}(C) \text{ fresh, i.e. } u \notin \text{dom}(\sigma);$$

$$u_0 = I[expr](\sigma, u_x); \quad d_i = I[expr_0^i](\sigma, u_x) \text{ if } expr_0^i \neq \star \quad \text{and } d_i \in \mathcal{D}(\tau_i) \text{ otherwise (non-determinism).}$$

Observables

$$\text{Obs}_{create}[u_x] = \{ (u_x, \bot, (*, \emptyset), u) \}$$

(Error) Conditions

$$I[expr](\sigma, u_x) \text{ not defined.}$$
Transformer: Destroy

<table>
<thead>
<tr>
<th>abstract syntax</th>
<th>concrete syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>destroy(expr)</code></td>
<td><code>delete expr</code></td>
</tr>
</tbody>
</table>

intuitive semantics

Destroy the object denoted by expression `expr`.

well-typedness

`expr : τ_C, C ∈ C`

semantics

\[
\text{observables}
\]

\[
\text{Obs}_{\text{destroy}}[u_x] = \{(u_x, \bot, (+, \emptyset), u)\}
\]

(error) conditions

\[
I[expr](\sigma, u_x) \text{ not defined.}
\]

\[
I[\ellbracket expr \rrbracket](\sigma, u_x) \text{ not defined.}
\]

\[
I[\ellbracket expr \rrbracket](\sigma, u_x) \text{ not defined.}
\]
SM_C:

\[t_{\text{destroy}(expr)[u_x]}(\sigma, \varepsilon) = \ldots \]

\[t_{\text{destroy}(expr)}[u_x](\sigma, \varepsilon) = \ldots \]

\[u \text{ is gone} \]

\[n \text{ is a dangling reference now} \]
What to Do With the Remaining Objects?

Assume object u_0 is destroyed by v_3.

- object u_1 may still refer to it via association n:
 - allow dangling references?
 - or remove u_0 from $\sigma(u_1)(n)$?

- object u_0 may have been the last one linking to object u_2:
 - leave u_2 alone?
 - or remove u_2 also?

- Plus: (temporal extensions of) OCL may have dangling references.

Our choice: Dangling references and no garbage collection!

This is in line with “expect the worst”, because there are target platforms which don’t provide garbage collection — and models shall (in general) be correct without assumptions on target platform.

But: the more “dirty” effects we see in the model, the more expensive it often is to analyse. Valid proposal for simple analysis: monotone frame semantics, no destruction at all.
Transformer: Destroy

<table>
<thead>
<tr>
<th>Abstract Syntax</th>
<th>Concrete Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>destroy(expr)</code></td>
<td><code>-- expr --</code></td>
</tr>
</tbody>
</table>

Intuitive Semantics

`Destroy the object denoted by expression expr.`

Well-Typedness

`expr : τ, C ∈ C`

Semantics

\[t[\text{ux}](\sigma, \varepsilon) = (\sigma', \varepsilon) \]

where \(\sigma' = \sigma|_{\text{dom}(\sigma)\setminus\{u\}} \) with \(u = I[expr](\sigma, \text{ux}) \).

Observables

\[\text{Obs}_{\text{destroy}}[\text{ux}] = \{(\text{ux}, \bot, (+, \emptyset), u)\} \]

(Error) Conditions

\(I[expr](\sigma, \text{ux}) \) not defined.
Step and Run-to-completion Step
Note: we call one evolution \((\sigma, \varepsilon) \xrightarrow{(cons, Snd)} u \xrightarrow{u} (\sigma', \varepsilon')\) a step.

Thus in our setting, a step **directly corresponds** to

one object (namely \(u\)) takes a **single transition** between regular states.

(We have to extend the concept of “single transition” for hierarchical state machines.)

That is: We’re going for an interleaving semantics without true parallelism.

Remark: With only methods (later), the notion of step is not so clear. For example, consider

- \(c_1\) calls \(f()\) at \(c_2\), which calls \(g()\) at \(c_1\) which in turn calls \(h()\) for \(c_2\).

- Is the completion of \(h()\) a step?
- Or the completion of \(f()\)?
- Or doesn’t it play a role?

It does play a role, because **constraints/invariants** are typically (＝ by convention) assumed to be evaluated at step boundaries, and sometimes the convention is meant to admit (temporary) violation in between steps.
Notions of Steps: The Run-to-Completion Step

What is a run-to-completion step...?

- **Intuition**: a maximal sequence of steps, where the first step is a dispatch step and all later steps are commence steps.
- **Note**: one step corresponds to one transition in the state machine.

A run-to-completion step is in general not syntactically definable — one transition may be taken multiple times during an RTC-step.

Example:

\[E[x > 0]/ \]

\[\sigma:\]
\[
\begin{array}{c}
: C \\
x = 2
\end{array}
\]

\[\varepsilon:\]
\[E \text{ for } u \]
Proposal: Let

\[
(\sigma_0, \varepsilon_0) \xrightarrow{(\text{cons}_0, \text{Snd}_0)} u_0 \ldots \xrightarrow{(\text{cons}_{n-1}, \text{Snd}_{n-1})} u_{n-1} \xrightarrow{(\sigma_n, \varepsilon_n), \ n > 0,}
\]

be a finite (!), non-empty, maximal, consecutive sequence such that

- object \(u \) is alive in \(\sigma_0 \),
- \(u_0 = u \) and \((\text{cons}_0, \text{Snd}_0)\) indicates dispatching to \(u \), i.e. \(\text{cons} = \{(u, \vec{v} \mapsto \vec{d})\} \),
- there are no receptions by \(u \) in between, i.e.

\[
\text{cons}_i \cap \{u\} \times \text{Evs}(\mathcal{E}, \mathcal{D}) = \emptyset, i > 1,
\]

- \(u_{n-1} = u \) and \(u \) is stable only in \(\sigma_0 \) and \(\sigma_n \), i.e.

\[
\sigma_0(u)(\text{stable}) = \sigma_n(u)(\text{stable}) = 1 \text{ and } \sigma_i(u)(\text{stable}) = 0 \text{ for } 0 < i < n,
\]

Let \(0 = k_1 < k_2 < \cdots < k_N = n \) be the maximal sequence of indices such that \(u_{k_i} = u \) for \(1 \leq i \leq N \). Then we call the sequence

\[
(\sigma_0(u) =) \sigma_{k_1}(u), \sigma_{k_2}(u) \ldots, \sigma_{k_N}(u) \quad (= \sigma_{n-1}(u))
\]

a (!) **run-to-completion computation** of \(u \) (from (local) configuration \(\sigma_0(u) \)).
Divergence

We say, object u can diverge on reception $cons$ from (local) configuration $\sigma_0(u)$ if and only if there is an infinite, consecutive sequence

$$(\sigma_0, \varepsilon_0) \xrightarrow{(cons_0, Snd_0)} (\sigma_1, \varepsilon_1) \xrightarrow{(cons_1, Snd_1)} \ldots$$

such that u doesn’t become stable again.

- **Note**: disappearance of object not considered in the definitions.
 By the current definitions, it’s neither divergence nor an RTC-step.
Run-to-Completion Step: Discussion.

What people may dislike on our definition of RTC-step is that it takes a global and non-compositional view. That is:

- In the projection onto a single object we still see the effect of interaction with other objects.
- Adding classes (or even objects) may change the divergence behaviour of existing ones.
- Compositional would be: the behaviour of a set of objects is determined by the behaviour of each object “in isolation”.

Our semantics and notion of RTC-step doesn’t have this (often desired) property.

Can we give (syntactical) criteria such that any global run-to-completion step is an interleaving of local ones?

Maybe: Strict interfaces. (Proof left as exercise...)

- (A): Refer to private features only via “self”.
 (Recall that other objects of the same class can modify private attributes.)
- (B): Let objects only communicate by events, i.e. don’t let them modify each other’s local state via links at all.
References

