Contents & Goals

Last Lecture:
- Hierarchical State Machine Syntax
- Entry/Exit Actions

This Lecture:
- Educational Objectives: Capabilities for following tasks/questions.
 - What does this State Machine mean? What happens if I inject this event?
 - Can you please model the following behaviour.
 - What does this hierarchical State Machine mean? What may happen if I inject this event?
 - What is: AND-State, OR-State, pseudo-state, entry/exit/do, final state, . . .

- Content:
 - Initial and Final State
 - Composite State Semantics
 - The Rest
Initial Pseudostates and Final States
Initial Pseudostate

Principle:
- When entering a region **without** a specific destination state,
- Then go to a state which is destination of an initiation transition,
- Execute the action of the chosen initiation transitions **between** exit and entry actions.

Special case: the region of *top*.
- If class *C* has a state-machine, then “create-*C* transformer” is the concatenation of
 - The transformer of the “constructor” of *C* (here not introduced explicitly) and
 - A transformer corresponding to one initiation transition of the top region.
Towards Final States: Completion of States

- Transitions without trigger can conceptionally be viewed as being sensitive for the “completion event”.
- Dispatching (here: E) can then alternatively be viewed as

 (i) fetch event (here: E) from the ether,
 (ii) take an enabled transition (here: to s_2),
 (iii) remove event from the ether,
 (iv) after having finished entry and do action of current state (here: s_2) — the state is then called completed —,
 (v) raise a completion event — with strict priority over events from ether!
 (vi) if there is a transition enabled which is sensitive for the completion event,
 - then take it (here: (s_2, s_3)).
 - otherwise become stable.
Final States

- If
 - a step of object u moves u into a final state (s, fin), and
 - all sibling regions are in a final state,
then (conceptionally) a completion event for the current composite state s is raised.

- If there is a transition of a **parent state** (i.e., inverse of $child$) of s enabled which is sensitive for the completion event,
 - then take that transition,
 - otherwise kill u

\leadsto adjust (2.) and (3.) in the semantics accordingly

- **One consequence:**
 u never “survives” reaching a state (s, fin) with $s \in child(top)$.
Composite States
(formalisation follows [Damm et al., 2003])
Composite States

- In a sense, composite states are about **abbreviation, structuring**, and **avoiding redundancy**.

- Idea: in Tron, for the Player’s Statemachine, instead of

 ![Diagram](https://via.placeholder.com/150)

 ![Diagram](https://via.placeholder.com/150)
Composite States

and instead of

\[\text{write} \]

\[n \quad fS \quad fE \quad fastN \]

\[F/ \quad F/ \quad F/ \]

\[w \quad e \quad s \]

\[fW \]

\[\text{slow} \quad \text{fast} \]

\[F/ \quad F/ \]
translates to

\[
\{(\text{top}, \text{st}), (s, \text{st}), (s_1, \text{st})(s'_1, \text{st})(s_2, \text{st})(s'_2, \text{st})(s_3, \text{st})(s'_3, \text{st})\},
\]

\[
S, \text{kind}
\]

\[
\{\text{top} \mapsto \{s\}, s \mapsto \{\{s_1, s'_1\}, \{s_2, s'_2\}, \{s_3, s'_3\}\}, s_1 \mapsto \emptyset, s'_1 \mapsto \emptyset, \ldots\},
\]

\[
\text{region}
\]

\[
\rightarrow, \psi, \text{annot}
\]
For brevity, we always consider transitions with (possibly) multiple sources and targets, i.e.

$$\psi : (\rightarrow) \rightarrow (2^S \setminus \emptyset) \times (2^S \setminus \emptyset)$$

For instance,

translates to

$$\tau_2 \mapsto (\{s_1\}, \{s_4\})$$

- Naming convention: $$\psi(t) = (\text{source}(t), \text{target}(t))$$.
Composite States: Blessing or Curse?

States:
- what are **legal state configurations**?
- what is the type of the implicit st attribute?

Transitions:
- what are **legal transitions** and edges?
- when is a transition enabled?
- what effects do transitions have?

- what may happen on E?
- what may happen on E, F?
- can E, G kill the object?
- ...

![Diagram of state transitions and configurations](image-url)
The type of st is from now on a set of states, i.e. $st : 2^S$.

A set $S_1 \subseteq S$ is called (legal) state configurations if and only if:

- $\text{top} \in S_1$, and
- for each state $s \in S_1$, for each non-empty region $\emptyset \neq R \in \text{region}(s)$, exactly one (non pseudo-state) child of s (from R) is in S_1, i.e.

\[|\{s_0 \in R \mid \text{kind}(s_0) \in \{st, fin\}\} \cap S_1| = 1. \]

Examples:

- $S = \{s_2\} \times (\text{top missing})$
- $S = \{s_2, \text{top}\} \times (\text{no child of top's region})$
- $S = \{\text{top}, s, s_2\} \checkmark$
The type of \(st \) is from now on **a set of** states, i.e. \(st : 2^S \).

A set \(S_1 \subseteq S \) is called (legal) **state configurations** if and only if

- \(top \in S_1 \), and
- for each state \(s \in S_1 \), for each non-empty region \(\emptyset \neq R \in \text{region}(s) \), exactly one (non pseudo-state) child of \(s \) (from \(R \)) is in \(S_1 \), i.e.

\[
|\{ s_0 \in R \mid \text{kind}(s_0) \in \{ st, \text{fin} \} \} \cap S_1 | = 1.
\]

Examples:

\[
S = \{ top, s_1, s_2, s_3 \} \checkmark
\]

NOTE: \(S \) can be abbreviated as

\[
\{ s_1, s_2, s_3 \}
\]
The substate- (or child-) relation induces a partial order on states:

- \(\text{top} \leq s \), for all \(s \in S \),
- \(s \leq s' \), for all \(s' \in \text{child}(s) \),
- transitive, reflexive, antisymmetric,
- \(s' \leq s \) and \(s'' \leq s \) implies \(s' \leq s'' \) or \(s'' \leq s' \).
The least common ancestor is the function $lca : 2^S \setminus \{\emptyset\} \rightarrow S$ such that

1. The states in S_1 are (transitive) children of $lca(S_1)$, i.e.

 $lca(S_1) \leq s$, for all $s \in S_1 \subseteq S$,

2. $lca(S_1)$ is minimal, i.e. if $\hat{s} \leq s$ for all $s \in S_1$, then $\hat{s} \leq lca(S_1)$

3. Note: $lca(S_1)$ exists for all $S_1 \subseteq S$ (last candidate: top).

![Diagram](image-url)
Two states \(s_1, s_2 \in S \) are called **orthogonal**, denoted \(s_1 \perp s_2 \), if and only if
- they are unordered, i.e. \(s_1 \not\leq s_2 \) and \(s_2 \not\leq s_1 \), and
- they “live” in different regions of an AND-state, i.e.

\[
\exists s, \text{region}(s) = \{S_1, \ldots, S_n\} \exists 1 \leq i \neq j \leq n : s_1 \in \text{child}^*(S_i) \land s_2 \in \text{child}^*(S_j),
\]
A set of states $S_1 \subseteq S$ is called **consistent**, denoted by $\downarrow S_1$, if and only if for each $s, s' \in S_1$,

- $s \leq s'$, or
- $s' \leq s$, or
- $s \perp s'$.
A hierarchical state-machine \((S, \text{kind}, \text{region}, \rightarrow, \psi, \text{annot})\) is called \textbf{well-formed} if and only if for all transitions \(t \in \rightarrow\),

(i) source and destination are consistent, i.e. \(\downarrow \text{source}(t)\) and \(\downarrow \text{target}(t)\),

(ii) source (and destination) states are pairwise orthogonal, i.e.

\[
\text{for all } s \neq s' \in \text{source}(t) \ (\in \text{target}(t)), \ s \perp s',
\]

(iii) the top state is neither source nor destination, i.e.

\[
\text{top} \notin \text{source}(t) \cup \text{source}(t).
\]

- Recall: final states are not sources of transitions.

\textbf{Example:}
References

