Software Design, Modelling and Analysis in UML

Lecture 19: Hierarchical State Machines III

2015-01-29

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany
Contents & Goals

Last Lecture:

- Initial and Final State
- Composite State Semantics started

This Lecture:

- **Educational Objectives:** Capabilities for following tasks/questions.
 - What does this State Machine mean? What happens if I inject this event?
 - Can you please model the following behaviour.
 - What does this **hierarchical** State Machine mean? What **may happen** if I inject this event?
 - What is: AND-State, OR-State, pseudo-state, entry/exit/do, final state, ...

- **Content:**
 - Composite State Semantics cont’d
 - The Rest
Composite States
(formalisation follows [Damm et al., 2003])
A Partial Order on States

The substate- (or child-) relation induces a partial order on states:

- \(\text{top} \leq s\), for all \(s \in S\),
- \(s \leq s'\), for all \(s' \in \text{child}(s)\),
- transitive, reflexive, antisymmetric,
- \(s' \leq s\) and \(s'' \leq s\) implies \(s' \leq s''\) or \(s'' \leq s'\).
Least Common Ancestor and Ting

- The least common ancestor is the function $lca : 2^S \setminus \{\emptyset\} \to S$ such that
 - The states in S_1 are (transitive) children of $lca(S_1)$, i.e.
 $$lca(S_1) \leq s, \text{ for all } s \in S_1 \subseteq S,$$
 - $lca(S_1)$ is minimal, i.e. if $\hat{s} \leq s$ for all $s \in S_1$, then $\hat{s} \leq lca(S_1)$
 - Note: $lca(S_1)$ exists for all $S_1 \subseteq S$ (last candidate: top).

![Diagram](image-url)
Least Common Ancestor and Ting

- Two states $s_1, s_2 \in S$ are called orthogonal, denoted $s_1 \perp s_2$, if and only if
 - they are unordered, i.e. $s_1 \not\leq s_2$ and $s_2 \not\leq s_1$, and
 - they “live” in different regions of an AND-state, i.e.
 $$\exists s, \text{region}(s) = \{S_1, \ldots, S_n\} \exists 1 \leq i \neq j \leq n : s_1 \in \text{child}^*(S_i) \land s_2 \in \text{child}^*(S_j),$$
A set of states $S_1 \subseteq S$ is called **consistent**, denoted by $\downarrow S_1$, if and only if for each $s, s' \in S_1$,

- $s \leq s'$, or
- $s' \leq s$, or
- $s \perp s'$.
A hierarchical state-machine \((S, \text{kind}, \text{region}, \rightarrow, \psi, \text{annot})\) is called **well-formed** if and only if for all transitions \(t \in \rightarrow\),

1. source and destination are consistent, i.e. \(\downarrow \text{source}(t)\) and \(\downarrow \text{target}(t)\),
2. source (and destination) states are pairwise orthogonal, i.e.
 - for all \(s \neq s' \in \text{source}(t) (\in \text{target}(t))\), \(s \perp s'\),
3. the top state is neither source nor destination, i.e.
 - \(\text{top} \notin \text{source}(t) \cup \text{target}(t)\).

- Recall: final states are not sources of transitions.

Example:
The Depth of States

- $\text{depth}(\text{top}) = 0$,
- $\text{depth}(s') = \text{depth}(s) + 1$, for all $s' \in \text{child}(s)$

Example:

\[\text{top} \quad 0 \]

\[s_1 \quad E/ \quad \text{t}_1 \quad s_2 \quad F/ \quad \text{t}_2 \quad s_3 \quad F/ \quad s_5 \quad G/ \quad s_6 \]

$\sigma(u)(s) = \{s_3, s_5\}$

$T = \{\text{t}_1, \text{t}_2\}$ is enabled in σ for u.
The **scope** ("set of possibly affected states") of a transition t is the **least common region** of $\text{source}(t) \cup \text{target}(t)$.

Two transitions t_1, t_2 are called **consistent** if and only if their scopes are orthogonal (i.e. states in scopes pairwise orthogonal).
Enabledness in Hierarchical State-Machines

- The scope ("set of possibly affected states") of a transition \(t \) is the least common region of

\[
source(t) \cup target(t).
\]

- Two transitions \(t_1, t_2 \) are called consistent if and only if their scopes are orthogonal (i.e. states in scopes pairwise orthogonal).

- The priority of transition \(t \) is the depth of its innermost source state, i.e.

\[
prio(t) := \max\{depth(s) \mid s \in source(t)\}
\]

- A set of transitions \(T \subseteq \rightarrow \) is enabled in an object \(u \) if and only if
 - \(T \) is consistent,
 - \(T \) is maximal wrt. priority,
 - all transitions in \(T \) share the same trigger,
 - all guards are satisfied by \(\sigma(u) \), and
 - for all \(t \in T \), the source states are active, i.e.

\[
source(t) \subseteq \sigma(u)(st) (\subseteq S).
\]
Transitions in Hierarchical State-Machines

- Let T be a set of transitions enabled in u.
- Then $(\sigma, \varepsilon) \rightarrow (\sigma', \varepsilon')$ if
 - $\sigma'(u)(st)$ consists of the target states of t,
 i.e. for simple states the simple states themselves, for composite states the initial states,
 - σ', ε', cons, and Snd are the effect of firing each transition $t \in T$ one by one, in any order, i.e. for each $t \in T$,
 - the exit transformer of all affected states, highest depth first,
 - the transformer of t,
 - the entry transformer of all affected states, lowest depth first.

\rightsquigarrow adjust (2.), (3.), (5.) accordingly.
The Concept of History, and Other Pseudo-States
History and Deep History: By Example

What happens on... (right after creating)

- R_s?
 - s_0, s_2
- R_d?
 - s_0, s_2
- A, B, C, S, R_s?
 - $s_0, s_1, s_2, s_3, susp, s_3$
- A, B, C, S, R_d?
 - $s_0, s_1, s_2, s_3, susp, s_3$
- A, B, C, D, E, S, R_s?
 - $s_0, s_1, s_2, s_3, s_4, s_5, susp, s_4$
- A, B, C, D, E, S, R_d?
Junction and Choice

- Junction ("static conditional branch"):
 - good: abbreviation
 - unfolds to so many similar transitions with different guards, the unfolded transitions are then checked for enabledness
 - at best, start with trigger, branch into conditions, then apply actions

- Choice: ("dynamic conditional branch")

Note: not so sure about naming and symbols, e.g., I’d guessed it was just the other way round... ;-)
Junction and Choice

- Junction ("static conditional branch"):
 - **good**: abbreviation
 - unfolds to so many similar transitions with different guards, the unfolded transitions are then checked for enabledness
 - at best, start with trigger, branch into conditions, then apply actions

- Choice: ("dynamic conditional branch")
 - **evil**: may get stuck
 - enters the transition **without knowing** whether there’s an enabled path
 - at best, use “else” and convince yourself that it cannot get stuck
 - maybe even better: **avoid**

Note: not so sure about naming and symbols, e.g., **I'd guessed** it was just the other way round... ;-)
Hierarchical states can be "folded" for readability. (but: this can also hinder readability.)

Can even be taken from a different state-machine for re-use.
Hierarchical states can be “folded” for readability. (but: this can also hinder readability.)

Can even be taken from a different state-machine for re-use.

Entry/exit points

- Provide connection points for finer integration into the current level, than just via initial state.

Semantically a bit tricky:

- **First** the exit action of the exiting state,
- **then** the actions of the transition,
- **then** the entry actions of the entered state,
- **then** action of the transition from the entry point to an internal state,
- and **then** that internal state’s entry action.

Terminate Pseudo-State

- When a terminate pseudo-state is reached, the object taking the transition is immediately killed.
Deferred Events in State-Machines
Deferred Events: Idea

For ages, UML state machines comprises the feature of deferred events.

The idea is as follows:

- Consider the following state machine:

```
\[ s_1 \xrightarrow{E/} s_2 \xrightarrow{F/} s_3 \]
```

- Assume we’re stable in \(s_1 \), and \(F \) is ready in the ether.
- In the framework of the course, \(F \) is discarded.
- But we may find it a pity to discard the poor event and may want to remember it for later processing, e.g. in \(s_2 \), in other words, defer it.

General options to satisfy such needs:

- Provide a pattern how to “program” this (use self-loops and helper attributes).
- Turn it into an original language concept. (← OMG’s choice)
Deferred Events: Syntax and Semantics

- **Syntactically,**
 - Each state has (in addition to the name) a set of deferred events.
 - **Default:** the empty set.

- The **semantics** is a bit intricate, something like
 - if an event E is dispatched,
 - and there is no transition enabled to consume E,
 - and E is in the deferred set of the current state configuration,
 - then stuff E into some “deferred events space” of the object, (e.g. into the ether (\equiv extend ε) or into the local state of the object (\equiv extend σ))
 - and turn attention to the next event.

- **Not so obvious:**
 - Is there a priority between deferred and regular events?
 - Is the order of deferred events preserved?
 - ...

[Fecher and Schönborn, 2007], e.g., claim to provide semantics for the complete Hierarchical State Machine language, including deferred events.
And What About Methods?
And What About Methods?

- In the current setting, the (local) state of objects is only modified by actions of transitions, which we abstract to transformers.
- In general, there are also methods.
- UML follows an approach to separate
 - the interface declaration from
 - the implementation.

In C++ lingo: distinguish declaration and definition of method.

- In UML, the former is called behavioural feature and can (roughly) be
 - a call interface \(f(\tau_1, \ldots, \tau_{n_1}) : \tau_1 \)
 - a signal name \(E \)

Note: The signal list can be seen as redundant (can be looked up in the state machine) of the class. But: certainly useful for documentation (or sanity check).
Semantics:

- The **implementation** of a behavioural feature can be provided by:

 - **An operation.**

 In our setting, we simply assume a transformer like T_f.

 It is then, e.g. clear how to admit method calls as actions on transitions: function composition of transformers (clear but tedious: non-termination).

 In a setting with Java as action language: operation is a method body.

 - **The class’ state-machine** ("triggered operation").

 - Calling F with n_2 parameters for a stable instance of C creates an auxiliary event F and dispatches it (bypassing the ether).

 - Transition actions may fill in the return value.

 - On completion of the RTC step, the call returns.

 - For a non-stable instance, the caller blocks until stability is reached again.
Visibility:

- Extend typing rules to sequences of actions such that a well-typed action sequence only calls visible methods.

Useful properties:

- **concurrency**
 - **concurrent** — is thread safe
 - **guarded** — some mechanism ensures/should ensure mutual exclusion
 - **sequential** — is not thread safe, users have to ensure mutual exclusion

- **isQuery** — doesn’t modify the state space (thus thread safe)

For simplicity, we leave the notion of steps untouched, we construct our semantics around state machines. Yet we could explain pre/post in OCL (if we wanted to).
Discussion.
Semantic Variation Points

Pessimistic view: They are legion...

- For instance,
 - allow absence of initial pseudo-states
 can then “be” in enclosing state without being in any substate; or assume one of the children states non-deterministically
 - (implicitly) enforce determinism, e.g.
 by considering the order in which things have been added to the CASE tool’s repository, or graphical order
 - allow true concurrency

Exercise: Search the standard for “semantical variation point”.

- [Crane and Dingel, 2007], e.g., provide an in-depth comparison of Statemate, UML, and Rhapsody state machines — the bottom line is:
 - the intersection is not empty
 (i.e. there are pictures that mean the same thing to all three communities)
 - none is the subset of another
 (i.e. for each pair of communities exist pictures meaning different things)

Optimistic view: tools exist with complete and consistent code generation.
You are here.
\[\mathcal{S} = (\mathcal{T}, \mathcal{C}, \mathcal{V}, \text{atr}), \text{SM} \]

\[M = (\Sigma, A_{\mathcal{S}}, \rightarrow_{\text{SM}}) \]

\[\pi = (\sigma_0, \varepsilon_0) \xrightarrow{(\text{cons}_0, \text{Snd}_0)} (\sigma_1, \varepsilon_1) \cdots \]

\[w_\pi = ((\sigma_i, \text{cons}_i, \text{Snd}_i))_{i \in \mathbb{N}} \]

\[\mathcal{G} = (N, E, f) \]

\[\varphi \in \text{OCL} \]

\[CD, SM \]

\[CD, SD \]

\[\phi \in OCL \]

\[\mathcal{S} \]

\[\mathcal{H}, SD \]

\[\mathcal{S} \]
References

