Software Design, Modelling and Analysis in UML

Lecture 22: Meta-Modelling

2015-02-10

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitit Freiburg, Germany

Meta-Modelling: Why and What

* Meta-Modelling is one major prerequisite for understanding
o the standard documents [OMG, 2007a, OMG, 2007b], and
o the MDA ideas of the OMG.

o The idea is

npl

o ifa is about
« and if UML models are and comprise things,

o then why not model those in a modelling language?

things,

 In other words:
Why not have a model My such that

v o the set of legal instances of My

UML models.

o the set of well-formed

Contents & Goals

Last Lecture:
o Inheritance in UML: concrete syntax
o Liskov Subs

ution P

ple — desired seman

This Lecture:

Educational Objectives: Capabilities for following tasks/questions.
s What's the
e What is late/early binding?

* What is the subset, what the uplink semantics of inheritance?

» What's the effect of inheritance on LSCs, State Machines, System States?
* What's the idea of Meta-Modelling?

5 Huy o fead Hie QMG VAL shidnd docimests

o Content:
e The UML Meta Model
* Wrapup & Questions

kov Substitution Pri

ple?

2/63

Meta-Modelling: Example

Si_\atnﬁd

wS: 31,7

For example, let’s consider a class.

A class, has (on a superficial level)

* a nameVv »
o any number of attributes, B

o any number of behavioural features.

Each of the latter two has
v
« a name and”
v
o a visibility.”

Behavioural features in addition have 1

+ a boolean attribute isQuery! Type |2

o any number of parameters, 7

® a return type”

« Can we model this (in UML, for a start)? s
5/63

Meta-Modelling: Idea and Example

36
UML Meta-Model: Extract from UML 2.0 Standard
Comment.
[Lcommene F——{ ern:]
NamedElement
[|
TypedElement RedefElement W_ redefdElem
Fe N
7 Classifier 7 m::nn_unn::ni 7ma=w<ﬂaun:37
< A
Parameter
b

Meta-Modelling: Principle

The UML 2.x Standard Revisited

Modelling vs. Meta-Modelling

Class Property Type
Meta- name : Str name : Str name : Str

Model
F * T
(M2) 1 ! i |
T |
! | I
! | | < = ({z},
1« So, if we have a meta model My of UML, then the [{V}:
Model set of UML models is the set of instances of My, | U}).
L 22
(M1) « A UML model M can be represented as an object| s~
Instance diagram (or system state) wrt. the meta-model My. |,/
(M) €
4 |+ Other view: An object diagram wrt. meta-model | {y;
7] Mo can (altematively) be rendered as the UML |, o))
& model M.

763 b 863
Claim: Extract from UML 2.0 Standard
NamedElement
— , ,
Type T.|,A TypedElement RedefElement] redefdElem
type o
o
. Classifier 7 mnéﬂﬂuun:.mi BehavFeature
A
: H
Operation Parameter
¥
11/63

10/63 \

Well-Formedness as Constraints in the Meta-Model

© The set of well-formed UML models can be defined as the set of object
diagrams satisfying all constraints of the meta-model.

For example,

“[2] Generalization hierarchies must be directed and acyclical. A classi
cannot be both a transitively general and transitively speci
of the same classifier.

notself . allParents() => includes(self)" [OMG, 2007b, 53]

The other way round:

Given a UML model M, unfold it into an object diagram O; wrt. M.
If Oy is a valid object diagram of My, (i.e. satisfies all invariants from
Inv(M)), then M is a well-formed UML model.

That is, if we have an object diagram validity checker for of the
meta-modelling language, then we have a well-formedness checker for

9/63
Classes 10mG, 2007, 32]
[smaurarouee]
TR hdena
Y R

w osdony s
: o

12,

Operations [omc, 2007, 311 Operations [oma, 2007, 30] Classifiers joma, 2007, 29]

{ntstspamossac) edetnes ovnesaraneta]

ety eyt
0 0

hsplggron (bR et

| o
7 e

oaf®er
| N

tasdon

Cubsats contat) (ubspis owredhule) -
Vosarciet Eodytitin [——

ey, i, Gubeste i
Sl) recerotertonee) j

Figure 7.9 - Classifiers diagram of the Kernel package

st sunaceer)

Figure 7.10 - Features diagram o the Kernel package

5021

o1

3 Figure 7.11- Operations diagram of the Kernel package

D 13/63 14763

Namespaces [oma, 2007, 26] Root Diagram [omc, 2007, 2s) Interesting: Declaration/Definition jomc, 2007, 424]

[
KomnelClssior

]
L S ——
ot < onescomen > comers |
e
=
s it
] o

G oo

ractonly, urion

Groadorty, urion)

BetaviorFeane

Ebetan ook

[
KemelzParamater

s ZEIREE vty vt
Figure 136 - Comman Behavior
Figure 7.4- Namespaces diagram of the Kernel package)

16/63 \ 17/63

UML Architecture (oma, 2003, s

whole

« Meta-modelling has already
been used for UML 1.x.

For UML 2.0, the request
for proposals (RFP) asked
for a separation of concerns:
Infrastructure and
Superstructure.

One reason:
sharing with MOF (see
later) and, e.g., CWM.

Reading the Standard

— cass et
P () I > con, i
Packag, Sradsho
Supersncire ass e,
(asatsyn) Tansiion

Fo,

CassBos, St
Trnston. e,

0 - Sreading

22 2015

71 Ovenien,

Table of Contents 72 Avsiac Symax
2

g8

3. Normative References|
4. Terms and efinitions|
5. symbols

s

‘Additional information|

66 Ackoouedgemens

Part |- Structure .

T RekimmouEsmen o Kore

7. Classes

1963

21/63

UML Superstructure Packages 1omG, 20074, 15

E4 \\\\\\

— / =

Seevachines

ﬁ

Figure 75+ 1

Reading the Standard

i
. \
=]
’ E E i
A T S

Table of Contents

scope
Conformance

Normative References|
Terms and D
Symbols.

‘Additianal nformation)

o 66 Adnowecgements

o |Partl-Structure

2|7 classes [—
| s s 1z 7

20763

2l/63

Reading the Standard

Table of Cantents.

1 Scope 1
2. Conformance 1
21 Language Unis. 2
22
23 Meaning and Types of Complance 6
24
3. Normative References 10
4. Terms and Definitions. 10
5. symbols 10
6. Additional Information 10

52 Archecural Algnment and MDA Support

55 Acknowedgenens w
21
7. Classes £

Reading the Standard Cont’d

R R —

21/63

22/63

Reading the Standard Cont’d

0 - Sreading

gt 212

Reading the Stand===

[——

)

22/63

22/63

Reading the Standard Cont’d

2015-02-10 — Sreading —

Reading the Stanfe= o

e e

e el

. o)

v e on e 64

s e

e

22/63

22/63

Reading th

tandord Cont’d

—

-2

Vol s f rston e vt

o s catanis 0 Gasirs . et

Meta Object Facility (MOF)

22/63

23/63

Open Question: MOF Semantics

o One approach:

Now you've been “ti

* We didn't tell what the lelling | for met o Treat it with our signature-based theory
o We didn't tell what the is-instance-of relation of this language is. o This is (in effect) the right direction, but may require new (or extended)
signatures for each level
(For instance, MOF doesn't have a notion of Signal, our signature has.) Meta-Modelling: (Anticipated) Benefits

Idea: have a minimal object-oriented core comprising the notions of
class, association, inheritance, etc. with “self-explaining” semantics.

Other approach:

nstance-of " relation.

o Define a generic, graph based "

._.Em is Meta Object 1.mn_, ity :,,_OJ_ o Object diagrams (that are graphs) then are the system states —
which (more or less) coincides with UML Infrastructure [OMG, 2007a]. not only graphical representations of system states.

© So: things on meta level

o If this works out, good: We can easily experiment with different language
designs, e.g. different flavours of UML that immediately have a
semantics.

Smof

© MO are object diagrams/system states

e M1 are words of the language UML
e M2 are words of the language MOF g * Most interesting: also do generic de ion of behaviour within a closed
| modelling setting, but this is clearly still research, e.g.

S * M3 are words of the language . ..

' [Buscherméhle and Oelerink, 2008]. 25/63
Benefits: Overview Benefits for Modelling Tools Benefits for Modelling Tools Cont’d
o We'll (superficially) look at three aspects: o The meta-model My of UML immediately provides a data-structure o And not only in memory, if we can represent MOF instances in files, we

. representation for the abstract syntax (~ for our signatures). obtain a canonical representation of UML models in files, e.g. in XML.

© Benefits for Modelling Tools.
X . — XML Metadata Interchange (XMI)

» Benefits for Language Design. If we have code generation for UML models, e.g. into Java,

X . then we can immediately represent UML models in memory for Java. » Note: A priori, there is no graphical information in XMI (it is only abstract
© Benefits for Code Generation and MDA. syntax like our signatures) — OMG Diagram Interchange.

(Because each MOF model is in particular a UML model.)

Note: There are slight ambiguities in the XMI standard.

o There exist tools and libraries called MOF-repositories, which can And different tools by different vendors often seem to lie at opposite ends on the
generically represent instances of MOF instances (in particular UML scale of interpretation. Which is surely a coincidence.
models). In some cases, it's possible to fix things with, e.g., XSLT scripts, but full vendor

And which can often generate specific code to manipulate instances of independence is today not given.

m n MOF instances in terms of the MOF instance.

Plus XMI compatibility doesn’t necessarily refer to Diagram Interchange.

To re-iterate: this is generic for all MOF-based modelling languages such
as UML, CWM, etc.
And also for Domain Specific Languages which don't even exit yet.

2963

Benefits for Language Design Benefits for Language Design Cont’d

Benefits: Overview

For each DSL defined by a Profile, we immediately have

o Recall: we said that code-generators are possible “readers” of stereotypes.

memory representations,

o We'll (superficially) look at three aspects: .

For example, (heavily simplifying) we could
* modelling tools,

© Benefits for Modelling Tools. v/ « introduce the stereotypes Button, Toolbar, ..

e representations.

o Benefits for Language Design. for convenience, instruct the modelling tool to use special pictures for
" . stereotypes — in the meta-data (the abstract syntax), the stereotypes are
« Benefits for Code Generation and MDA. P (ynax) VP
clearly present.
o instruct the code-generator to automatically add inheritance from Gtk::Button,
Gtk::Toolbar, etc. corresponding to the stereotype.

Note: here, the semantics of the stereotypes (and thus the language of
Gtk-UML) lies in the code-generator.

That's the first “reader” that understands these special stereotypes.

Et voila: we can model Gtk-GUIs and generate code for them.
. (And that's what's meant in the standard when they're talking about giving
© Another view: .
| stereotypes semantics).
o UML with these ypes is a new i Gtk-UML. 2

= Which lives on the same meta-level as UML (M2).
Specific Modelling Language (DSL).

One can also impose additional well-formedness rules, for instance that
certain components shall all implement a certain interface (and thus have
certain methods available). (Cf. [Stahl and Vlter, 2005].)

e It's a Dom:

£ One mechanism to define DSLs (based on UML, and “within” UML): Profiles.

8 & 316
Benefits for Language Design Cont’d Benefits: Overview Benefits for Model (to Model) Transformation
+ One step further: « We'l (superficially) look at three aspects: o There are manifold applications for model-to-model transformations:
© Nobody hinders us to obtain a model of UML (written in MOF), « Benefits for Modelling Tools. v/ o For instance, tool support for re-factorings, like moving common
attributes upwards the inheritance hierarchy.
o throw out parts unnecessary for our purposes, o Benefits for Language Design. v/)
» add (= integrate into the existing hierarchy) more adequat new X This can now be defined as graph-rewriting rules on the level of MOF.
constructs, for instance, contracts or something more close to hardware * Benefits for Code Generation and MDA. The graph to be rewritten is the UML model
as interrupt or sensor or driver, . .
J be al o Similarly, one could transform a Gtk-UML model into a UML model,
© and maybe also stereotypes. where the inheritance from classes like Gtk::Button is made expl
— a new language standing next to UML, CWM, etc. The transformation would add this class Gtk::Button and the inheritance
relation and remove the stereotype.
o Drawback: the resulting language is not necessarily UML any more, | X
£ so we can't use proven UML modelling tools. £ o Similarly, one could have a GUI-UML model transformed into a
2 2 Gtk-UML model, or a Qt-UML model.
% o But we can use all tools for MOF (or MOF-like tl 2 The former a PIM (Platform Independent Model), the latter a PSM
b For instance, Eclipse EMF/GMF/GEF. E (Platform Specific Model) — cf. MDA.
: k 34/63 356

3363 \

Special Case: Code Generation

2-10 - Sbenefits

o Recall that we said that, e.g. Java code, can also be seen as a model.

So code-generation is a special case of model-to-model transformatiol
only the destination looks quite different.

o Note: Code generation needn't be as expensive as buying a modelling tool
with full fledged code generation.

o If we have the UML model (or the DSL model) given as an XML file,
code generation can be as simple as an XSLT script.
“Can be" in the sense of

“There may be situation where a graphical and abstract
representation of something is desired which has a clear and

direct mapping to some textual representation.”
In general, code generation can (in colloquial terms) become arbitrarily
difficult.
Content

Lecture 1: Motivation and Overview

Lecture 2: Semantical Model

Lecture 3: Object Constraint Language (OCL)
o Lecture 4: OCL Semantics

o Lecture 5: Object Diagrams

Lecture 6: Class Diagrams |

Lecture 7: Type Systems and Visibility
Lecture 8: Class Diagrams
Lecture 9: Class Diagrams

|

Lecture 10: Constructive Behaviour, State Machines Overview
Lecture 11: Core State Machines |

Lecture 12: Core State Machines
Lecture 13: Core State Machines |1l

Lecture 14: Core State Machines IV

Lecture 15: Core State Machines V, Rhapsody
Lecture 16: Hierarchical State Machines |
Lecture 17: Hierarchical State Machines I

Lecture 18: Live Sequence Charts |
Lecture 19: Live Sequence Charts

Lecture 20: Inheritance |
Lecture 21: Meta-Modelling, Inheritance I

o Lecture 22: Wrapup & Questions

39/63

Example: Model and XMI

Tpii00) | gather [65C02)) update [((NET2270))
SensorA | T | ControllerA | T UsbA

<7xzl version = '1.0° encoding = 'UTF-8’ 7>
<XMI xmiversion = '1.2' xalns:UML = org.omg.xmi.namespace.UML’ timestamp = 'Mon Feb 02 18:23:12 CET 2008'>

= 7.7 name = 'Sensorn’>

<UML:Sterectype name = ’pe100’/>
</UML:Mode1ELenent . stereotype>
</UML:Class>
<UML:Class xmi.id = *...’ name = *Controllerh’>
<UML:Mode1ELenent . stereotype>
<UML:Sterectype name = 65002'/>
</UL:ModelELement . stereotype>
</UML:Class>
<UML:Class xmi.id = ’...’ name = 'UsbA’>
<UML:ode1ELenent stereotype>
<UML:Stereotype name = 'NET2270’/>
</UL:ModelELement . stereotype>
£ </UL:Namespace.ounedElement>
5 </uMLiModel>
| </XHI.content>

*in' >...</UMLiAssociation>
Tout? >...</UML:Association>

e 3768

Course Path: Over Map

Motivation

Semantical Model
- ocL
Object Diagrams

D, SM
/ 5

‘,

Class Diagrams
State Machines

<
g
.

v

B = (Qsp.q0. Az, ~sp. Fsp)

Live Sequence

Charts

© Real-Time

o Compenents

© Inheritance

G =(N,E.f)
< © Meta-Modeling

. va
H op

40763

Wrapup & Questions

38/63

Wrapup: Motivation

« Lecture 1: Motivation and Overview

Lecture 2: Semantical Model

Lecture 3: Object Constraint Language (OCL)
Lecture 4: OCL Semantics
Lecture 5: Object Diagrams
Lecture 6: Class Diagrams |
Lecture 7: Type Systems and Visil
Lecture 8: Class
Lecture 9: Class

Lecture 10: Constructive Behaviour, State Machines Overview
Lecture 11: Core State Machines |

Lecture 12: Core State Machines
Lecture 13: Core State Machines |1l

Lecture 14: Core State Machines IV

Lecture 15: Core State Machines V, Rhapsody
Lecture 16: Hierarchical State Machines |
Lecture 17: Hierarchical State Machines I

Lecture 18: Live Sequence Charts |
Lecture 19: Live Sequence Charts Il

Lecture 20: Inheritance |
Lecture 21: Meta-Modelling, Inheritance Il

o Lecture 22: Wrapup & Questions "

Wrapup: Motivation

Lecture 1:

Educational Objectives: you should

be able to explain the term model.

© know the
be able to explain how UML fits into this general picture.

ea (and hopes and promises) of model-driven SW development.

know what we'#-de we've done in the course, and why.
thus be able to decide whether you want to stay with us.

How can UML help with software development?
Where
For what purpose? With what drawbacks?

which sublanguage of UML useful?

Wrapup: Examining “The Big Picture”

what kinds of

grams does UML offer?

what is the purpose of the X diagram?
what do the diagrams X and Y have in common?

« what is a UML model (our definition)? what does it mean?

© what is the difference between well-formedness ruless
and modelling guidelines?

o what is meta-modelling?
« could you explain it on the example of UML?

 what is a class diagram in the context of meta-modelling?
© what benefits do people see in meta-modelling?

o the standard is split into the two documents “Infrastructure” and
“Superstructure” . what is the rationale behind that?
n what modelling language is UML modelled?

45/63

Wrapup: Examining Motivation

o what is a model? for example?

© “a model

an image or a pre-image” — of what? please explain!
o when is a model a good model?
o what is model-based software engineering?

« MDA? MDSE?

= what do people hope to gain from MBSE? Why? Hope Justified?

o what are the fundamental pre-requisites for that?

« what are purposes of modelling guidelines?

« could you illustrate this with examples?

= how can we establish /enforce them? can tools or procedures help?

what's the qualitative difference between the modelling guidel
ends have a multiplicity” and “all state-machines are determ

43/63

Wrapup: Modelling Structure

Lecture 1: Motivation and Overview

Lecture 2: Semantical Model
Lecture 3: Object Constraint Language (OCL)
Lecture 4: OCL Semantics

Lecture 5: Object Diagrams

Lecture 6
Lecture 7:
Lecture 8:
Lecture 9:

Lecture 10: Constructive Behaviour, State Machines Overview
Lecture 11: Core State Machines |

Lecture 12: Core State Machines Il

Lecture 13: Core State Machines |

Lecture 14: Core State Machines IV

Lecture 15: Core State Machines V, Rhapsody

Lecture 16: Hierarchical State Machines |

Lecture 17: Hierarchical State Machines

Lecture 18: Live Sequence Charts |
Lecture 19: Live Sequence Charts
Lecture 20: Inheritance |

Lecture 21: Meta-Modelling, Inheritance Il

o Lecture 22: Wrapup & Questions

46/63

Wrapup: Examining Motivation

what is UML (definitely)? why?

what is it (definitely) not? why?

how does UML relate to programming languages?

what are the intentions of UML?

© what is the history of UML? Why could it be useful to know that?

where can (what part of) UML be used in MBSE?

o for what purpose? to improve what?

we discussed a notion of “UML mode" by M. Fowler.

o what is that? why is it useful to think about it?

Wrapup: Modelling Structure

Lecture 2:
o Educational Objectives: Capabilities for these tasks/questions:
* Why is UML of the form it is?
© Shall one feel bad if not using all diagrams during software development?

« What is a signature, an object, a system state, etc.
What's the purpose in the course?

« How do Basic Object System Signatures relate to UML class diagrams?

Lecture 3 & 4:

o Educational Objectives: Capabilities for these tasks/questions:

Please explain/read out this OCL constraint. Is it well-typed?
OCL.

Does this OCL constraint hold in this (complete) system state?
Can you think of a system state satisfying this constraint?
Please un-abbreviate all abbreviations in this OCL expression
 In what sense is OCL a three-valued logic? For what purpose?
=« How ara @ and = ralated?

Please formalise this constraint

44

47/6

Wrapup: Modelling Structure

Lecture 5:

s for following tasks/quest
What is an object diagram? What are object diagrams good for?
When is an object diagram called partial? What are partial ones good for?
How are system states and object diagrams related?

What does it mean that an OCL expression is satisfiable?

When is a set of OCL constraints said to be consistent?

Can you think of an object diagram which violates this OCL constraint?

Is this UML model M consistent wrt. Inv(M)?

Lecture 6:

o Educational Objectives: Capabilities for following tasks/questions.

What is a class diagram?

For what purposes are class diagrams useful?

Could you please map this class diagram to a signature?
Could you please map this signature to a class diagram?

Wrapup: Modelling Behaviour, Constructive

Lecture 1: Motivation and Overview
Lecture 2: Semantical Model
Lecture 3: Object Constraint Language (OCL)

« Lecture 4: OCL Semantics
« Lecture 5: Object Diagrams

Lecture 10: Constructive Behaviour, State Macl

Lecture 6: Class Diagrams |
Lecture 7: Type Systems and Visibility
Lecture 8: Class Diagrams
Lecture 9: Class Diagrams

es Overview
Core State Machines |

Core State Machines Il
Core State Machines 111
Core State Machines IV

« Lecture 18: Live Sequence Charts |

Lecture 19: Live Sequence Charts Il
Lecture 20: Inheritance |
Lecture 21: Meta-Modelling, Inheritance I

o Lecture 22: Wrapup & Questions

51/63

Wrapup: Modelling Structure

Lecture 7:

o Educational Objectives: Capabilities for following tasks/questions.
o Is this OCL expression well-typed or not? Why?
« How/in what form did we define well-definedness?

© What is visibility good for? Where is it used?

Lecture 8 & 9:

o Educational Objectives: Capabilities for following tasks/questions.

Please explain/illustrate this class diagram with associations.

Which annotations of an association arrow are (semantically) relevant?
In what sense? For what?

« What's a role name? What's it good for?
What's “multiplicity”? How did we treat them semantically?

What is “reading direction”, “navigability”, “ownership”, ...?

What's the difference between “aggregation” and “composition”?

49/63
Wrapup: Modelling Behaviour, Constructive
Main and General:
o Educational Objectives: Capabilities for following tasks/questions.
» What does this State Machine mean?
« What happens if | inject this event?
o Can you please model the following behaviour.
(And convince readers that your model is correct.)
52/63

Wrapup: Modelling Structure

Lecture 9:

o Educational Objectives: Capa ies for following tasks/questions.

2

= What are purposes of modelling guidelines? (Example?)
» When is a class diagram a good class diagram?

o Discuss the style of this class diagram.

Lecture 20 & 2

» Educational Objectives: Capabilities for following tasks/questions.

* What's the effect of inheritance on System States?

* What does the Liskov Substitution Principle mean regarding structure?
o What is the subset, what the uplink semantics of inheritance?

* What's the idea of Meta-Modelling?

Wrapup: Modelling Behaviour, Constructive

Lecture 10:

o Educational Objectives: Capa es for following tasks/questions.

© What's the difference between reflective and constructive descriptions of
behaviour?

* What's the Basic Causality Model?

» What does the standard say about the dispatching method?

o What is (intuitively) a run-to-completion step?

Lecture 11:

o Educational Objective:

Capabilities for following tasks/questions.
« Can you please model the following behaviour.

* What is: trigger, guard, action?

o Please unabbreviate this abbreviated transition annotation.

* What is an ether? Example? Why did we introduce it?

+ What's the difference: signal, signal event, event, trigger, recept
consumption?

* What'’s a system configuration?

53/6

Wrapup: Modelling Behaviour, Constructive

Lecture 12 & 13:

Educational Objective:

Capabilities for following tasks/questions.

What is a transformer? Example? Why did we introduce it?

What is a re-use semantics? What of the framework would we change to go to
a non-re-use semantics?

What labelled transition system is induced by a UML model?
* What is: discard,
What's the meaning of stereotype

spatch, commence?

ignalen

Does environment interaction necessarily occur?
on by 0"?

What happens on “di

Lecture 14 & 15:

o Educational Objectives: Capabilities for following tasks/questions.

© What is a step (definition)? Run-to-completion step (definition)? Microstep
(intuition)?

* Do objects always

ally become stable?

= In what canca ic aur RTC camantice nat ramnncitinnal?

Wrapup: Modelling Behaviour, Reflective

« Lecture 1: Motivation and Overview

Lecture 2: Semantical Model

Lecture 3: Object Constraint Language (OCL)
o Lecture 4: OCL Semantics

o Lecture 5: Object Diagrams

Lecture 6: Class Diagrams |

Lecture 7: Type Systems and Visibility
Lecture 8: Class Diagrams
o Lecture 9: Class Diagrams

|

Lecture 10: Constructive Behaviour, State Machines Overview
Lecture 11: Core State Machines |

Lecture 12: Core State Machines
Lecture 13: Core State Machines |1l

Lecture 14: Core State Machines IV

Lecture 15: Core State Machines V, Rhapsody
Lecture 16: Hierarchical State Machines |

o Lecture 17: Hierarchical State Machines
Lecture 18: Live Sequence Charts |
Lecture 19: Live Sequence Charts Il
Lecture 20: Inheritance |

Lecture 21: Meta-Modelling, Inheritance
o Lecture 22: Wrapup & Questions

Wrapup: Modelling Behaviour, Constructive

Lecture 16:

o Educational Objectives: Capabilities for following tasks/questions.
* What's a kind of a state? What's a pseudo-state?
« What's a region? What's it good for?
» What is: entry, exit, do, internal transition?
* What's a completion event? What has i

to do with the ether?

Lecture 17:

o Educational Objectives: Capal

» What's a state configuration?

* When are two states orthogonal? When consistent?
o What's the depth of a state? Why care?

* What is the set of enabled tran:
machine?

ions in tl

Wrapup: Modelling Behaviour, Reflective

Lecture 18, & 19:

o Educational Objectives: Capabilities for following tasks/questions.

Is each LSC description of behaviour necessarily reflective?

There exists another distinction between “inter-object” and
behaviour. Discuss in the context of UML.

What does this LSC mean?
Are this UML model’s state machines consistent with the interactions?
Please provide a UML model which is consistent with this LSC

o What is: activation (mode, condition), hot/cold condition, pre-chart, cut,
hot/cold location, local invariant, legal exit, hot/cold chart etc.?

intra-object”

system configuration and this state

58,

Wrapup: Modelling Behaviour, Constructive

Lecture 18:
» Educational Objectives: Capabilities for following tasks/questions.
» What's a history state? Deep vs. shallow?
o What is: junction, choice, terminate?
What is the idea of “deferred events”?

What is a passive object? Why are passive reactive objects speci:
we do in that case?

What's a behavioural feature? How can it be implemented?

Wrapup: Inheritance

Lecture 1: Motivation and Overview

Lecture

: Semantical Model

Lecture 3: Object Constraint Language (OCL)
Lecture 4: OCL Semantics
Lecture 5: Object Diagrams
Lecture 6: Class Diagrams |
Lecture 7: Type Systems and Visi
Lecture 8: Class
* Lecture 9: Class

-
8
c
3
b4
A
S
c
2
E
5
)
£
=
5
H
4
&
5
g
ES
3
o
5
S
=
=

Lecture 11: Core State Macl
Lecture 12: Core State Macl

coo
ka2
geé
a3
GEB
coo
§g's
383
woo
R
===

Lecture 16: Hierarchical State Machines |
Lecture 17: Hierarchical State Machines II

Lecture 18: Live Sequence Charts |

Lecture 19: Live Sequence Charts

Lecture 20: Inheritance |

« Lecture 21: Meta-Modelling, Inheritance 11
o Lecture 22: Wrapup & Que:

596

Wrapup: Inheritance Hmm

Lecture 20 & 21:

o Educational Objective
* What's the effect of inheritance on LSCs, State Machines, System States?
* What's the Liskov Substitution Principle?
« What is commonly understood under (behavioural) sub-typing?
o What is the subset, what the uplink semantics of inheritance?
« What is late/early binding?
© What's the idea of Meta-Modelling?

Capabilities for following tasks/questions.

N 60/63

[Buschermdhle and Oelerink, 2008] Buscherméhle, R. and Oelerink, J. (2008). Rich meta
~ object facility. In Proc. 1st IEEE Int'l workshop UML and Formal Methods.

[OMG, 2003] OMG (2003). Uml 2.0 proposal of the 2U group, version 0.2,
http://wuw.2uworks . org/uml2submission.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version 2.1.2.
Technical Report formal/07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version 2.1.2
Technical Report formal /07-11-02.

[Stahl and Vélter, 2005] Stahl, T. and Vlter, M. (2005). Modellgetriebene
Softwareentwicklung. dpunkt.verlag, Heidelberg.

) 6363

« Open book or closed book...?

61/63

References

62,

