Software Design, Modelling and Analysis in UML

Lecture 05: OCL Semantics Cont’d
Object Diagrams

2014-11-06

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitit Freiburg, Germany

2014-11-06

05

(vi) Putting It All Together

Contents & Goals

Last Lecture:

» OCL Semantics (nearly complete)

This Lecture:
o Educational Objectives: Capabilities for following tasks/questions.
* What does it mean that an OCL expression is satisfiable?
o When is a set of OCL constraints said to be consistent?
» What is an object diagram? What are object diagrams good for?
« When is an object diagram called partial? What are partial ones good for?
= When is an object diagram an object diagram (wrt. what)?
» How are system states and object diagrams related?
= Can you think of an object diagram which violates this OCL constraint?

o Content:
* OCL: consistency, satisfiability
» Object Diagrams
* Example: Object Diagrams for Documentation

« risany type from 7 U
U neTuy

ax_/4: Iterate

wa i = ey | ey

where

« capry i of a col type (here: a se r some),

2/36
(vi) Putting It All Together...
expr m=w | w(ewpry,..., expr,) | alllnstancesc: | v(expr,) | ri(expr;)
| ra(eapry) | expry~>iterate(vy : 71 5 va : T2 = eapry | eaprs)
Bik— V&H (+)
e I[wl(0,8) =) Tlyx~xTa)» Itx)
Tt i
i e, lo.5) = TG TCopd (58], .. TCepnllof)
o I[allinstancesc](c, 3) := dowm (7) A DLC,
W o albe N@a\o w 6
. Note: in the OCL standard, dom(c) is assumed to be
. Again: doesn't scare us.
i 53

OCL Semantics Cont’d[OMG, 2006]

20141106 - ma

—os-

(vi) Putting It All Together...

expr = w | w(expry, ..., expr,) | alllnstancesc | v(expry) | r1(expr,)
| ra(expry) | expri->iterate(vy : 7y ; vy : T2 = expr, | expry)

Assume expry : 7¢ for some C € €. Set wy := I[expry](o, B) € Z(7c).
=) A2

| il c
¢ titem o= NN €)
=T, f:Dat . '

I i dom(s] ad 6)(r.) = $e
o I[ri(expry)](o,B) == d.h_-&“ o.mt.wrmuﬂ “ k)= ik

T —>%E(@), 4Dy

‘) vednt)

- el) = {1 M&ﬁﬁ ’
Set(zo) '

(Recall: o evaluates 73 of type C, to a set)

“os-

336

i) Putting It All T e e st
(vi) Putting It All Together. it g e it

Instancesc: | v(ezpry) | 1 (eapry)
<7 = capry | eapry)

eapr = w | w(eapr, ..., eapr,

| ra(eapry) | eapr->iterate(vy : 71

s

eapry | exprs)](o, B)

P iluahor foult
b NI

o I[expr,->iterate(vy : 71 ;

i T[eapry](0,8) = 0

‘\:srh\t

where u\u/%% s I[eapry (o B), v2 + I[eapr] (o, B)) and N\ﬁ\

W b vl me eloiuct
—_——

ﬁ;sﬁ:?_ B'lor = a]) if §'(hlp) = {z}

wolfaken ?_:s%é

iterate(hlp, vy vs, exprs, o, 8') , otherwise

o iterate(hlp

I[ezprs](o,B") Lif B (hip) = X U {a} and X # 0

No has sorg How owe elonact Gff
 iterate(hlp, v1, va, expry, o, 8'[hlp — X])]

L wlp 4o Ao YeSE
BN

where 8" = f'[u, —

2014-11-06

536

= Quiz: Is (our) I a function? rect¥s'en

OCL Satisfaction Relation

In the following, .7’ denotes a signature and Z a structure of .#".

Definition (Satisfaction Relation).

Let ¢ be an OCL constraint over .7 and o € MW a system state.
We write

o o = if and only if I[p](a,0) = true.

* 0 [~ ¢ if and only if I[p](0,0) = false.

Note: In general we can’t conclude from —(c |= ¢) to o [~ ¢ or vice versa.

2014-11-06

05

Example

836

=

© context Teandember inv: age => 18

© context Veeting inv: duration > 0

\wﬂlﬁ_.» Imwd& !«F » Sodt, it
)
LT Al 2163(c,4) = TL 2 (mpel,,), 18)8(s; 8) M_vaty 18) = Hace
u,

Tl) Lo (ol 2
TUHwI(op) =Bk S <3)

05 - 2014-11-06 - S

6/36

OCL Consistency

Definition (Consistency). A set Inv = {¢1,...,p,} of OCL

constraints over .# is called consistent (or satisfiable) if and only if

there exists a system state of .% wrt. & which satisfies all of them,

ie if

JoeSt: ok piAATEen

and inconsistent (or unrealizable) otherwise.

§ orss

OCL Satisfaction Relation

20141106 - ma

—os-

7/36
OCL Inconsistency Example
R
§
f
name = 'Lobby’ implies meeting -> isEmpty()
o context Meeting inv :
title = 'Reception’ implies location . name =" Lobby”
o alllnstancesyseering ~> exists(w : Meeting | w . title = 'Reception’)
10/36

Deciding OCL Consistency

o Whether a set of OCL constraints is satisfiable or not is in general not as
obvious as in the made-up example.

o Wanted: A procedure which decides the OCL satisfiability problem.

ndecidable.

o Unfortunately: in general

Otherwise we could, for instance, solve diophantine equations

B e Bt Cxposat-
Lot el enilds -~ <osat Exp
ﬂ s Cpat = d. — constaef

Encoding in OCL:

allinstancesc -> exists(w : C' | cp x w.z]? + -+ + ¢ ¥ woapy® = d).

* And now? Options: [Cabot and Clarisé, 2008]

o Constrain OCL, use a less rich fragment of OCL.

. * Revert to finite domains — basic types vs. number of objects.
T 113

2014-11-06

OCL Critique

o Concrete Syntax
“The syntax of OCL has been
for being hard to read and write.

[-1-

zed - e.g., by the authors of Cataly:

© OCL'’s expressions are stacked in the style of Smalltalk, which makes it hard to
ed variables.

see the scope of quan

« Navigations are applied to atoms and not sets of atoms, although there is a
collect operation that maps a function over a set.

o Attributes, [...], are partial functions in OCL, and result in expressions with
ed value.” [Jackson, 2002]

undef

106

2014-

14/36

2014-11-06 - main

05

2014-11-06

OCL Critique

Where Are We?

1236

15/36

14-11.06 — Soclertique —

OCL Critique

« Expressive Power:
“Pure OCL expressions only compute primitive recursive functions, but not
recursive functions in general.” [Cengarle and Knapp, 2001]

« Evolution over Time: “finally self.z > 0"
Proposals for fixes e.g. [Flake and Miiller, 2003]. (Or: sequence diagrams.)

Objects respond within 10s"

Proposals for fixes e.g. [Cengarle and Knapp, 2002]

* Real-Time:

« Reachabilif ‘After insert operation, node shall be reachable.

Fix: add transitive closure.

T 13/36
You Are Here.
¥
D, D
|
§
7, 8D
SRS
SN
B = (Qsp.t0, A, ~s. Fsp)
(conso 1) (e o = (o cons;, Snd))c
A,
G =(N,E,f)
IS
S op
16/36

2014-11-06

05

Object Diagrams

1736

Object Diagram: Example

N C 9(%) finite, ECNxVy1.xN,
Y (ur,7,u3) € E :uy € dom(a) Aug € o(ur)(r), f(u) C o(u) or f(u) ={X}

X = {X} U (V = (2(7) U%(%.)))

2014-11-06

+Int, vy s Int,r : C.}, {C — {v

= ({Imt}, {C}{

o ={ur— {v1 = Lva 2,7 {ug}}ug = {v1 = 3,00 4,7 — 0}}
/

re
Then G = (N, E, f) with e

N=tu.wl - 7oa
€={(wt)
[={umfupiend, v ?tz}hxgw

ot} D(Int) =

20736

Graph

Definition. A node-labelled graph is a triple
G=(N,E,f)

consisting of
o vertexes N,

o edges F,
© node labeling f : N — X, where X is some label domain,

05 - 2014-11-06 - Sod —

Object Diagram: Example

Object Diagrams

NC2(€)finite, ECNxVoi.xN, X ={X}U(V=(2(2)U2(%))

V (uy,r,us) € B uy € dom(a) Aug € a(ur)(r), f(u) C o(u) or f(u)={X}

r: Co 3 {C = {v1,va,7}}), Z(Int) =

= ({Int},{C},{v1 : Int, vy :

o ={ur = {v1 = Lvg = 2,7 {ug}}ug = {01 3,02 = 4,7 0}}

o Then G = (N, E, f) with
= ({ur,uz}, {(ur, myu2)} {ur = {1 = 1oz = 2}, ug = {v1 = 3,02 = 4}},

is an object diagram of o wrt. . and any structure & with Z(Int) 2 {1,2,3,4}.

2014-11.06 - Sod -

20736

~ 2014-11-06 - Sod -

—os

Definition. Let Z be a structure of signature .’ = (7, €, V, atr)
and o € £% a system state.

Then any node-labelled graph G = (N, E, f) where

© nodes are identities (not necessarily alive), i.e. N C Z(%) finite,

edges correspond to of objects, i.e. = o
o edg .suav/: ks, of objects, i Vorn \\.&m Sjalt
e ECNx{v:TeV|re{C1,C.|Ce€}} xN,
\I\l\."\lrl)] ——
.ﬁ.?\mﬁ Y (uy,r,up) € E 'y € dom(a) Aus € o(ug)(r), 5 &uﬂ\a
o Fﬁ“uﬁ“]hu sr =
© Dbjects are labelled with attribute valuations and non-alive identities
with “X", i.e.
= (X} U(V » (2(7) U 2(5.)))
Vu e Nndom(e) : f(u) C olu)
Vu e N\ dom(o) : f(u) = {X}
is called object diagram of o.
19/36

Object Diagram: Example

NC2(€)finite, ECNxVoiuxN, X ={X}U(V»(2(7)U2(%))
V (w1, u2) € B uy € dom(0) Auz € o(un)(r), f(u) € o(u) or f(u) = {X}

= ({Int}.{C}, {v1 : Int.vy : Int,r: .}, {C = {vr,v2.7}}), 2(Int) =

o ={ur > {v1 = 1,vp = 2,7 {ug}}, ug > {v1 = 3,09 > 4,7 0}}

T\ww

 Then G = (N, E,) with
= (a2} (. u2)}. s o {01 > Lva o> 2}z 5 {pf0 3,0 1 43},

is an object diagram of o wrt. . and any structure 7 with #(Int) 2 {1,2,3,4}.

Node: we may equivalently (!) represent G graphically #s follows:

‘ [

14-11.06 - Gpd -

2036

—os

Object Diagrams: More Examples?

NC (%) finite, _ECN xVounxN, X ={X}U(V = (2(7)U2(%.))
Y (ur, 7y uz) € B uy € dom(o) Auz € aun)(r), f(u) C a(u) or fu) = {X}

= ({Int}, {C, D}, {a : Int,p: Coyn s C}{C v {pon}, D > {a}}), 2(Int) = Z

o={lc {p0,n {5c}},50 = {pr 0,0 0}, 1p > {z > 23}}
/g dagiom o T
Xém N .,w\ kr% \\o/
v

. 21736

Special Notation
o = ({Int}{C}. {n.p: C.},{C = {n.p}}).

e Instead of

we want to write

or

2014-11-06

to explicitly indicate that attribute p : C. has value () (also for p: Cp).

24735

Complete vs. Partial Object Diagram

05 - 2014-11.0

Definition. Let G = (N, E, f) be an object diagram of system state
gex2.
We call G complete wrt. o if and only if

o G is object complete,

G consists of all alive objects, i.e. N = dom
[Z Y
e G is attribute complete,

» G comprises all “links” between alive objects,
if us € o(uy)(r) for some uy, uz € dom(o) and r € V,
then (u,7,u2) € E, and

« each node is labelled with the values of all 7-typed attributes,
for each u € dom(o),

W) =o(@)lvy U{r— (@@)(@)\N) |reV:ou)(r)\ N # 0}

where Vg :={v:7€V |T€ T}

Otherwise we call G partial.

Complete/Partial is Relative

2014-11.06 - Sod

o Claim:
o Each finite system state has exactly one complete object diagram.
o A finite system state can have many partial object diagrams.

Each object diagram G represents a set of system states, namely

| G is an object diagram of o'}

Observation:

If somebody tells us, that a given (consistent) object diagram G'

* is meant to be complete,

o and if it is not inherently incomplete (e.g. missing attribute values),
then we can uniquely reconstruct the corresponding system state.

In other words: G~! is then a singleton.
25/36

Complete vs. Partial Examples

N
N

o N =dom(0), ifus € o(ur)(r), then (ur,7,uz) € B,
o f(u) = a(u)lv, U{r— (a(u)(r) \ N) | a(u)(r) \ N}

Complete or partial?

o={lc {pm 0,0 {5c}h56 = {pr 0,n > 0}, 1p — {o > 23}}

o b
%0&%&\

Tu D Qnﬁr‘&\

Closed Object Diagrams vs. Dangling References

Find the 10 differences! (Both diagrams are meant to be complete.)

a dangling reference in object u € dom(c) if and only if the att
value comprises an object which is not alive in o, i.e. if

o(u)(v) ¢ dom

We call o closed if and only if no attribute has a dangling reference in any
object alive in o.

Observation: Let G be the (1) complete object diagram of a closed system state o
Then the nodes in G are labelled with 7-typed attribute/value pairs only.

2636

UML Object Diagrams

Referenc

27736

UML Notation for Object Diagrams Discussion

Y We slightly deviate from the standard (for reasons):

—

id 111 class |
M e In the course, Cp; and C\-typed attributes only have sets as values.

optional ~ - !

UML also considers multisets, that is, they can have
“compartment’ "
optional
(This is not an object diagram in the sense of our definition because of the
requirement on the edges . Extension is straightforward but tedious.)
" optional o We allow to give the valuation of Cj ;- or C,-typed attributes in the
e Mmﬁ; : B P! values compartment.

o Allows us to indicate that a certain r is not referring to another object.

o Allows us to represent “dangling references”, i.e. references to objects
which are not alive in the current system state.

We introduce a graphical representation of) values. L

Cabot and Claris6, 2008] Cabot, J. and Clarisé, R. (2008). UML-OCL verification in

practice. In Chaudron, M. R. V., editor, MoDELS Workshops, volume 5421 of
Lecture Notes in Computer Science. Springer

[Cengarle and Knapp, 2001] Cengarle, M. V. and Knapp, A. (2001). On the
expressive power of pure OCL. Technical Report 0101, Institut fiir Informatik,
Ludwig-Maximilians-Universitit Miinchen.

[Cengarle and Knapp, 2002] Cengarle, M. V. and Knapp, A. (2002). Towards
OCL/RT. In Eriksson, L.-H. and Lindsay, P. A., editors, FME, volume 2391 of
Lecture Notes in Computer Science, pages 390-409. Springer-Verlag.

[Flake and Miiller, 2003] Flake, S. and Miller, W. (2003). Formal semantics of static
and temporal state-oriented OCL constraints. Software and Systems Modeling,
2(3):164-186.

[Jackson, 2002] Jackson, D. (2002). Alloy: A lightweight object modelling notation.
ACM Transactions on Software Engineering and Methodology, 11(2):256-290.

[OMG, 2006] OMG (2006). Object Constraint Language, version 2.0. Technical
Report formal/06-05-01

[OMG, 2007a] OMG (2007a). Unified modeling language:
2.1.2. Technical Report formal/07-11-04.

Infrastructure, version

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version

2.1.2. Technical Report formal/07-11-02. 36/36

