
–
1
9
–
2
0
1
5
-0
1
-2
9
–
m
a
in

–

Software Design, Modelling and Analysis in UML

Lecture 19: Hierarchical State Machines III

2015-01-29

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

–
1
9
–
2
0
1
5
-0
1
-2
9
–
S
p
re
li
m

–

2/28

Last Lecture:

• Initial and Final State

• Composite State Semantics started

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• What does this State Machine mean? What happens if I inject this event?

• Can you please model the following behaviour.

• What does this hierarchical State Machine mean? What may happen if I
inject this event?

• What is: AND-State, OR-State, pseudo-state, entry/exit/do, final state, . . .

• Content:

• Composite State Semantics cont’d

• The Rest



Composite States

(formalisation follows [Damm et al., 2003])

–
1
9
–
2
0
1
5
-0
1
-2
9
–
m
a
in

–

3/28

–
1
9
–
2
0
1
5
-0
1
-2
9
–
S
h
ie
rs
tm

–

4/28

A Partial Order on States

–
1
8
–
2
0
1
5
-0
1
-2
2
–
S
h
ie
rs
tm

–

14/30

The substate- (or child-) relation induces a partial order on states:

• top ≤ s, for all s ∈ S,

• s ≤ s′, for all s′ ∈ child(s),

• transitive, reflexive, antisymmetric,

• s′ ≤ s and s′′ ≤ s implies s′ ≤ s′′ or s′′ ≤ s′.

s

s1
s2

s3

s′

s′
1

s′
2

s′
3

s′′
1

s′′
2

s′′
3



–
1
9
–
2
0
1
5
-0
1
-2
9
–
S
h
ie
rs
tm

–

5/28

Least Common Ancestor and Ting

–
1
8
–
2
0
1
5
-0
1
-2
2
–
S
h
ie
rs
tm

–

15/30

• The least common ancestor is the function lca : 2S \ {∅} → S such that

• The states in S1 are (transitive) children of lca(S1), i.e.

lca(S1) ≤ s, for alls ∈ S1 ⊆ S,

• lca(S1) is minimal, i.e. if ŝ ≤ s for all s ∈ S1, then ŝ ≤ lca(S1)

• Note: lca(S1) exists for all S1 ⊆ S (last candidate: top).

s

s1
s2

s3

s′

s′
1

s′
2

s′
3

s′′
1

s′′
2

s′′
3

–
1
9
–
2
0
1
5
-0
1
-2
9
–
S
h
ie
rs
tm

–

6/28

Least Common Ancestor and Ting

–
1
8
–
2
0
1
5
-0
1
-2
2
–
S
h
ie
rs
tm

–

16/30

• Two states s1, s2 ∈ S are called orthogonal, denoted s1 ⊥ s2, if and only if

• they are unordered, i.e. s1 6≤ s2 and s2 6≤ s1, and

• they “live” in different regions of an AND-state, i.e.

∃ s, region(s) = {S1, . . . , Sn} ∃ 1 ≤ i 6= j ≤ n : s1 ∈ child
∗(Si)∧s2 ∈ child

∗(Sj),

s

s1
s2

s3

s′

s′
1

s′
2

s′
3

s′′
1

s′′
2

s′′
3



–
1
9
–
2
0
1
5
-0
1
-2
9
–
S
h
ie
rs
tm

–

7/28

Least Common Ancestor and Ting

–
1
8
–
2
0
1
5
-0
1
-2
2
–
S
h
ie
rs
tm

–

17/30

• A set of states S1 ⊆ S is called consistent, denoted by ↓ S1,
if and only if for each s, s′ ∈ S1,

• s ≤ s′, or

• s′ ≤ s, or

• s ⊥ s′.

s

s1
s2

s3

s′

s′
1

s′
2

s′
3

s′′
1

s′′
2

s′′
3

–
1
9
–
2
0
1
5
-0
1
-2
9
–
S
h
ie
rs
tm

–

8/28

Legal Transitions

–
1
8
–
2
0
1
5
-0
1
-2
2
–
S
h
ie
rs
tm

–

18/30

A hiearchical state-machine (S, kind , region,→, ψ, annot) is called
well-formed if and only if for all transitions t ∈→,

(i) source and destination are consistent, i.e. ↓ source(t) and ↓ target(t),

(ii) source (and destination) states are pairwise orthogonal, i.e.

• forall s, s′ ∈ source(t) (∈ target(t)), s ⊥ s′,

(iii) the top state is neither
source nor destination, i.e.

• top /∈ source(t) ∪ source(t).

• Recall: final states are
not sources of transitions.

Example:

•

•
s1

s2
•
s3

s8s4

•

s5

s6

E/

F/

F/
E/

G/

s7

[true]/

F/



The Depth of States

–
1
9
–
2
0
1
5
-0
1
-2
9
–
S
h
ie
rs
tm

–

9/28

• depth(top) = 0,

• depth(s′) = depth(s) + 1, for all s′ ∈ child(s)

Example:

•

•
s1

s2
•

s3

s8s4

•

s5

s6

E/

F/

F/
E/

G/

s7

[true]/

F/

Enabledness in Hierarchical State-Machines

–
1
9
–
2
0
1
5
-0
1
-2
9
–
S
h
ie
rs
tm

–

10/28

• The scope (“set of possibly affected states”) of a transition t is the least
common region of

source(t) ∪ target(t).

• Two transitions t1, t2 are called consistent if and only if their scopes are
orthogonal (i.e. states in scopes pairwise orthogonal).



Enabledness in Hierarchical State-Machines

–
1
9
–
2
0
1
5
-0
1
-2
9
–
S
h
ie
rs
tm

–

10/28

• The scope (“set of possibly affected states”) of a transition t is the least
common region of

source(t) ∪ target(t).

• Two transitions t1, t2 are called consistent if and only if their scopes are
orthogonal (i.e. states in scopes pairwise orthogonal).

• The priority of transition t is the depth of its innermost source state, i.e.

prio(t) := max{depth(s) | s ∈ source(t)}

• A set of transitions T ⊆→ is enabled in an object u if and only if

• T is consistent,

• T is maximal wrt. priority,

• all transitions in T share the same trigger,

• all guards are satisfied by σ(u), and

• for all t ∈ T , the source states are active, i.e.

source(t) ⊆ σ(u)(st) (⊆ S).

Transitions in Hierarchical State-Machines

–
1
9
–
2
0
1
5
-0
1
-2
9
–
S
h
ie
rs
tm

–

11/28

• Let T be a set of transitions enabled in u.

• Then (σ, ε)
(cons,Snd)
−−−−−−→ (σ′, ε′) if

• σ′(u)(st) consists of the target states of t,

i.e. for simple states the simple states themselves, for composite states
the initial states,

• σ′, ε′, cons, and Snd are the effect of firing each transition t ∈ T one by
one, in any order, i.e. for each t ∈ T ,

• the exit transformer of all affected states, highest depth first,

• the transformer of t,

• the entry transformer of all affected states, lowest depth first.

 adjust (2.), (3.), (5.) accordingly.



The Concept of History, and Other Pseudo-States

–
1
9
–
2
0
1
5
-0
1
-2
9
–
m
a
in

–

12/28

History and Deep History: By Example

–
1
9
–
2
0
1
5
-0
1
-2
9
–
S
h
is
t
–

13/28

susp

•
s0

act

H H
∗

•
s1 s2

s3
sb

•
s4

s5

E/

B/

C/

D/

F/

Rs/
Rd/

A/

S/

Rs/
Rd/

What happens on...

• Rs?
s0, s2

• Rd?
s0, s2

• A,B,C, S,Rs?
s0, s1, s2, s3, susp, s3

• A,B,C, S,Rd?
s0, s1, s2, s3, susp, s3

• A,B,C,D,E, S,Rs?
s0, s1, s2, s3, s4, s5, susp, s3

• A,B,C,D,E, S,Rd?
s0, s1, s2, s3, s4, s5, susp, s5



Junction and Choice

–
1
9
–
2
0
1
5
-0
1
-2
9
–
S
h
is
t
–

14/28

• Junction (“static conditional branch”): •
[gd 1

]/a
ct 1

[gd
2 ]/act

2• good: abbreviation

• unfolds to so many similar transitions with different guards,
the unfolded transitions are then checked for enabledness

• at best, start with trigger, branch into conditions, then apply actions

• Choice: (“dynamic conditional branch”)

Note: not so sure about naming and symbols, e.g.,
I’d guessed it was just the other way round... ;-)

Junction and Choice

–
1
9
–
2
0
1
5
-0
1
-2
9
–
S
h
is
t
–

14/28

• Junction (“static conditional branch”): •
[gd 1

]/a
ct 1

[gd
2 ]/act

2• good: abbreviation

• unfolds to so many similar transitions with different guards,
the unfolded transitions are then checked for enabledness

• at best, start with trigger, branch into conditions, then apply actions

• Choice: (“dynamic conditional branch”)

• evil: may get stuck

• enters the transition without knowing whether there’s an enabled path

• at best, use “else” and convince yourself that it cannot get stuck

• maybe even better: avoid

Note: not so sure about naming and symbols, e.g.,
I’d guessed it was just the other way round... ;-)



Entry and Exit Point, Submachine State, Terminate

–
1
9
–
2
0
1
5
-0
1
-2
9
–
S
h
is
t
–

15/28

• Hierarchical states can be “folded” for readability.
(but: this can also hinder readability.)

• Can even be taken from a different state-machine for re-use. S : s

Entry and Exit Point, Submachine State, Terminate

–
1
9
–
2
0
1
5
-0
1
-2
9
–
S
h
is
t
–

15/28

• Hierarchical states can be “folded” for readability.
(but: this can also hinder readability.)

• Can even be taken from a different state-machine for re-use. S : s

• Entry/exit points ,

• Provide connection points for finer integration into the current level, than
just via initial state.

• Semantically a bit tricky:

• First the exit action of the exiting state,

• then the actions of the transition,

• then the entry actions of the entered state,

• then action of the transition from the entry point to an internal state,

• and then that internal state’s entry action.

• Terminate Pseudo-State

• When a terminate pseudo-state is reached,
the object taking the transition is immediately killed.



Deferred Events in State-Machines

–
1
9
–
2
0
1
5
-0
1
-2
9
–
m
a
in

–

16/28

Deferred Events: Idea

–
1
9
–
2
0
1
5
-0
1
-2
9
–
S
d
ef
er

–

17/28

For ages, UML state machines comprises the feature of deferred events.

The idea is as follows:

• Consider the following state machine:

s1 s2 s3
E/ F/

• Assume we’re stable in s1, and F is ready in the ether.

• In the framework of the course, F is discarded.

• But we may find it a pity to discard the poor event
and may want to remember it for later processing, e.g. in s2,
in other words, defer it.

General options to satisfy such needs:

• Provide a pattern how to “program” this (use self-loops and helper attributes).

• Turn it into an original language concept. (← OMG’s choice)



Deferred Events: Syntax and Semantics

–
1
9
–
2
0
1
5
-0
1
-2
9
–
S
d
ef
er

–

18/28

• Syntactically,

• Each state has (in addition to the name) a set of deferred events.

• Default: the empty set.

• The semantics is a bit intricate, something like

• if an event E is dispatched,

• and there is no transition enabled to consume E,

• and E is in the deferred set of the current state configuration,

• then stuff E into some “deferred events space” of the object, (e.g. into the
ether (= extend ε) or into the local state of the object (= extend σ))

• and turn attention to the next event.

• Not so obvious:

• Is there a priority between deferred and regular events?

• Is the order of deferred events preserved?

• ...

[Fecher and Schönborn, 2007], e.g., claim to provide semantics for the complete

Hierarchical State Machine language, including deferred events.

And What About Methods?

–
1
9
–
2
0
1
5
-0
1
-2
9
–
m
a
in

–

19/28



And What About Methods?

–
1
9
–
2
0
1
5
-0
1
-2
9
–
S
m
et
h
o
d
s
–

20/28

• In the current setting, the (local) state of objects is only modified by
actions of transitions, which we abstract to transformers.

• In general, there are also methods.

• UML follows an approach to separate

• the interface declaration from

• the implementation.

In C++ lingo: distinguish declaration and definition of method.

• In UML, the former is called behavioural
feature and can (roughly) be

C

ξ1 f(τ1,1, . . . , τ1,n1
) : τ1 P1

ξ2 F (τ2,1, . . . , τ2,n2
) : τ2 P2

〈〈signal〉〉 E

• a call interface f(τ11 , . . . , τn1
) : τ1

• a signal name E

Note: The signal list can be seen as redundant (can be looked up in the state
machine) of the class. But: certainly useful for documentation (or sanity check).

Behavioural Features

–
1
9
–
2
0
1
5
-0
1
-2
9
–
S
m
et
h
o
d
s
–

21/28

C

ξ1 f(τ1,1, . . . , τ1,n1
) : τ1 P1

ξ2 F (τ2,1, . . . , τ2,n2
) : τ2 P2

〈〈signal〉〉 E

Semantics:

• The implementation of a behavioural feature can be provided by:

• An operation.

In our setting, we simply assume a transformer like Tf .

It is then, e.g. clear how to admit method calls as actions on transitions:
function composition of transformers (clear but tedious: non-termination).

In a setting with Java as action language: operation is a method body.

• The class’ state-machine (“triggered operation”).

• Calling F with n2 parameters for a stable instance of C
creates an auxiliary event F and dispatches it (bypassing the ether).

• Transition actions may fill in the return value.

• On completion of the RTC step, the call returns.

• For a non-stable instance, the caller blocks until stability is reached again.



Behavioural Features: Visibility and Properties

–
1
9
–
2
0
1
5
-0
1
-2
9
–
S
m
et
h
o
d
s
–

22/28

C

ξ1 f(τ1,1, . . . , τ1,n1
) : τ1 P1

ξ2 F (τ2,1, . . . , τ2,n2
) : τ2 P2

〈〈signal〉〉 E

• Visibility:

• Extend typing rules to sequences of actions such that
a well-typed action sequence only calls visible methods.

• Useful properties:

• concurrency

• concurrent — is thread safe

• guarded — some mechanism ensures/should ensure mutual exclusion

• sequential — is not thread safe, users have to ensure mutual exclusion

• isQuery — doesn’t modify the state space (thus thread safe)

• For simplicity, we leave the notion of steps untouched, we construct our semantics
around state machines. Yet we could explain pre/post in OCL (if we wanted to).

Discussion.

–
1
9
–
2
0
1
5
-0
1
-2
9
–
m
a
in

–

23/28



Semantic Variation Points

–
1
9
–
2
0
1
5
-0
1
-2
9
–
S
se
m
va
r
–

24/28

Pessimistic view: They are legion...

• For instance,

• allow absence of initial pseudo-states
can then “be” in enclosing state without being in any substate; or assume one
of the children states non-deterministically

• (implicitly) enforce determinism, e.g.
by considering the order in which things have been added to the CASE tool’s
repository, or graphical order

• allow true concurrency

Exercise: Search the standard for “semantical variation point”.

• [Crane and Dingel, 2007], e.g., provide an in-depth comparison of
Statemate, UML, and Rhapsody state machines — the bottom line is:

• the intersection is not empty
(i.e. there are pictures that mean the same thing to all three communities)

• none is the subset of another
(i.e. for each pair of communities exist pictures meaning different things)

Optimistic view: tools exist with complete and consistent code generation.

You are here.

–
1
9
–
2
0
1
5
-0
1
-2
9
–
m
a
in

–

25/28



Course Map

–
1
9
–
2
0
1
5
-0
1
-2
9
–
m
a
in

–

26/28

UML

M
o
d
e
l

In
s
t
a
n
c
e
s

N

S

W E

CD, SM

S = (T,C, V, atr ), SM

M = (ΣD
S
, AS ,→SM )

ϕ ∈ OCL

expr

CD, SD

S ,SD

B = (QSD , q0, AS ,→SD , FSD)

π = (σ0, ε0)
(cons0,Snd0)
−−−−−−−−→

u0

(σ1, ε1)· · · wπ = ((σi, consi,Snd i))i∈N

G = (N,E, f) Mathematics

OD UML

✔ ✔

✔ ✔

✔
✔

✔

✔

✔

✔

References

–
1
9
–
2
0
1
5
-0
1
-2
9
–
m
a
in

–

27/28



–
1
9
–
2
0
1
5
-0
1
-2
9
–
m
a
in

–

28/28

[Crane and Dingel, 2007] Crane, M. L. and Dingel, J. (2007). UML vs. classical vs.
rhapsody statecharts: not all models are created equal. Software and Systems
Modeling, 6(4):415–435.

[Damm et al., 2003] Damm, W., Josko, B., Votintseva, A., and Pnueli, A. (2003). A
formal semantics for a UML kernel language 1.2. IST/33522/WP
1.1/D1.1.2-Part1, Version 1.2.

[Fecher and Schönborn, 2007] Fecher, H. and Schönborn, J. (2007). UML 2.0 state
machines: Complete formal semantics via core state machines. In Brim, L.,
Haverkort, B. R., Leucker, M., and van de Pol, J., editors, FMICS/PDMC, volume
4346 of LNCS, pages 244–260. Springer.

[Harel and Kugler, 2004] Harel, D. and Kugler, H. (2004). The rhapsody semantics
of statecharts. In Ehrig, H., Damm, W., Große-Rhode, M., Reif, W., Schnieder, E.,
and Westkämper, E., editors, Integration of Software Specification Techniques for
Applications in Engineering, number 3147 in LNCS, pages 325–354.
Springer-Verlag.

[OMG, 2007] OMG (2007). Unified modeling language: Superstructure, version
2.1.2. Technical Report formal/07-11-02.


