— 02 — 2014-10-23 — main —

Software Design, Modelling and Analysis in UML

Lecture 02: Semantical Model

2014-10-23

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Contents & Goals

— 02 — 2014-10-23 — Sprelim —

Last Lecture:

e Motivation: model-based development of things (houses, software) to cope with
complexity, detect errors early

o Model-based (or -driven) Software Engineering
o UML Mode of the Lecture: Blueprint.

This Lecture:
o Educational Objectives: Capabilities for these tasks/questions:
e Why is UML of the form it is?
e Shall one feel bad if not using all diagrams during software development?

e What is a signature, an object, a system state, etc.?
What's the purpose of signature, object, etc. in the course?

e How do Basic Object System Signatures relate to UML class diagrams?

e Content:

e Brief history of UML
e Basic Object System Signature, Structure, and System State

Why (of all things) UML?

— 02 — 2014-10-23 — main —

Why (of all things) UML? « [Kastens and Biining, 2008]

e Pre-Note: o
being a modelling languages o
doesn’t mean being graphical (or: o
being a visual formalism [Harel]).

sider as examples:

Sets, Relations, Functions
Terms and Algebras
Propositional and

Predicate Logic

Graphs

XML Schema, Entity Relation
Diagrams, UML Class Diagrams

Finite Automata, Petri Nets,
UML State Machines

e Pro: visual formalisms are found appealing and easier to

Yet they are not necessarily easier to !

— 02 — 2014-10-23 — Shistory —

e Beware: you may meet people who dislike visual formalisms just for being
graphical — maybe because it is easier to “trick” people with a
meaningless picture than with a meaningless formula.

More serious: it's maybe easier to misunderstand a picture than a formula. .

con-

23

A Brief History of UML

— 02 — 2014-10-23 — Shistory —

o Boxes/lines and finite automata are used to visualise software for ages.

e 1970’s, Software Crisis™

— ldea: learn from engineering disciplines to handle growing complexity.

Languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams

e Mid 1980's: Statecharts [Harel, 1987], StateMate™ [Harel et al., 1990]

A Brief History of UML

— 02 — 2014-10-23 — Shistory —

Boxes/lines and finite automata are used to visualise software for ages.

1970’s, Software Crisis'™

— ldea: learn from engineering disciplines to handle growing complexity.

Languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams

Mid 1980’s: Statecharts [Harel, 1987], StateMate™ [Harel et al., 1990]

Early 1990’s, advent of Object-Oriented-Analysis/Design/Programming

— Inflation of notations and methods, most prominent:

o Object-Modeling Technique (OMT) [Rumbaugh et al., 1990]

/\ Generalization / Inheritance
$ Class operation / Class attribute
italic Abstract class / Abstract operation

List

addi(Object) : void
Inserl(in, Object) . void

mnSnow)

size *int= 0

next
Entry

header

$MAX_SIZE - int = 100

elements : Array

add(Object) - void

next: Entry

add(Object) - void
insert(int, Object) : void get(int) : Object

insert(int, Object) : void

aetSize(): int

imedia.org (CC n¢

Association / Link gef(inf) - Object (Stop]
Multiplicity : one - .
eiSize() | in
——(Multiplicity : optional e [Pause] "
Simulator Simulator [Data requested] [Log retrieval)
@ Muttplciy : man ; paused do- outputlog
Y v nning; Unpause] do : wait exit / flush
Aggregation
[Continue]
LinkedList ArayList http://wikimedia.org (CC nc-sa 3.0, User:AutumnSnow)

I

A Brief Histgrrat LM

— 02 — 2014-10-23 — Shistory —

- T s

. A s \ =Sy
Boxes/lines and sl ot TN TP
) KlasseD) ‘- I
1970’s, Softwq g BN |7
\ F————— l
— ldea: learn f) KasseA) r‘“\i.. S o0 KeseP |
iy R a
“ '*W ~) KiasseB y
Languages: Fld L f_l. , s
M|d 1980'5 S1 7 - - Z W Abstrakte Kiasse
‘} fiasse G \’/—\ Assoziation
y [L Vererbung
Early 1990’s, 4 ban . b o—— Eigentm
. > o Verwendung
— Inflation of

http://wikimedia.org (Public domain, Johannes Fasplt)

e Object-Moderinig TeCmnque (Ui 1) [RUMibaugn et ar., 1990]
e Booch Method and Notation [Booch, 1993]

A Brief History of UML

— 02 — 2014-10-23 — Shistory —

)r ages.

mplexity.

grams
t al., 1990]

zramming

o Boxes/lines and finite automata are used to visualise software for ages.

1970’s, Software Crisis'™

— ldea: learn from engineering disciplines to handle growing complexity.

Languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams

Mid 1980's: Statecharts [Harel, 1987], StateMate™ [Harel et al., 1990]

Early 1990’s, advent of Object-Oriented-Analysis/Design/Programming

— Inflation of notations and

o Object-Modeling Technique (OMT) [Rumbaugh et al., 1990]

methods, most prominent:

e Booch Method and Notation [Booch, 1993]
o Object-Oriented Software Engineering (OOSE) [Jacobson et al., 1992]

Each “persuasion” selling books, tools, seminars. ..

Late 1990’s: joint effort UM

L 0.x, 1.x

Standards published by Object Management Group (OMG), “international,

open membership, not-for-profit

Since 2005: UML 2.x

consortium'’ .

UML 0verview [OMG, 2007b, 684]

OCL Diagram
p

Structure Behavior
Diagram Diagram
[T T [[1
h Component Object Activity Use Case State Machine
Class Diagram Diagram Diagram Diagram Diagram Diagram
Composite R
Structure Deployment Package Interaction
Diagram Diagram Diagram Diagram
A
[[
Sequence Interaction
Diagram Overview
Diagram
| Communication Timing
> Diagram Diagram
5 -
S
0
L % X
| " . .
« Figure A5 - The taxonomy of structure and behavior diagram
3 y —r
S y
—
<
—
=}
Y
|
o
=}
|
ML rvi
U Overview [oma, 2007p, 6s4]
OCL Diagram
Structure Behavior
Diagram Diagram
‘ [
h Component Object Activity Use Case State Machine
Class Diagram Diagram Diagram Diagram Diagram Diagram
Composite R
Structure Deployment Package Interaction
Diagram Diagram Diagram Diagram
A
[
Sequence Interaction
Diagram Overview
Diagram

— 02 — 2014-10-23 — Shistory —

Figure A.5 - The taxonomy of structure and behavior diagram

Communicati
Diagram

ion

Timing
Diagram

6/23

6/23

Common Expectations on UML

— 02 — 2014-10-23 — Shistory —

— 02 — 2014-10-23 — main —

Easily writeable, readable even by customers

Powerful enough to bridge the gap between idea and implementation

Means to tame complexity by separation of concerns (“views")

Unambiguous
Standardised, exchangeable between modelling tools

UML standard says how to develop software
Using UML leads to better software

We will see...

Seriously: After the course, you should have an own opinion on each of these claims.
In how far/in what sense does it hold? Why? Why not? How can it be achieved?
Which ones are really only hopes and expectations? ...?

Course Map Revisited

The Plan ot
5
g e
Recall: 5 5
I

e Overall aim: Class Disgram component ‘ Solect ‘ W ‘ iy ‘

a formal language | |

for software blueprints. EEREEREEE E=
e Approach: :

(i) Common semantical
domain.

‘ Sequence ‘ ‘

Interaction
Diagram

Diagram

OG‘Zii)—UML frag-—rnents as syntax.
o)
ob
S

C
LS W)

a

\

CD,

Abstract representation

of diagrams. SM

Informal semantics:
UML standard

assign meaning to
diagrams.

(vi)

Define, e.g., consistency.

(conso,Sndo)
R,

W consi, Snd;)) e

[L[o
N
CD, SD s
&, 8D

B = (Qsp,q0, Avs—sp, Fsp)
(o1,61) -

ug

sEf)

— 02 — 2014-10-23 — Sleplar

UML: Semantic Areas

Activities State Machines

Interactions

Actions

Inter-Object Behavior Base

Intra-Object Behavior Base

Structural Foundations

Figure 6.1 - A schematic of the UML semantic areas and their dependencies

— 02 — 2014-10-23 — Sleplan —

[OMG, 2007b, 11]

10/23

— 02 — 2014-10-23 — main —

Common Semantical Domain

Basic Object System Signature

— 02 — 2014-10-23 — Ssemdom —

e)

Definition. A (Basic) Object System Signature is a quadruple

for eacl, cliss Ce &l
S = (T,6,V, atr) Hease m‘ﬁbé_ﬁ&{

Ypes:

where o o

. . coﬂ ({A @
o 7 is a set of (basic) types,
e % is a finite set of classes, C* da @

: .. . : v
e V is a finite set of typed attributes, i.e., each v € V has type

e 7€ 9 or
e Cp,1 or Cy, where C € ¢

(written v : 7 or v : Cp 1 or v : Cy),

e atr: € — gl/v maps each class to its set of attributes.

VAL T poset Y

N y

11/23

12/23

Basic Object System Signature Example

& = (F,%,V, atr) where

o (basic) types 7 and classes €, (both finite),
e typed attributes V', 7 from 7 or Cy; or C,, C € €,
o atr: € — 2V mapping classes to attributes.

chsses dl\"‘”"“ & e f“g

Example: ﬁﬂfs) / /

0= {Int},{C,D},{x: Int,p: Co1,n: Ci},{C — {p,n},D— {z}})

, f A gy
{f;’L‘é‘r, n‘ﬁ“%[;(akle) kD)
M) 4o T H

— 02 — 2014-10-23 — Ssemdom —

Basic Object System Signature Another Example

S = (T,6,V, atr) where

o (basic) types 7 and classes €, (both finite),
e typed attributes V', 7 from .7 or Cy 1 or Cy, C € €,
o atr : € — 2V mapping classes to attributes.

ot w T o, not b
ot T Bk :2\‘1

S v "US
Example: 'vacow.s-c

9 ({83,148.05 3§ o5, X3, %@, o
i)
Bnfpj,

Gm{,;}

01

— 02 — 2014-10-23 — Ssemdom —

13/23

14/23

Basic Object System Structure

a N
Definition. A Basic Object System Structure of ¥ = (7, %, V, atr)
is a domain function 2 which assigns to each type a domain, i.e.

o 7€ 7 is mapped to %(1),

o C € % is mapped to an infinite set 2(C) of (object) identities.

Note: Object identities only have the “=" operation;
object identities of different classes are disjoint, i.e. VC, D € € : C #
D — 2(C)N2(D) = 0.

e O, and Cy; for C € € are mapped to 27().

We use Z(%) to denote | Jo oy Z(C); analogously Z(%).
\ J

Note: We identify objects and object identities, because both uniquely
determine each other (cf. OCL 2.0 standard).

15/23

— 02 — 2014-10-23 — Ssemdom —

Basic Object System Structure Example

Wanted: a structure for signature

0= {Int},{C,D},{z: Int,p: Co1,n: Ci},{C — {p,n},D— {z}})

Recall: by definition, seek a Z which maps

o 7€ 7 tosome Z(r),

e ¢ € ¢ to some identities Z(C) (infinite, disjoint for different classes),
e C, and Cy, for C € € to 2(Co 1) = P(Cy) = 27(C),

o
P(Int) = 7Z =f-123, o, 1]
2(C) = N §c§ ;{k,&, 5 =$135 7.}
2(D) = N<fR {2 .3 <§2%¢68, -5
D(Con) = 9(C.) = 22
I (Do) = 2(D.) :Z@@) ey S 835)60m) | €3 §2.4(.

— 02 — 2014-10-23 — Ssemdom —

$-({8,4889 {3 ety @, o, g

Hf?/ri

ﬂ

D)= fescd) Lotk oo b S bty 4 oy

D) = A sk 3
D(Ss ':{S)BB; %‘f

B = $19.25.3.-
2 {1255

Q)CA,‘)QW') og. T Affe D)

System State & <t f Pt fucden.

— 02 — 2014-10-23 — Ssemdom —

mf‘(lm‘# v b (&%/ Jmf:\/

"f&ff

poctal Jancton
Definition. Let 4 be a structure of .%¥ &~ (7, %, V, atr).
A system state of . wrt.[Z is a typeLonsistent mapping
—~— A

— ~
o:D(€)» V » (2(T)U2(%x))).

w ¥
That is, for each u € 2(C), C € €, if fu € dom(o)

e

o dom(o(u)) = atr(C)

set o

o (a(uj(v) eg(r)ifv:r,TeT
o (J(u)(v) € P(Dy) ifv:Dgyyorv: Dy with De ¥

We call u € 2(%) alive in o if and only if u € dom(o).

We use E?, to denote the set of all system states of . wrt. 2.

\

17/23

System State Example

— 02 — 2014-10-23 — Ssemdom —

Signature, Structure:
S0 = ({Int},{C,D},{z: Int,p: Co1,n: C.},{C— {p,n},Dw— {z}})

.@(Int) :Z, .@(C) {10,20,30,...}, .@(D) :{1D72D73D7"'}

Wanted: o : 2(€) » (V - (2(7) U 2(%.))) such that e all v € obr)
e dom(o(u)) = atr(C),
o o(uw)(w) e D(r)ifv:T,T€ T, o o(u)(v) e 2(C,) ifv:D, with DeF .

18/23

System State Example

— 02 — 2014-10-23 — Ssemdom —

Signature, Structure:
S = ({Int},{C,D},{z: Int,p: Co1,n: C.},{C— {p,n},D— {z}})

.@(Int) :Z, @(0)2{10,20,30,...}, @(D) :{1D,2D,3D,...}

Wanted: o : (%) » (V » (2(9) U Z(%.))) such that
o dom(o(u)) = atr(C),

o o(u)(v) e D(r)ifv:T, 7€ T,

o o(u)(v) € 2(C,) ifv: D, with D €% .

e Concrete, explicit:

o={lg—{p—0,n— {5c}},50 = {p— 0,n— 0},1p — {z +— 23}}.

o Alternative: symbolic system state

o={a={p=bniat o= {p=ln=0hde {z= 23}

Course Map
CD, SM

You Are Here.

@ € OCL CD, SD
expr <, 5D
B = (Qsp,q, A, —sp, Fsp)
(ConSO Sndo) 01,€1) - <" wr = ((04, cons;, Snd;)) ;e

uO

G:(N,E,f)

oD

20/23

21/23

— 02 — 2014-10-23 — main —

— 02 — 2014-10-23 — main —

References

22/23

[Booch, 1993] Booch, G. (1993). Object-oriented Analysis and Design with Applications.
Prentice-Hall.

[Dobing and Parsons, 2006] Dobing, B. and Parsons, J. (2006). How UML is used.
Communications of the ACM, 49(5):109-114.

[Harel, 1987] Harel, D. (1987). Statecharts: A visual formalism for complex systems.
Science of Computer Programming, 8(3):231-274.

[Harel et al., 1990] Harel, D., Lachover, H., et al. (1990). Statemate: A working
environment for the development of complex reactive systems. |IEEE Transactions on
Software Engineering, 16(4):403-414.

[Jacobson et al., 1992] Jacobson, I., Christerson, M., and Jonsson, P. (1992).
Object-Oriented Software Engineering - A Use Case Driven Approach. Addison-Wesley.

[Kastens and Biining, 2008] Kastens, U. and Biining, H. K. (2008). Modellierung,
Grundlagen und Formale Methoden. Carl Hanser Verlag Miinchen, 2nd edition.

[OMG, 2006] OMG (2006). Object Constraint Language, version 2.0. Technical Report
formal /06-05-01.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version 2.1.2.
Technical Report formal/07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version 2.1.2.
Technical Report formal/07-11-02.

[Rumbaugh et al., 1990] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen,
W. (1990). Object-Oriented Modeling and Design. Prentice Hall.

23)23

