— 22 — 2015-02-10 — main —

Software Design, Modelling and Analysis in UML
Lecture 22: Meta-Modelling

2015-02-10

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Contents & Goals

— 22 — 2015-02-10 — Sprelim —

Last Lecture:

e Inheritance in UML: concrete syntax

o Liskov Substitution Principle — desired semantics

This Lecture:
¢ Educational Objectives: Capabilities for following tasks/questions.

What's the Liskov Substitution Principle?

What is late/early binding?

What is the subset, what the uplink semantics of inheritance?

What's the effect of inheritance on LSCs, State Machines, System States?

e What's the idea of Meta-Modelling?
o Hay b fead e OMe UML sheoid docoments

e Content:

e The UML Meta Model
e Wrapup & Questions

Meta-Modelling: Idea and Example

— 22 - 2015-02-10 — main —

Meta-Modelling: Why and What

o Meta-Modelling is one major prerequisite for understanding
e the standard documents [OMG, 2007a, OMG, 2007b], and
e the MDA ideas of the OMG.

e The idea is simple:
o if a modelling language is about modelling things,
e and if UML models are and comprise things,

e then why not model those in a modelling language?

e In other words:
Why not have a model My such that
e the set of legal instances of My,
is

e the set of well-formed (!) UML models.

— 22 - 2015-02-10 — Smm —

Meta-Modelling: Example

NawedVigLle Tl]
et - . g'uJ
1=, 7

e For example, let's consider a class.

e A class, has (on a superficial level)

e a2 namev
a name, Y

e any number of attributes,

v

e any number of behavioural features.

Each of the latter two has
v

e a name and”
v

e a visibility.”

Behavioural features in addition have 1
e a boolean attribute isQLLeryf 75{3{
e any number of parameters, 1

e a return type? \L
0-%

o Can we model this (in UML, for a start)? [PNM‘L"} :
/63

— 22 - 2015-02-10 — Smm —

UML Meta-Model: Extract from UML 2.0 Standard

AN

NamedElement
name
visibility

TypedElement
AN

redefdElem

AN

RedefElement []

ZAN
ZAN

BehavFeature

type

‘ Classifier ‘ StructFeature

s o/ﬁ

0..1

*

Operation %“ Parameter
1 0..1 *

— 22 - 2015-02-10 — Smm —

— 22 - 2015-02-10 — main —

Meta-Modelling: Principle

Modelling vs. Meta-Modelling

Class Property Type
Meta-
name : Str name : Str name : Str
Model Kl K
f ! f ' f
(M2) I
ooy
I I I
I ' ! l ! ! < = ({2},
v -1 So, if we have a meta model My of UML, then the ’{U}’
Model set of UML models is the set of instances of M. [~ v}),
M1 > 27
(M1) e A UML model M can be represented as an object|
Instance diagram (or system state) wrt. the meta-model My. | /
(M0) <

My can (alternatively) be rendered as the UML » 0}}

| e Other view: An object diagram wrt. meta-model {u
v
model M.

— 22 — 2015-02-10 — Sprinciple —

Well-Formedness as Constraints in the Meta-Model

e The set of well-formed UML models can be defined as the set of object
diagrams satisfying all constraints of the meta-model.

For example,

“[2] Generalization hierarchies must be directed and acyclical. A classifier
cannot be both a transitively general and transitively specific classifier
of the same classifier.

notself . allParents() -> includes(self)” [OMG, 2007b, 53]

e The other way round:
Given a UML model M, unfold it into an object diagram O wrt. My.
If Oy is a valid object diagram of My (i.e. satisfies all invariants from
Inv(Myr)), then M is a well-formed UML model.

That is, if we have an object diagram validity checker for of the
meta-modelling language, then we have a well-formedness checker for

UML models.

— 22 — 2015-02-10 — Sprinciple —

The UML 2.x Standard Revisited

— 22 - 2015-02-10 — main —

10/63

Claim: Extract from UML 2.0 Standard

— 22 - 2015-02-10 — Sumlmm —

ZAN

NamedElement

name
visibility

e —

TypedElement RedefElement [] redefdElem
ZAN ZAN *
AN AN
‘ Classifier ‘ ‘StructFeature ‘BehavFeature
Class

Classes joma, 2007p, 32]

— 22 - 2015-02-10 — Sumlmm —

StructuralFeature

Operation }0“ Parameter ‘
{ 0.1 *

Property

{subsets member, ordered}
nd +

Association

{redefines general}
IsuperClass

¥ +subsettedProperty|

{subsets classifier,
subsets namespac

pace,
subsets featuringClassifier} {Subsets attibute,

subsels ownedMiember|
ordered)
+ownedAttribute

{subsets redefinedElement}
+ redefinedProperty

I

isDerived : Boolean
isReadOnly : Boolean
isDerivedUnion : Boolean
Idefault : String

aggregation : AggregationKind
NlsComposite : Boolean

2.*
isDerived : Boolean

{subsets memberEnd,
Subsets feature, subsets {subsets association

ownedMember, ordered] subsets namespace,

+ownedEnd ubsets featuringClassifier}
“+owningAssociation
.
n -
0.1
isubsels owner}
navigableOwnedEnd
* 0.1

{subsets owner} (subsets

(subsets namespace,
Subsets redefinitionContext)

+lopposite
0.1

SRS defauitvalue -ValueSpecification
-1 (X

0.1

{subsets ownedMember, ordered)

+nestedClassifier

Classifier

gy
e
0.1

0.1

{subsets redefinitionContext, {subsets feature, subsets

Subsets namespace, ownedMember, ordered}

subsets featuringClassifer} +ownedOperation

+class
-

Figure 7.12 - Classes diagram of the Kernel package

<<enumeration>>
AggregationKind

none
shared
composite

{readOnly, odered} 1
+/endType -

Type

11/63

12/63

Operations [0MG, 2007b, 31]

BehavioraiFeature

{subsets namespace} {redefines ownedPararmeter:
o operation + ownedParameter Parameter
Operation RaliE] "
isQuery : Boolean
subsets context {subsets ownedRule}
23‘8“’5’” BE'EIE'E”‘ ‘f+ prns g ¥ + precondition
isUnicue : Boolean - —
Noveer : Integer [0.1 * Constraint
Jupper : UnlimtedMatural [0.1]
{subsets cortext} {subsets ownedRule}
|+ postContext + postcondition
NCEl *
{subsets context} {subsets ownedRule):
| g+ hodyContext + hodyCondition
Rt
0.1 0.1
+ type Typa
* 0.1
redefines raisedExcentio
* { ¥ rallzserﬂice
{subsets redefinedElerment} *
+ redefinedOperation
| *
1S
E \—
1S
E] B
)
|
o
&
<
2 Figure 7.11 - Operations diagram of the Kernel package
o
I3
|
o
o
|
.
Operations [0MG, 2007b, 30]
<enumerations
freadonly, uniony {readonly, urion) ParameterDirectionkind
= + lfeaturingClassifier + Heature in
assifier
o] e
o return
| | Namespace
i
BehavioralFeaturs
.
owmediertber,
ordered}
0.1 + ownedParameter

f i

Parameter
direction : ParameterDirectonking
Itetaut : String

+ ownerFormalParam *

{subsets namespace}

subsets owner}
1

— 22 - 2015-02-10 — Sumlmm —

Figure 7.10 - Features diagram of the Kernel package

{subsets ownedElement}
0.1 |+ defautvalie

ValiweSpec,

13/63

14/63

Classifiers 1omG, 2007p, 291

=

Classifisr

Type DirectedReiationship
il
{subsets target} -
 general
Generalization

NamedEiement
{readOnly, union}
+ redefintionContext

RedefinableElement
isLeaf . Boolean

{readOnly, union}
+ redefinedElement

]

dreadOnly, union, {subsats

isdpsiract. Boolean

subsets feature} redefinitionContext
Property + Jatiribute 4 + classifier }
. 0.1

— 22 - 2015-02-10 — Sumlmm —

1

{subsets source,
subsets ownerk
 Specific

{subsets isSubstitutable . Boolean

ownedElement?
+ generalization

1
{readOnly, subsets member}k
+

{subsets redefinedElement}
"+ redefinedClassifier

+ igensral

Figure 7.9 - Classifiers diagram of the Kernel package

Namespaces joma, 2007p, 26]

Element

sreadOnly‘ union}
+/member

<<enumeration>>|
VisibilityKind
NamedElement
public
Name : String [D. 1] private
visibility : VisibilityKind 0..1] protected
JqualifiedName : String [0..1] package
{readOnly, subsets member}
PackageableElement |/ mPortedMember | Namespace

visibility : VisibilityKind

{readOnly, union,
subsets owner}
+/namespace

* | +/lownedMember

{readOnly, union, subsets
member, subsets ownedElement}

—-—————— |
0.1 DirectedRelationship

(sybsevs,_ source, subsets owner} {subsets target}
+ 1t

< * ! 1t
-
1 +elementimport 1 1

visibility : VisibilityKind
alias : String [0.1]

{subsets
ownedElement}

DirectedRelationship

{subsets source,
subsets owner}
+importingNamespace {subsets target}

- t +impor g
+packa elmpog visibility : VisibilityKind | , 1 -

pi
{subsets ownedElemen

— 22 - 2015-02-10 — Sumlmm —

Figure 7.4 - Namespaces diagram of the Kernel package

15/63

16/63

Root Diagram [oma, 2007b, 25]

— 22 - 2015-02-10 — Sumlmm —

Efement

I

0.1
+ fovyner
{readonl

{fsubsets owner} {subsets ownedElement}

+ owvningElsment
o1

HEAR P

y, union}

+ oowwnedCommernt

Comment

{readCnly, union}

+ annotstedElement

Lo

+ frelatecElement

1.2

{readCnly, union,

DirectedRelationship

subsets relatedElerment}
+ farget

= ERGS

+ isource.

- 1.2
{readOnly, union,
subsets relatedElermnent

Figure 7.3 - Root diagram of the Kernel package

+ [(oody - String

Interesting: Declaration/Definition [omc, 2007b, 424]

UML::Classes::

— 22 - 2015-02-10 — Sumlmm —

Kernel::Classifier

BehavioredClassifier

{subsets ownedBehaviork

Behavior

+ classifierBehavior

0.1 o

+ icortext
{subsets redefinitionContext}

0.1 =
+ ownedBehavior

o

{subsets ownedMember}

BehavioralFeature

tsAbstract : Boolean

+ specification + method

0.

0.1

ownedParameter
{subsets ownedMember,

isReentrant | Boolean

. subsets redefinedElement
+ redefinedBehaviar

ordered}

f

OpaqueBehavior

Figure 13.6 - Common Behavior

body : String [*]
language : String [*]

FunctionBehavior

17/63

18/63

UML. Architecture oma, 2003, 3]

— 22 — 2015-02-10 — Swhole —

e Meta-modelling has already e (L L o otea
been used for UML 1.x. (vt semantics) Package, Snapshot

e For UML 2.0, the request 5
uperstructure | |__________ > Class, State,
for proposals (RFP) asked (abstract syntax) Transition,
. Flow, ...
for a separation of concerns:

Infrastructure and
Superstructure ClassBox, StateBox,
Superstructure. (concrete syntax) | J === =====-= > TransitionLine, ..

e One reason:
sharing with MOF (see Diagam | | _ooooooo3 > Node, Edge..
Interchange

later) and, e.g., CWM.

Figure0-1 Overviewofarchitecture

cwm
Profiles.

19/63

UML Superstructure Packages [oma, 20074, 15]

— 22 — 2015-02-10 — Swhole —

CommonBehaviors
« — — —

/ \
/ \

|
|
|
! |
/ . |
UseCases / StateMachines \nteractions . |
/ ! A\ |
o7 ~ \
/ P N :

A\
~
// . - < ' \
/ Activities CompositeStructures AuxiliaryConstructs
F e
/
/
Hall il

Deployments

Figure 7.5 - The top-level package structure of the UML 2.1.1 Superstructure

20/63

Reading the Standard

Reading the Standard

Table of Contents
Lo SCOPE .ot 1
2. Conformancel 1
21 Language Unitsuiiiiiiiiiiiii 2
2.2 Compliance Levels oot 2
2.3 Meaning and Types of Compliancecccoveinn.. 6
2.4 Compliance Level CONteNtSouuuutunteeeen e 8
3. Normative References ... 10
4. Terms and Definitions ... 10
5. Symbols 10
6. Additional Information 10
6.1 Changes to Adopted OMG Specifications 10
6.2 Architectural Alignment and MDA Support 10
6.3 On the Run-Time Semantics of UMLooiiiiiiiann.s 11
6.3.1 The Basic Premises 11
6.3.2 The Semanti 11
6.3.3 The Basic Causality Model 12
6.3.4 Semantics D ions in the 13
6.4 The UML Metamodelot nns 13
6.4.1 Models and What They Model 13
t‘\o 6.4.2 Semantic Levels and Naming 14
= 6.5 How to Read this Specification .15
= 5.1 Specifi 15
o 6.5.2 Diagramformat 18
“‘7 6.6 Acknowledgements 19
=1
& Part|-Structurel 21
<
12}
b=y 7. ClaSSES ..t e et e 23
«
|
m UML Superstructure Specification, v2.1.2
|

T OVEIVIBW oottt et 23
Table of Contents 7.2 ADSHACE SYMMAX . . oottt et ettt 24
7.3 Class DESCHIPONSttt ittt 38
731 (from D 38
732 (from Kernel) 38
733 (from Kernel) 39
1. Scope 734 lass (from lasses) 47
735 Kemel) 48
2. Conformance 7.36 lassifier (from Interfaces) 49
7.3.7 Class (from Kernel) 49
2.1 Language Units ... 7.3.8 Classifier (from Kernel, D¢ PowerTypes) 52
. 7.3.9 Comment (from Kernel)
2.2 Compliance Levels . 7.3.10 Constraint (from Kemel)
2.3 Meaning and Types 7.3.11 DataType (from Kernel)
7.3.12D (from Dy
2.4 Compliance Level C 7.3.13 Di Kernel)
. 7.3.14 Element (from Kernel)
3. Normative References 7315 (from Kernel)
o 7316 Kernel)
4. Terms and Definitions 7.317 iteral (from Kernel)
7318 ion (from Kernel)
5. Symbols 7.3.19 Feature (from Kernel)
7.3.20 Generalization (from Kernel, PowerTypes) .
6. Additional Information 7.3.21 GeneralizationSet (from PowerTypes)
7322 i (from Kernel)
6.1 Changes to Adopted,| 7.3.23 m Kernel)
N 7.3.24 Interface (from Interfaces)
6.2 Architectural Alignm 7.3.25 InterfaceRealization (from Interfaces)
6.3 On the Run-Time S| 7 g ég' ('("“’“KKEV"‘Q))
3271 rom Kernel
6.3.1 The Basic Premig 7.3.28 LiteralNull (from Kernel)
6.3.2 The Semantics A 73201 i (irom Kermel)
6.3.3 The Basic Causal 73301 - Kernel)
6.3.4 Semantics Descr 7.331 Literall from Kernel)
6.4 The UML Metamode 7332 (from Kernel)
‘ 6.4.1 Models and What ;g gf "’ﬁg:;;"e" b
0 6.4.2 Semantic Levels 7.3.35 OpaqueExpression (from Kernel)
£ 6.5 How to Read this Sp 7.3.36 Operation (from Kermel, INEIACES)vvrrroromsossmosomosorosoroso
© 6.5.1 Specif 733 ermel)
] -5.1 Specification forn} 7338 (from Kernel)
‘;’g 6.5.2 Diagramformat .| 7339 from kernel)
6.6 Acknowledgements 7.3.40 om Kernel)
| 7.3.41 Parameter (from Kernel, la
=] 7.3.42 irectionKind (from Kernel)
) - 7.3.43 PrimitiveType (from Kernel)
g Part | - Structure .. 7.3.44 Property (from Kernel, lasses)
7 7.3.45 (fr
© 7.3.46 (from Kernel) 130
3 7. Classes
| il UML Superstructure Specification, v2.1.2
ﬁ UML Superstructure Specification, v2.1.2 ol
I

21/63

21/63

Reading the Standard

— 22 — 2015-02-10 — Sreading —

Table of Contents

2.1 Language Units

2.2 Compliance Levels .

2.3 Meaning and Types

2.4 Compliance Level C
Normative References
Terms and Definitions

Symbols

o o~ w

Additional Information
6.1 Changes to Adopted,|
6.2 Architectural Alignm

6.3 On the Run-Time Se|
6.3.1 The Basic Premis]
6.3.2 The Semantics Af
6.3.3 The Basic Causal
6.3.4 Semantics Descr

The UML Metamode
6.4.1 Models and What
6.4.2 Semantic Levels

How to Read this Sp|
6.5.1 Specification forn
6.5.2 Diagramformat .|

Acknowledgements

6.

>

6.

)

6.

o

Part | - Structure ..

7. Classes ..

UML Superstructure Specification, v2.1.2

7.1 Overview
7.2 Abstract Syntax

7.3 Class Descriptions .
7.3.1 Abstraction (from
7.3.2 AggregationKind
7.3.3 Association (from
7.3.4 AssociationClass
7.3.5 BehavioralFeatur|
7.3.6 BehavioredClass
7.3.7 Class (from Kern
7.3.8 Classifier (from K|
7.3.9 Comment (from
7.3.10 Constraint (from
7.3.11 DataType (from
7.3.12 Dependency (frq
7.3.13 DirectedRelatior
7.3.14 Element (from K
7315 (

7.3.16 Enumeration (frc
7.3.17 EnumerationLite
7.3.18 Expression (frof

7.3.19 Feature (from K
7.3.20 Generalization (
7.3.21 GeneralizationS|
7322

7.3.23 InstanceValue (f
7.3.24 Interface (from |

7.3.25 InterfaceRealizg
7.3.26 LiteralBoolean ({
7.3.27 Literalinteger (fr
7.3.28 LiteralNull (from
7.3.29 LiteralSpecificatf
7.3.30 LiteralString (frof
7.3.31 LiteralUnlimited
7.3.32 MultiplicityElemd

3.33

7.3.34 Namespace (fro
7.3.35 OpaqueExpress|
7.3.36 Operation (from
7.3.37 Package (from
7.3.38 PackageableEld
7.3.39 Packagelmport
7.3.40 PackageMerge (
7.3.41 Parameter (frony
7.3.42 ParameterDirect
7.3.43 PrimitiveType (fi
7.3.44 Property (from
7.3.45 Realization (fron|
7.3.46 RedefinableEler]

7.3.47 Relati (from Kernel) 132

7.3.48 Slot (from Kernel) 132

7.3.49 (from Kernel) 133

7.350 (from D 134

7.351 Type (from Kemel) 135

3527 (from Kernel) 136

7.3.53 Usage (from D i 137

7.354 i (from Kernel) 137

7.355 (from Kernel) 139

T4 Diagrams 140
8. COMPONENtSttt 143
8.1 OVEIVIEW ..ttt et 143
8.2 ADBSIACtSYNIAXottt 144
8.3 Class DeSCrptioNSvutitititit i 146
8.3.1 Component (from BasicC 146

8.3.2 Connector (from BasicC 154

8.3.3 C ind (from BasicC 157

8.3.4 C i (from BasicC 157

8.4 Diagrams 159
9. ComPpOoSite StrUCLUreSovitittit i 161
9.1 OVEIVIEW ..ottt ettt 161
9.2 ABSHaCt SYNtAXottt 161
9.3 Class Descriptions 166
9.3.1 Class (from lasses) 166

9.3.2 Classifier (from C 167

933 (from C 168
9.3.4C Jse (from C 171

935 C (from 174

9.3.6 Connector (from 174

937 C (from Ports) 176

9338 (from Ports) 178

939 (from i 178

9.3.10 Parameter (from C 179

9.3.11 Port (from Ports) 179

9.3.12 Property (from 183

9313 lassifier (from 186

9.3.14 Trigger (from 190

9.3.15 Variable (f 191

9.4 Diagrams .191
10. Deployments 193

UML Superstructure Specification, v2.1.2

Reading the Standard Cont’d

— 22 — 2015-02-10 — Sreading —

Window

public
size: Area = (100, 100)
defauliSize: Rectangle
protected
visibilty: Boolean = true.

private
attachX(xWin: XWindow)

Figure 7.29 - Class notation: attributes and operations grouped according to visibility

7.38

A classifier is a classification of instances, ésdribes a set of instances that have featuresnmmon.

Generalizations

+ “Namespace (from Kernel)’ on page 99

Classifier (from Kernel, Dependencies, PowerTypes)

- “RedefinableElement (from Kernel)” on page 130

« “Type (from Kernel)"” on page 135

Description

A classifier is a namespace whose members candedeatures. Classifier is an abstract metaclass.

A classifier is a type and can own generalizatighereby making it possible to define generalizatielationships to
other classifiers. A classifier can specify a getieation hierarchy by referencing its general sitiers.
A classifier is a redefinable element, meaning thist possible to redefine nested classifiers.

Attributes
« isAbstract: Boolean

If true, the Classifier does not provide a complete datitan and can typically not be instantiated. Antazs

classifier is intended to be used by other classiffe.g., as the target of general metarelatipasit generalization

relationships). Default value faise.

Associations
Jatribute: Property []

Refers to all of the Properties that are direet (not inherited or imported) attributes of thassifier. Subsets
Classifier: feature and is a derived union.

 feature : Feature []

Specifies each feature defined in the classifiehsBtsVamespace::member. This is a derived union.

/ general : Classifier[*]

Specifies the general Classifiers for this Classifier. Enderived.

52

UML Superstructure Specification, v2.1.2

21/63

22/63

Reading the Standard Cont’d

— 22 — 2015-02-10 — Sreading —

- ization]
Specifies the Generalization relationships for Gissifier. These Generalizations navigate to rgeresral
ion hierarchy. Suti

i 1
Specifies all elements inherited by this classfiem the general classifiers. Substtsnespace::member. This is

classifiers in the i
Win
ublic <
size: Area = (
defaultsize: R derived.
protected
Visiiity: Boold + redefinedClassifier: Classifier [']
prvate References the Classifiers that are Massi
Win: XWind
public
ok | Package Dependencies
hide(« substitution : Substitution
private. e
Figure 7.29 - Cl|
Package PowerTypes
7.38 Clas{ . powertypeExtent : GeneralizationSet
A classifier is

Generalizatiof
+ “Names|
- “Redefi
- “Type (f

Description

A classifier is

A classifier is
other classifies

A classifier is

Attributes

+ isAbstract:
If true,
classif
relatiof

Associations

[attribute:
Refers
Classif

I feature :
Specif|
/ general :
Specif

52

Designates the GeneralizationSet of which the dstatClassifier is a power type.

Constraints

[1] The general classifiers are the by the
general = self.parents()

2]

that are owned byOllissifier. Subsei§ement::ownedElement and
)

must be di A classifier cannot be both a transitively general and

[3] Aclassifier may only specialize classifiersaotalid type.
self.parents()->forAll(c | self.maySpecializeType(c))
[4] The inheritedMember association is derived Hyeiting the inheritable members of the parents.

transitively specific classifier of the same clfiesi
not selfallParents()->includes(sel)

If,

Package PowerTypes
[5] The Classifier that maps to a GeneralizationSag neither be a specific nor a general Classifieny of the

inherit(se. llect(p | p.

itself nor may its instances also be its subclasses

Additional Operations
[1] The query allFeatures() gives all of the featuin the namespace of the classifier. In gentémaiugh mechanisms such 4s
inheritance, this will be a larger set than feature
Classifier:allFeatures(): Set(Feature);
allFeatures = member->select(oclisKindOf(Feature))
[2] The query parents() gives all of the immediateestors of a generalized Classifier.
Classifier::parents(): Set(Classifier);
parents = generalization.general

UML Superstructure Specification, v2.1.2 53

defined for that In other words, a power type mayban instance of

Reading the Standard Cont’d

— 22 — 2015-02-10 — Sreading —

[3] The query allParents() gives all of the direatiandirect ancestors of a generalized Classifier.
Classifi 0: Set(Classifier),

Wint

public
size: Area = (
defauliSize: R|
protected

visibilty: Bool

private
atlachX(xWin:

Figure 7.29 - Cl
738 Clas
A classifier is

Generalizatio]
« “Names|
« “Redefi
« “Type (f

Description

A classifier is

A classifier is
other classifies

A classifier is

Attributes
+ isAbstract:

Associations

[attribute:
Refers

Classif

 feature :
Specif|

/ general :
Specif

52

Specif
classif

« linherited
Specif
derive

« redefinedd
Refere]

Package Depe]

allParents = self.parents()->union(self.parents()->collect(p | p.allParents())
[4] The query inheritableMembers() gives all of thembers of a classifier that may be inherited ie ofits descendants,

subject to whatever visibility restrictions apply.

c i Classifier).

pre: c.allParents()->includes(self)

ber->select(m | c. of(m)

[5] The query hasVisibilityOf() determines whethenamed element s visible in the classifier. Byatéfall are visible. It is

only called when the argument is something ownee pgrent.

Classifier::hasVisibilityOf(n: NamedElement) : Boolean;

Refere]
Named|

Package Pow]

+ powertype|

Desig
Constraints

[4] The gener

general = s

[2] Generalizd

transitively|

not self.allF|

[3] Aclassifie

self. parents|

[4] The inhert

self.inheritef

Package Powe]

pre: self.all llect(c | c.membe

if (seltinheritedMember->includes(n)) then
hasVisibilityOf = (n.visibility <> #private)
else

hasVisibilityOf = true
[6] The query conformsTo() gives true for a classithat defines a type that conforms to anotheis Fhused, for example,
in the specification of signature conformance fpetions.
Classifier::conformsTo(other: Classifier): Boolean;
conformsTo = (self=other) or (self.allParents()->includes(other))
[7] The query inheit() defines how to inherit a séelements. Here the operation is defined torintteem all. It is intended
to be redefined in where inherita by
P

inherit = inhs

8] The query Type() i i have a relatio to classifiers of
the specified type. By default a classifier mayciiéze classifiers of the same or a more gengai.it is intended to bel
redefined by classifiers that have different spiition constraints,
Classifier::maySpecializeType(c : Classifier) : Boolean;
maySpecializeType = self oclisKindOf(c.ociType)

Semantics

A classifier is a classification of instances adiing to their features.

[5] The Classi
Generalizg A Classifier may participate in generalization tielaships with other Classifiers. An instance affecific Classifier is
itself nor m also an (indirect) instance of each of the genetassifiers. Therefore, features specified foranses of the general
) classifier are implicitly specified for instancestbe specific classifier. Any constraint applyifginstances of the

Additional Op| general classifier also applies to instances ofshecific classifier.

[1] Thequery| tho specific semantics of how generalization agfemich concrete subtype of Classifier varies. détances of a
inheritancq jagsifier have values corresponding to the cliessifattributes.

Classifier:a
alFeatures| A Classifier defines a type. Type conformance bemwgeneralizable Classifiers is defined so thatassifier conforms
to itself and to all of its ancestors in the gefieasion hierarchy.

[2] The query
Classifier::p|
parents = g

54 UML Superstructure Specification, v2.1.2

UML Superstructur& SECiCATON, V212 55 =

22/63

22/63

Reading the S

tandavd Cnnt’Ad

— 22 — 2015-02-10 — Sreading —

Reading the S

Wint

ublic
size: Area = (
defaulSize: R|
protected
visibilty: Bool
private

XWin: XWind
public
display)
hide()

private
atiachX(xWin:

Figure 7.29 - C|

738 Clas

A classifier is

Generalizatioy

Specif
classif

« linherited
Specif
derive

« redefinedd
Refere
Package Depe]
« substitutior
Refere
Named
Package Powd

« powertype|
Desig

[3] The query
Classifier::a
allParents

[4] The query
subject to
Classifier:if
pre: c.allPal
inheritableM

[5] The query
only called
Classifier::h|
pre: self.all

if (self
else
haf

[6] The query
in the spex
Classifier:]

Package PowerTypes

The notion of power type was inspired by the notibipower set. A power set is defined as a set whostances are
subsets. In essence, then, a power type is awlasse instances are subclasses. The powertypefagsatiation relates|
a Classifier with a set of generalizations thabaje a common specific Classifier, and b) repreaantilection of subsets
for that class.

Semantic Variation Points

The precise lifecycle semantics of aggregation semantic variation point.

Notation

Classifier is an abstract model element, and spepip speaking has no notation. It is nevertheteswenient to define
in one place a default notation available for anparete subclass of Classifier for which this riotais suitable. The
default notation for a classifier is a solid-outlirectangle containing the classifier's name, aptibaally with
compartments separated by horizontal lines contgifatures or other members of the classifier. esific type of
classifier can be shown in guillemets above theea@ome specializations of Classifier have thein alitinct notations |

The name of an abstract Classifier is shown incgal

An attribute can be shown as a text string. Thenarof this string is specified in the Notation sulbuse of “Property
(from Kernel, AssociationClasses)” on page 123.

Options

[1] The gener

[7] The query

Any may be A drawn for a is

« “Names| general = s to be rede{ suppressed, no inference can be drawn about tisere or absence of elements in it. Compartmenesaman be used
. kRedeh 2] Generalizg C\hasslﬁey .h to remove ambiguity, if necessary.
+ "Type (f transitively] inherit =inhl A abstract Classifier can be shown using the kesiabstract} after or below the name of the Cléiesi
. not self.allF| [8] The query o . .
Description ” the specifiy The type, visibility, default, multiplicity, propeyr string may be suppressed from being displayeené there are value
[3] Aclassifie
" redefined f in the model.
A classifier is selfparens, "
Aclassifieris | [4] The inheril Classifierin| The individual properties of an attribute can bewh in columns rather than as a continuous string.
other classifie] corinerel] o Guide
o - . Style Guidelines
A classifier is Semantics vie Guldel
Package Pow o + Attribute names typically begin with a lowercaseele Multi-word names are often formed by concatiny the words
Attributes | (5] The Classi| * ©8%SifeT and using lowercase for all letters except for spuathe first letter of each word but the first.
. isAbstract: Generalizg A Classifierm|{ ~ + Center the name of the classifier in boldface.
If true,| itselfnorm aiso an (indirel + Center keyword (including stereotype names) inplae within guillemets above the classifier name.
classif adi ' classifier are i « For those languages that distinguish between upperand lowercase characters, capitalize namebége them
relatiof Additional Op| general classi with an uppercase character)
[1] Thequery| the specific s « Left justify attributes and operations in plaindac
classifier have| « Begin attribute and operation names with a lowes detier.
+ latiribute: Classifier::a + Show full attributes and operations when neededsapgress them in other contexts or references.
Refer: alFeatures| A Classifier d
ssif to itself and t
Classif [2] The query
- Ifeature Classifer-p
B ———
+ Igeneral:
Specif UML Superstructure Specification, v2.1.2 55
54 - =
52 UML Superstructur& SpECiCATON, V212 55

12111 4 Examples

— 22 — 2015-02-10 — Sreading —

Wint

public
size: Area = (
defauliSize: R|
protected

visibilty: Bool

private
atlachX(xWin:

Figure 7.29 - Cl
738 Clas
A classifier is

Generalizatio]
« “Names|
« “Redefi
« “Type (f

Description

A classifier is

A classifier is
other classifies

A classifier is

Attributes
« isAbstract:

Associations

[attribute:
Refers

Classif

I feature
Specif|

/ general :
Specif

52

Specif
classif

« linherited
Specif
derive

« redefinedd
Refere
Package Depe]
« substitutior
Refere
Named|

Package Powd

+ powertype|
Desig

(3] The query
Classifier:d]
allParents

[4] The query
subject to
Classifier:i
pre: c.allPal

[5] The query
only called]
Classifier::hj
pre: self.all

if (self
[
else
[

[6] The query
in the spe
Classifier:]

Package Powd

The notion of

subsets. In es; ClassA
a Classifier wif [name: Sting
for that class. shape: Rectangle

+size: Ineger 0.1]
 area: Integer {readOnly)
Semantic Vari | heigh Integer=5

width: Integer

The precise li

Notation

Classifier is ar ClassB
in one place af | id {redefines name}
default notatiof | shape: Square

eight =
compartments{ | /9
classifier can

The name of
Figure 7.30 - Examples of attributes

An attribute c

(ifom Kemel | The atibutes in Figure 7.30 are explained below

« ClassA:name is an attribute with type String.
« ClassA:shape is an attribute with type Rectangle.

[1] The gener

generai=s| ©0berede] suppressed,n| * ClassArareais a derived attibute with type lafesis marked as read-only
2] Generaliza Classifier:ir| to remove am + ClassA:height is an attribute of type Integer véittiefault initial value of 5.
transitively] inherit=inhf xcract o «+ ClassA:width is an attribute of type Integer.
not selfal [8] The query) « ClassB:id is an attribute that redefines Classéne.
i the specifiq The type, visil « ClassB::shape is an attribute that redefines Clasisape. It has type Square, a specialization ofaRgle.
Bl Aclassifierl o jefingd | in the model
seltparents : + ClassB:height is an aturibute that redefines Glabsight. It has a default of 7 for ClassB instesithat overrides the
Classifier:n| The individual ClassA default of 5.
@] Theinherif oo
Finh ySp + ClassB::width is a derived attribute that redefiGémssA::width, which is not derived.
self.inherites Style Guidelir|)) .
Semantics An attribute may also be shown using with no atthe tail of the
Package Powg - Atributd
classifier is i
[5] The Classi and usi
Generalizg A Classifier m| + Center i
itself nor m also an (indirel + Center
classifier are if . For tho]
Additional Op| general classi with an
[1] Theauery | The specifics] * Leftjust
inheritancd c|assifier have| ~ + Beginaf Figure 7.31 - Association-like notation for attribute
Classifier::af
- Show
allFeares| A c‘\as"sme;z:
o itself an
[2] The query
Classifier::p|
parents = g 56 UML Superstructure Specification, v2.1.2
UML Superstructuie SPeciication, VZiZ]
54 - = =
UML Superstructur& SECiCATON, V212 55

[7] The query

Any compartn| * ClassAsize s a public atribute of type Integith multpicty 0.1

22/63

22/63

Reading the S

tand

— 22 — 2015-02-10 — Sreading —

— 22 - 2015-02-10 — main —

Wint

ublic
size: Area = (
defaulSize: R|
protected
visibilty: Bool
private

XWin: XWind

public
display)
hide()

private
atiachX(xWin:

Figure 7.29 - C|

738 Clas

A classifier is

Generalizatioy

Package Depe]

Package Powd

Specif
classif

Jinherited|
Specif
derive

redefinedq
Refere]

substitutiol
Refere]

Named|

powertype|
Desig

[3] The query
Classifier::a
allParents

[4] The query
subject to
Classifier:if
pre: c.allPal
inheritableM

[5] The query
only called
Classifier::h|
pre: self.all

if (self
else
haf

[6] The query
in the spex
Classifier:]

Package Powd

The notion of
subsets. In es:
a Classifier wi
for that class.

Semantic Varil
The precise li|

Notation

Classifier is a
in one place al
default notatio|
compartments|
classifier can

The name of

An attribute c:
(from Kernel,

[1] The gener

+ Names| T gonera = s
+ Redefil 1) Generalizg
« “Type (f transitively]
. not seltallP
Description "
[3] A classifie
A classifier is selt parents|
Aclassifier is | [4] The inheri
other classifie} ey eriel
A classifier is
Package Powq
Attributes, [5] The Classi
- isAbstract Generalizg
W irue,| itselfnor
classif
relatio] Additional Op|
[4] The query
« lattribute: Classffer:|
Refers allFeatures
Classf 1 The query
« [feature: Classifier::p|
Specif| parents = g
+ Igeneral:
Specif
52

[7] The query
to be redef
Classifier::if
inherit = inh|

8] The query
the specifi
redefined
Classifier::n
maySpeciall

Semantics

A classifier is

Any compart
suppressed, n|
to remove ami
An abstract C]|

The type, visit
in the model.

The individual

Style Guidelin
- Attributel
and usi

Examples

Class|

‘name: Stiing
shape: Rectang
+size: Integer
J area: Integer {
height: Integer
width: Integer

Package PowerTypes

For example, a Bank Account Type classifier cousiha powertype association with a GeneralizatioriEs
GeneralizationSet could then associate with twoeBalizations where the class (i.e., general ClizsyiBank Account
has two specific subclasses (i.e., Classifierspaing Account and Savings Account. Checking Actaumd Savings
Account, then, are instances of the power type:Baccount Type. In other words, Checking Account 8avings
Account areborh: instances of Bank Account Type, as well as subelasf Bank Account. (For more explanation an
examples, see Examples in the GeneralizationSetisuise, below.)

7.3.9 Comment (from Kernel)

A comment is a textual annotation that can be hiddo a set of elements.

Class}

id {redefines
shape: Square
height =7
Jwidih

+ “Element (from Kernel)” on page 64.

Description

A comment gives the ability to attach various reksao elements. A comment carries no semantic fansemay contain
that is useful to a modeler.

Figure 7.30 - E
The attributes

« ClassA:

+ ClassA:

+ ClassA:;
ClassA:
ClassA:
ClassA:
ClassB:
+ ClassB:
ClassB:
ClassA
+ ClassB:

An attribute m,
7.31.

A comment can be owned by any element.

Attributes
+ multiplicitybody: String [0..1]
Specifies a string that is the comment

Associations
« annotatedElement: Element[*]
the

being

Constraints

No additional constraints

Semantics

A Comment adds no semantics to the annotated elsmrisut may represent information useful to thelezaf the

model.

Notation

AClassifierm| ~ + Center{ A Comment is shown as a rectangle with the upptréorner bent (this is also known as a “note sybThe
also an (indirl - Center rectangle contains the body of the Comment. Thaeation to each annotated element is shown by aratpdashed
classifier are il . Forthos | Window | fine.
general classi with an
Presentation Options
The specific s + Leftjust fon Op
classifier havel + Beginaf Figure7.31-A{ The dashed line connecting the note to the may be if it is clear or not
. important in this diagram
A Classifier d Show
to itself and t
UML Superstructure Specification, v2.1.2 57
56 o
UML Superstructare SpEciicaton, V212 5]

54

UML Superstructure SpeciliCauior, vz 1.2

Meta Object Facility (MOF)

22/63

23/63

Open Questions...

— 22 — 2015-02-10 — Smof —

e Now you've been “tricked” again. Twice.

o We didn't tell what the modelling language for meta-modelling is.

o We didn't tell what the is-instance-of relation of this language is.

e ldea: have a minimal object-oriented core comprising the notions of
class, association, inheritance, etc. with “self-explaining” semantics.

e This is Meta Object Facility (MOF),
which (more or less) coincides with UML Infrastructure [OMG, 2007a].

So: things on meta level

MO are object diagrams/system states

M1 are words of the language UML

M2 are words of the language MOF

M3 are words of the language ...

MOF Semantics

— 22 — 2015-02-10 — Smof —

e One approach:

e Treat it with our signature-based theory

e This is (in effect) the right direction, but may require new (or extended)
signatures for each level.
(For instance, MOF doesn't have a notion of Signal, our signature has.)

e Other approach:

e Define a generic, graph based “is-instance-of” relation.

e Object diagrams (that are graphs) then are the system states —
not only graphical representations of system states.

24/63

o If this works out, good: We can easily experiment with different language

designs, e.g. different flavours of UML that immediately have a
semantics.

e Most interesting: also do generic definition of behaviour within a closed
modelling setting, but this is clearly still research, e.g.
[Buschermdhle and Oelerink, 2008].

25/63

Meta-Modelling: (Anticipated) Benefits

— 22 - 2015-02-10 — main —

Benefits: Overview

o We'll (superficially) look at three aspects:

o Benefits for Modelling Tools.
o Benefits for Language Design.

o Benefits for Code Generation and MDA.

— 22 — 2015-02-10 — Sbenefits —

26/63

27/63

Benefits for Modelling Tools

— 22 — 2015-02-10 — Sbenefits —

e The meta-model My of UML immediately provides a data-structure

representation for the abstract syntax (~ for our signatures).
If we have code generation for UML models, e.g. into Java,
then we can immediately represent UML models in memory for Java.

(Because each MOF model is in particular a UML model.)

There exist tools and libraries called MOF-repositories, which can
generically represent instances of MOF instances (in particular UML
models).

And which can often generate specific code to manipulate instances of
MOF instances in terms of the MOF instance.

28/63

Benefits for Modelling Tools Cont’d

— 22 — 2015-02-10 — Sbenefits —

And not only in memory, if we can represent MOF instances in files, we
obtain a canonical representation of UML models in files, e.g. in XML.

— XML Metadata Interchange (XMI)

Note: A priori, there is no graphical information in XMI (it is only abstract
syntax like our signatures) — OMG Diagram Interchange.

Note: There are slight ambiguities in the XMI standard.

And different tools by different vendors often seem to lie at opposite ends on the
scale of interpretation. Which is surely a coincidence.

In some cases, it's possible to fix things with, e.g., XSLT scripts, but full vendor
independence is today not given.

Plus XMI compatibility doesn’t necessarily refer to Diagram Interchange.

To re-iterate: this is generic for all MOF-based modelling languages such

as UML, CWM, etc.

And also for Domain Specific Languages which don't even exit yet.
29/63

Benefits: Overview

o We'll (superficially) look at three aspects:

o Benefits for Modelling Tools. v/
o Benefits for Language Design.

o Benefits for Code Generation and MDA.

— 22 — 2015-02-10 — Sbenefits —

30/63

Benefits for Language Design

o Recall: we said that code-generators are possible “readers” of stereotypes.

o For example, (heavily simplifying) we could

e introduce the stereotypes Button, Toolbar, ...

o for convenience, instruct the modelling tool to use special pictures for
stereotypes — in the meta-data (the abstract syntax), the stereotypes are
clearly present.

e instruct the code-generator to automatically add inheritance from Gtk::Button,
Gtk::Toolbar, etc. corresponding to the stereotype.

Et voila: we can model Gtk-GUIs and generate code for them.

e Another view:
e UML with these stereotypes is a new modelling language: Gtk-UML.
o Which lives on the same meta-level as UML (M2).
e It's a Domain Specific Modelling Language (DSL).

One mechanism to define DSLs (based on UML, and “within” UML): Profiles.
31/61

— 22 — 2015-02-10 — Sbenefits —

Benefits for Language Design Cont’d

— 22 — 2015-02-10 — Sbenefits —

e For each DSL defined by a Profile, we immediately have

e in memory representations,
e modelling tools,

o file representations.

o Note: here, the semantics of the stereotypes (and thus the language of

Gtk-UML) lies in the code-generator.
That's the first “reader” that understands these special stereotypes.

(And that's what's meant in the standard when they're talking about giving
stereotypes semantics).

One can also impose additional well-formedness rules, for instance that
certain components shall all implement a certain interface (and thus have
certain methods available). (Cf. [Stahl and Volter, 2005].)

32/63

Benefits for Language Design Cont’d

— 22 — 2015-02-10 — Sbenefits —

o One step further:
o Nobody hinders us to obtain a model of UML (written in MOF),
e throw out parts unnecessary for our purposes,

e add (= integrate into the existing hierarchy) more adequat new
constructs, for instance, contracts or something more close to hardware
as interrupt or sensor or driver,

e and maybe also stereotypes.

— a new language standing next to UML, CWM, etc.

Drawback: the resulting language is not necessarily UML any more,
so we can’t use proven UML modelling tools.

But we can use all tools for MOF (or MOF-like things).
For instance, Eclipse EMF/GMF/GEF.

33/63

Benefits: Overview

— 22 — 2015-02-10 — Sbenefits —

o We'll (superficially) look at three aspects:
o Benefits for Modelling Tools. v/

o Benefits for Language Design. ¢/
o Benefits for Code Generation and MDA.

34/63

Benefits for Model (to Model) Transformation

— 22 — 2015-02-10 — Sbenefits —

e There are manifold applications for model-to-model transformations:

e For instance, tool support for re-factorings, like moving common
attributes upwards the inheritance hierarchy.

This can now be defined as graph-rewriting rules on the level of MOF.
The graph to be rewritten is the UML model

o Similarly, one could transform a Gtk-UML model into a UML model,
where the inheritance from classes like Gtk::Button is made explicit:

The transformation would add this class Gtk::Button and the inheritance
relation and remove the stereotype.

e Similarly, one could have a GUI-UML model transformed into a
Gtk-UML model, or a Qt-UML model.

The former a PIM (Platform Independent Model), the latter a PSM
(Platform Specific Model) — cf. MDA.

35/63

Special Case: Code Generation

o Recall that we said that, e.g. Java code, can also be seen as a model.

So code-generation is a special case of model-to-model transformation;
only the destination looks quite different.

e Note: Code generation needn’t be as expensive as buying a modelling tool
with full fledged code generation.

e If we have the UML model (or the DSL model) given as an XML file,
code generation can be as simple as an XSLT script.

“Can be" in the sense of

“There may be situation where a graphical and abstract
representation of something is desired which has a clear and
direct mapping to some textual representation.”

In general, code generation can (in colloquial terms) become arbitrarily
difficult.

— 22 — 2015-02-10 — Sbenefits —

Example: Model and XMI

(pt100) |gather {(65C02)) update | (N ET2270))
SensorA 1 ControllerA 1 UsbA
<?xml version = ’1.0’ encoding = ’UTF-8° 7>

<XMI xmi.version = ’1.2’ xmlns:UML = ’org.omg.xmi.namespace.UML’ timestamp = ’Mon Feb 02 18:23:12 CET 2009’>
<XMI.content>

<UML:Model xmi.id = ’...°>
<UML:Namespace.ownedElement>
<UML:Class xmi.id = ’...’ name = ’SensorA’>

<UML:ModelElement.stereotype>
<UML:Stereotype name = ’pt100’/>
</UML:ModelElement .stereotype>
</UML:Class>
<UML:Class xmi.id = ’...’ name = ’ControllerA’>
<UML:ModelElement.stereotype>
<UML:Stereotype name = ’65C02’/>
</UML:ModelElement .stereotype>
</UML:Class>
<UML:Class xmi.id = ’...’ name = ’UsbA’>

<UML:ModelElement.stereotype>
<UML:Stereotype name = ’NET2270°/>
</UML:ModelElement .stereotype>
</UML:Class>
<UML:Association xmi.id = ’...’ name = ’in’ >...</UML:Association>
<UML:Association xmi.id = ’...’ name = ’out’ >...</UML:Association>

</UML:Namespace.ownedElement>
</UML:Model>
</XMI.content>
/XMI>

—R2 — 2015-02-10 — Sbenefits —

36/63

37/63

— 22 - 2015-02-10 — main —

Content

Wrapup & Questions

— 22 - 2015-02-10 — main —

Lecture 1:
Lecture 2:

Lecture 3:
Lecture 4:

Lecture 5:
Lecture 6:
Lecture 7:
Lecture 8:
Lecture 9:

Lecture 10:
Lecture 11:
Lecture 12:
Lecture 13:
Lecture 14:
Lecture 15:
Lecture 16:
Lecture 17:

Lecture 18:
Lecture 19:

Lecture 20:
Lecture 21:

Lecture 22:

Motivation and Overview
Semantical Model

Object Constraint Language (OCL)
OCL Semantics

Object Diagrams

Class Diagrams |

Type Systems and Visibility
Class Diagrams Il

Class Diagrams Il

Constructive Behaviour, State Machines Overview
Core State Machines |

Core State Machines Il

Core State Machines Il

Core State Machines IV

Core State Machines V, Rhapsody

Hierarchical State Machines |

Hierarchical State Machines Il

Live Sequence Charts |
Live Sequence Charts Il

Inheritance |
Meta-Modelling, Inheritance Il

Wrapup & Questions

38/63

39/63

Course Path: Over Map

— 22 - 2015-02-10 — main —

e Motivation

g@ o Semantical Model
e OCL

CD, SM p € OCL CD, SD s
v ” v o Object Diagrams
S =(F,6,V, atr), SM expr 7. 8D e Class Diagrams
v v v v v e State Machines
M= (3%, Ay, —sm) v B = (Qsp,q,As,—sp, Fsp) e Live Sequence
v v Charts
(4 o Real-TFime
(conso,Sndo)
= (00750) —

L (01,€1) - Y wr = ((03, consi, Snd;)) ;e ° Gempenem:—s
e Inheritance

G=(N,E,
(! e Meta-Modeling

v
oD

40/63

Wrapup: Motivation

— 22 - 2015-02-10 — main —

e Lecture 1: Motivation and Overview
e Lecture 2: Semantical Model

o Lecture 3: Object Constraint Language (OCL)
Lecture 4: OCL Semantics

Lecture 5: Object Diagrams

Lecture 6: Class Diagrams |

Lecture 7: Type Systems and Visibility
Lecture 8: Class Diagrams Il

Lecture 9: Class Diagrams Il

Lecture 10: Constructive Behaviour, State Machines Overview
Lecture 11: Core State Machines |

Lecture 12: Core State Machines Il

Lecture 13: Core State Machines Il

Lecture 14: Core State Machines IV

Lecture 15: Core State Machines V, Rhapsody

Lecture 16: Hierarchical State Machines |

Lecture 17: Hierarchical State Machines Il

Lecture 18: Live Sequence Charts |
e Lecture 19: Live Sequence Charts Il

e Lecture 20: Inheritance |
o Lecture 21: Meta-Modelling, Inheritance |l

o Lecture 22: Wrapup & Questions
41/63

Wrapup: Motivation

— 22 - 2015-02-10 — main —

Lecture 1:

e Educational Objectives: you should

e be able to explain the term model.
e know the idea (and hopes and promises) of model-driven SW development.

e be able to explain how UML fits into this general picture.

e know what we'll-do we've done in the course, and why.

e thus be able to decide whether you want to stay with us...

e How can UML help with software development?
e Where is which sublanguage of UML useful?
e For what purpose? With what drawbacks?

42/63

Wrapup: Examining Motivation

— 22 - 2015-02-10 — main —

what is a model? for example?
“a model is an image or a pre-image” — of what? please explain!

when is a model a good model?

what is model-based software engineering?

o MDA? MDSE?
e what do people hope to gain from MBSE? Why? Hope Justified?

e what are the fundamental pre-requisites for that?

what are purposes of modelling guidelines?

e could you illustrate this with examples?

e how can we establish/enforce them? can tools or procedures help?

what's the qualitative difference between the modelling guideline “all association
ends have a multiplicity” and “all state-machines are deterministic”?

43/63

Wrapup: Examining Motivation

— 22 - 2015-02-10 — main —

e what is UML (definitely)? why?

e what is it (definitely) not? why?

e how does UML relate to programming languages?

e what are the intentions of UML?

e what is the history of UML? Why could it be useful to know that?

o where can (what part of) UML be used in MBSE?

o for what purpose? to improve what?

e we discussed a notion of "UML mode” by M. Fowler.

e what is that? why is it useful to think about it?

44/63

)

Wrapup: Examining “The Big Picture’

— 22 - 2015-02-10 — main —

e what kinds of diagrams does UML offer?
e what is the purpose of the X diagram?
e what do the diagrams X and Y have in common?

e what is a UML model (our definition)? what does it mean?

o what is the difference between well-formedness ruless
and modelling guidelines?

e what is meta-modelling?

e could you explain it on the example of UML?

e what is a class diagram in the context of meta-modelling?
e what benefits do people see in meta-modelling?

o the standard is split into the two documents “Infrastructure” and
“Superstructure”. what is the rationale behind that?

e in what modelling language is UML modelled?
45/63

Wrapup: Modelling Structure

o Lecture 1: Motivation and Overview
e Lecture 2: Semantical Model

o Lecture 3: Object Constraint Language (OCL)
o Lecture 4: OCL Semantics

Lecture 5: Object Diagrams

Lecture 6: Class Diagrams |

Lecture 7: Type Systems and Visibility
Lecture 8: Class Diagrams Il

Lecture 9: Class Diagrams Ill

Lecture 10: Constructive Behaviour, State Machines Overview
Lecture 11: Core State Machines |

Lecture 12: Core State Machines Il

Lecture 13: Core State Machines Il

Lecture 14: Core State Machines IV

Lecture 15: Core State Machines V, Rhapsody

Lecture 16: Hierarchical State Machines |

Lecture 17: Hierarchical State Machines Il

? o Lecture 18: Live Sequence Charts |
g e Lecture 19: Live Sequence Charts Il
Zoi o Lecture 20: Inheritance |
S e Lecture 21: Meta-Modelling, Inheritance Il
|
o e Lecture 22: Wrapup & Questions
| 46/63
Wrapup: Modelling Structure
Lecture 2:
o Educational Objectives: Capabilities for these tasks/questions:
e Why is UML of the form it is?
e Shall one feel bad if not using all diagrams during software development?
e What is a signature, an object, a system state, etc.?
What's the purpose in the course?
e How do Basic Object System Signatures relate to UML class diagrams?
Lecture 3 & 4:
o Educational Objectives: Capabilities for these tasks/questions:
o Please explain/read out this OCL constraint. Is it well-typed?
. o Please formalise this constraint in OCL.
i e Does this OCL constraint hold in this (complete) system state?
& e Can you think of a system state satisfying this constraint?
g o Please un-abbreviate all abbreviations in this OCL expression.
N e In what sense is OCL a three-valued logic? For what purpose? 4
| 63

a Haw ara DN and ~~ ralatad?

Wrapup: Modelling Structure

— 22 - 2015-02-10 — main —

Lecture 5:
o Educational Objectives: Capabilities for following tasks/questions.
e What is an object diagram? What are object diagrams good for?
e When is an object diagram called partial? What are partial ones good for?
e How are system states and object diagrams related?
e What does it mean that an OCL expression is satisfiable?
e When is a set of OCL constraints said to be consistent?
e Can you think of an object diagram which violates this OCL constraint?
Is this UML model M consistent wrt. Inv(M)?

Lecture 6:

¢ Educational Objectives: Capabilities for following tasks/questions.
e What is a class diagram?
e For what purposes are class diagrams useful?
e Could you please map this class diagram to a signature?

e Could you please map this signature to a class diagram? 48/63

Wrapup: Modelling Structure

— 22 - 2015-02-10 — main —

Lecture 7:
¢ Educational Objectives: Capabilities for following tasks/questions.

e Is this OCL expression well-typed or not? Why?
e How/in what form did we define well-definedness?
e What is visibility good for? Where is it used?

Lecture 8 & 9:
¢ Educational Objectives: Capabilities for following tasks/questions.

o Please explain/illustrate this class diagram with associations.

e Which annotations of an association arrow are (semantically) relevant?
In what sense? For what?

What's a role name? What's it good for?

What's “multiplicity”? How did we treat them semantically?

What is “reading direction”, “navigability”, “ownership”, ...?7

What's the difference between “aggregation” and “composition”?

49/63

Wrapup: Modelling Structure

— 22 - 2015-02-10 — main —

Lecture 9:

o Educational Objectives: Capabilities for following tasks/questions.

e What are purposes of modelling guidelines? (Example?)
e When is a class diagram a good class diagram?

e Discuss the style of this class diagram.

Lecture 20 & 21:

¢ Educational Objectives: Capabilities for following tasks/questions.

e What's the effect of inheritance on System States?

e What does the Liskov Substitution Principle mean regarding structure?
e What is the subset, what the uplink semantics of inheritance?

e What's the idea of Meta-Modelling?

Wrapup: Modelling Behaviour, Constructive

— 22 - 2015-02-10 — main —

o Lecture 1: Motivation and Overview
e Lecture 2: Semantical Model

o Lecture 3: Object Constraint Language (OCL)
Lecture 4: OCL Semantics

Lecture 5: Object Diagrams

Lecture 6: Class Diagrams |

Lecture 7: Type Systems and Visibility
Lecture 8: Class Diagrams Il

Lecture 9: Class Diagrams Il

Lecture 10: Constructive Behaviour, State Machines Overview
Lecture 11: Core State Machines |

Lecture 12: Core State Machines Il

Lecture 13: Core State Machines IlI

Lecture 14: Core State Machines IV

Lecture 15: Core State Machines V, Rhapsody

Lecture 16: Hierarchical State Machines |

Lecture 17: Hierarchical State Machines Il

o Lecture 18: Live Sequence Charts |
e Lecture 19: Live Sequence Charts Il

e Lecture 20: Inheritance |
o Lecture 21: Meta-Modelling, Inheritance |l

o Lecture 22: Wrapup & Questions

50/63

51/63

Wrapup: Modelling Behaviour, Constructive

Main and General:

¢ Educational Objectives: Capabilities for following tasks/questions.

o What does this State Machine mean?

e What happens if | inject this event?

e Can you please model the following behaviour.

— 22 - 2015-02-10 — main —

(And convince readers that your model is correct.)

52/63

Wrapup: Modelling Behaviour, Constructive

Lecture 10:

o Educational Objectives: Capabilities for following tasks/questions.

e What's the difference between reflective and constructive descriptions of

behaviour?

e What's the Basic Causality Model?
e What does the standard say about the dispatching method?

e What is (intuitively) a run-to-completion step?

Lecture 11:

e Educational Objectives: Capabilities for following tasks/questions.

— 22 - 2015-02-10 — main —

Can you please model the following behaviour.

What is: trigger, guard, action?

Please unabbreviate this abbreviated transition annotation.
What is an ether? Example? Why did we introduce it?

What's the difference: signal, signal event, event, trigger, reception,
consumption?

What's a system configuration? 53/63

Wrapup: Modelling Behaviour, Constructive

— 22 - 2015-02-10 — main —

Lecture 12 & 13:
o Educational Objectives: Capabilities for following tasks/questions.

e What is a transformer? Example? Why did we introduce it?

e What is a re-use semantics? What of the framework would we change to go to
a non-re-use semantics?

e What labelled transition system is induced by a UML model?

What is: discard, dispatch, commence?

What's the meaning of stereotype “signal,env”?

Does environment interaction necessarily occur?

What happens on “division by 0”7

Lecture 14 & 15:

o Educational Objectives: Capabilities for following tasks/questions.
e What is a step (definition)? Run-to-completion step (definition)? Microstep
(intuition)?

e Do objects always finally become stable? o
63

a In what canca ic Aanir RTC camantire nat ramnacitinnal?

Wrapup: Modelling Behaviour, Constructive

— 22 - 2015-02-10 — main —

Lecture 16:
¢ Educational Objectives: Capabilities for following tasks/questions.
e What's a kind of a state? What's a pseudo-state?
e What's a region? What's it good for?
e What is: entry, exit, do, internal transition?
e What's a completion event? What has it to do with the ether?

Lecture 17:

¢ Educational Objectives: Capabilities for following tasks/questions.

e What's a state configuration?
e When are two states orthogonal? When consistent?
e What's the depth of a state? Why care?

e What is the set of enabled transitions in this system configuration and this state
machine?

55/63

Wrapup: Modelling Behaviour, Constructive

— 22 - 2015-02-10 — main —

Lecture 18:

Educational Objectives: Capabilities for following tasks/questions.
e What's a history state? Deep vs. shallow?

e What is: junction, choice, terminate?

e What is the idea of “deferred events”?

e What is a passive object? Why are passive reactive objects special? What did
we do in that case?

e What's a behavioural feature? How can it be implemented?

56/63

Wrapup: Modelling Behaviour, Reflective

— 22 - 2015-02-10 — main —

Lecture 1: Motivation and Overview
Lecture 2: Semantical Model

Lecture 3: Object Constraint Language (OCL)
Lecture 4: OCL Semantics

Lecture 5: Object Diagrams

Lecture 6: Class Diagrams |

Lecture 7: Type Systems and Visibility
Lecture 8: Class Diagrams Il

Lecture 9: Class Diagrams Il

Lecture 10: Constructive Behaviour, State Machines Overview
Lecture 11: Core State Machines |

Lecture 12: Core State Machines Il

Lecture 13: Core State Machines Il

Lecture 14: Core State Machines IV

Lecture 15: Core State Machines V, Rhapsody

Lecture 16: Hierarchical State Machines |

Lecture 17: Hierarchical State Machines Il

Lecture 18: Live Sequence Charts |
Lecture 19: Live Sequence Charts Il
Lecture 20: Inheritance |

Lecture 21: Meta-Modelling, Inheritance Il

Lecture 22: Wrapup & Questions
57/63

Wrapup: Modelling Behaviour, Reflective

— 22 - 2015-02-10 — main —

Lecture 18, & 19:

o Educational Objectives: Capabilities for following tasks/questions.

Is each LSC description of behaviour necessarily reflective?

There exists another distinction between “inter-object” and “intra-object
behaviour. Discuss in the context of UML.

What does this LSC mean?
Are this UML model’s state machines consistent with the interactions?
Please provide a UML model which is consistent with this LSC.

What is: activation (mode, condition), hot/cold condition, pre-chart, cut,
hot/cold location, local invariant, legal exit, hot/cold chart etc.?

58/63

Wrapup: Inheritance

— 22 - 2015-02-10 — main —

Lecture 1: Motivation and Overview

Lecture 2: Semantical Model

Lecture 3: Object Constraint Language (OCL)
Lecture 4: OCL Semantics

Lecture 5: Object Diagrams

Lecture 6: Class Diagrams |

Lecture 7: Type Systems and Visibility
Lecture 8: Class Diagrams Il

Lecture 9: Class Diagrams Il

Lecture 10: Constructive Behaviour, State Machines Overview
Lecture 11: Core State Machines |

Lecture 12: Core State Machines Il

Lecture 13: Core State Machines Il

Lecture 14: Core State Machines IV

Lecture 15: Core State Machines V, Rhapsody

Lecture 16: Hierarchical State Machines |

Lecture 17: Hierarchical State Machines Il

Lecture 18: Live Sequence Charts |
Lecture 19: Live Sequence Charts |l

Lecture 20: Inheritance |
Lecture 21: Meta-Modelling, Inheritance Il

Lecture 22: Wrapup & Questions

59/63

Wrapup: Inheritance

— 22 - 2015-02-10 — main —

Lecture 20 & 21:

o Educational Objectives: Capabilities for following tasks/questions.
e What's the effect of inheritance on LSCs, State Machines, System States?
e What's the Liskov Substitution Principle?
e What is commonly understood under (behavioural) sub-typing?

What is the subset, what the uplink semantics of inheritance?

What is late/early binding?

What's the idea of Meta-Modelling?

Hmm...

— 22 - 2015-02-10 — main —

e Open book or closed book...?

60/63

61/63

— 22 — 2015-02-10 — main —

— 22 — 2015-02-10 — main —

References

[Buscherméhle and Oelerink, 2008] Buscherméhle, R. and Oelerink, J. (2008). Rich meta
object facility. In Proc. 1st IEEE Int'l workshop UML and Formal Methods.

[OMG, 2003] OMG (2003). Uml 2.0 proposal of the 2U group, version 0.2,
http://www.2uworks.org/uml2submission.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version 2.1.2.
Technical Report formal/07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version 2.1.2.
Technical Report formal/07-11-02.

[Stahl and Vélter, 2005] Stahl, T. and Vdlter, M. (2005). Modellgetriebene
Softwareentwicklung. dpunkt.verlag, Heidelberg.

62/63

63/63

