Software Design, Modelling and Analysis in UML Lecture 06: Class Diagrams I 2014-11-11 Prof. Dr. Andreas Podelski, Dr. Bernd Westphal Albert-Ludwigs-Universität Freiburg, Germany Course Map The Other Way Round ## The Other Way Round If we only have a picture as below, we typically assume that it's meant to be an object diagram wrt. some signature and structure. \bullet In the example, we can conclude that the author is referring to some signature $\mathscr{S}=(\mathscr{T},\mathscr{C},V,atr)$ with at least . {C,D} ⊆ C of the for the's board T ∈ D {X,C,1,p,C,2,T}∈V {X,3 ⊆ cd(C) {p,2} ⊆ xd(O) and a structure with $0 \in \mathcal{O}(T)$ $\{\omega, \omega\} \in \mathcal{O}(C)$ $\{\omega_1, \omega_2\} \in \mathcal{O}(C)$ ## Contents & Goals #### This Lecture: Last Lecture: OCL Semantics Object Diagrams - Educational Objectives: Capabilities for following tasks/questions. What is a class diagram? - For what purposes are class diagrams useful? Could you please map this class diagram to a signature? Could you please map this signature to a class diagram? - Content: - Final notes on object diagrams. Study UML syntax. Map class diagram to (extended) signature. Stereotypes – for documentation. Prepare (extend) definition of signature. Example: Object Diagrams for Documentation 6/30 # Example: Data Structure [Schumann et al., 2008] 7/30 Diagram [Schumann et al., 2008] Diagram [Schumann et al., 2008] UML Class Diagrams: Stocktaking 9/30 ## What Do We (Have to) Cover? UML Class Diagram Syntax [Oestereich, 2006] 2014-11-11 - main - 12/30 abbandine barne defent a list of proporties 10/30 paras fir Authors. Oul. Lift. sace artica. School all programs. Payer to Madelaid Oranol - Ingiguent Express. Department of Madelaid Control - Ingiguent Express. Syntax fir Operation (2007). (1998). Syntax fir Operation (2007). (1998). Syntax fir Operation (2007). Otherwise Coperation (2007). Otherwise Coperation (2007). Otherwise Coperation (2007). Chest on the straight of s Abstrakte Klasse Extended Signature ### Recall: Signature ``` • typed attributes V,\, \tau from \mathscr D or C_{0,1} or C_*,\, C\in \mathscr C, • atr:\mathscr C\to 2^V mapping classes to attributes. • (basic) types {\mathscr T} and classes {\mathscr C}, (both finite), \mathcal{S} = (\mathcal{T}, \mathcal{C}, V, atr) where ``` Too abstract to represent class diagram, e.g. no "place" to put class stereotypes or attribute visibility. classes have (among other things) stereotypes and So: Extend definition for classes and attributes: Just as attributes already have types, we will assume that attributes have (in addition to a type and other things) a visibility. 13/30 All definitions we have up to now principally still apply as they are stated in terms of, e.g., $C \in \mathscr{C}$ — which still has a meaning with the extended view. For instance, system states and object diagrams remain mostly unchanged. Mapping UML CDs to Extended Signatures The other way round: most of the newly added aspects don't contribute to the constitution of system states or object diagrams. - Then what are they useful for...? First of all, to represent class diagrams. And then we'll see. 16/30 17/30 ### Extended Classes (Alternatively, we could add a set St as 5-th component to $\mathscr L$ to provides the stereotypes (names of stereotypes) to choose from. But: too unimportant to care.) a finite (possibly empty) set S_C of stereotypes, $\}$ We use $S_\mathscr{C}$ to denote the set $igcup_{C\in\mathscr{C}}S_C$ of stereotypes in \mathscr{S} . ullet a boolean flag $a\in \mathbb{B}$ indicating whether C is abstract, (a=fac.iff abstract) From now on, we assume that each class $C \in \mathscr{C}$ has: #### Convention: #### We write $\langle C, S_C, a, t \rangle \in \mathscr{C}$ when we want to refer to all aspects of C. • If the new aspects are irrelevant (for a given context), we simply write $C\in \mathscr{C}$ i.e. old definitions are still valid. ## Extended Attributes - \bullet From now on, we assume that each attribute $v \in V$ has (in addition to the type): - a visibility - $\xi \in \{ \underbrace{\text{public, private, protected, package}}_{:=+}, \underbrace{\text{protected, package}}_{:=\#} \}$ - an initial value capro, given as a word from language for initial values, e.g. OCL expresions. (If using Java as action language (later) Java expressions would be fine.) - \bullet a finite (possibly empty) set of properties $P_{\boldsymbol{v}}.$ We define $P_{\mathscr{C}}$ analogously to stereotypes. #### Convention: - We write $\langle v: \tau, \xi, expr_0, P_u \rangle \in V$ when we want to refer to all aspects of v. Write only $v: \tau$ or v if details are irrelevant. 15/30 ## From Class Boxes to Extended Signatures A class box n induces an (extended) signature class as follows: [Oestereich, 2006] Oestereich, B. (2006). Analyse und Design mit UML 2.1, 8. Auflage. Oldenbourg, 8. edition. [OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version 2.1.2. Technical Report formal/07-11-04. [OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version 2.1.2. Technical Report formal/07-11-02. [Schumann et al., 2008] Schumann, M., Steinke, J., Deck, A., and Westphal, B. (2008). Traceviewer technical documentation, version 1.0. Technical report, Carl von Ossietzky Universität Oldenburg und OFFIS. 30/30