— 22 — 2015-02-10 — main

Software Design, Modelling and Analysis in UML
Lecture 22: Meta-Modelling

2015-02-10

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Contents & Goals

— 22 — 2015-02-10 — Sprelim —

Last Lecture:

Inheritance in UML: concrete syntax

Liskov Substitution Principle — desired semantics

This Lecture:

Educational Objectives: Capabilities for following tasks/questions.

e What's the Liskov Substitution Principle?
e What is late/early binding?

e What is the subset, what the uplink semantics of inheritance?

e What's the effect of inheritance on LSCs, State Machines, System States?

e What's the idea of Meta-Modelling?
o Huy H read Hie OMe UMy shtolnd docoments

Content:

e The UML Meta Model
e Wrapup & Questions

2/63

westphal
Bleistift

westphal
Bleistift

— 22 — 2015-02-10 — main

Meta-Modelling: Ildea and Example

3/63

Meta-Modelling: Why and What

— 22 —2015-02-10 - Smm —

e Meta-Modelling is one major prerequisite for understanding

e the standard documents [OMG, 2007a, OMG, 2007b]|, and
e the MDA ideas of the OMG.

e The idea is simple:

e if a modelling language is about modelling things,
e and if UML models are and comprise things,

e then why not model those in a modelling language?

e |n other words:
Why not have a model Mj; such that
e the set of legal instances of M;;
IS

o the set of well-formed (!) UML models.

4/63

Meta-Modelling: Example

— 22 —2015-02-10 - Smm —

Uavw/V;.Ql/e /12

o For example, let's consider a class. Nt : 9);
T \AS {1, -, F j
o A class, has (on a superficial level) Class 5
® a nameyV S ldmr&inia.k .
o any number of attributes,]
e any number of behavioural features. K
Each of the latter two has Aﬁuk—:\
v
N 4
v i ?
® 3 name agd m__f_ﬁ;@.
e a visibility ¥]
0% _
Behavioural features in addition have 1 —7\&%%"‘
e a boolean attribute isQuery! / ‘]ar{ }<ldw\1 W—&#T
v W
o any number of parameters,) s Qoo dy: (]
e a return type? =
yP \Lo..*

Can we model this (in UML, for a start)? l?wm‘lwy

5/63

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

UML Meta-Model: Extract from UML 2.0 Standard

— 22 —2015-02-10 - Smm —

Namespace

49— Parameter

Comment 4 Element
NamedElement
name
visibility
type
Type 0.1 ; TypedElement RedefElement redefdElem
AN h . *
type
Feature
|
Classifier StructFeature BehavFeature
Class .
0..1
Operation

0..1

6/63

— 22 — 2015-02-10 — main —

Meta-Modelling: Principle

7/63

Modelling vs. Meta-Modelling

— 22 — 2015-02-10 — Sprinciple —

Class Property Type
I\I\;lleza_l name : Str F name : Str : name : Str
ode
A | f | f
(M2) , | | | |
| | |
| : | ,' |
| 1 I
C | ! | " ! S = ({Z},
o -1 So, if we have a meta model My of UML, then the v},
Model set of UML models is the set of instances of M. |~ ”U;)
> 2]
(MI) e A UML model M can be represented as an object| 7 7
Instance diagram (or system state) wrt. the meta-model My. | /
(MO) =

e Other view: An object diagram wrt. meta-model {u —
My can (alternatively) be rendered as the UML 501}
model M.

8/63

Well-Formedness as Constraints in the Meta-Model

— 22 — 2015-02-10 — Sprinciple —

e The set of well-formed UML models can be defined as the set of object
diagrams satisfying all constraints of the meta-model.

For example,

“[2] Generalization hierarchies must be directed and acyclical. A classifier
cannot be both a transitively general and transitively specific classifier
of the same classifier.

not self . allParents() —> includes(self)” [OMG, 2007b, 53]

e The other way round:

Given a UML model M, unfold it into an object diagram O wrt. M.
If O1 is a valid object diagram of My (i.e. satisfies all invariants from

Inv(Myr)), then M is a well-formed UML model.

That is, if we have an object diagram validity checker for of the

meta-modelling language, then we have a well-formedness checker for
UML models.

0/63

— 22 — 2015-02-10 — main

The UML 2.x Standard Revisited

10/63

Claim: Extract from UML 2.0 Standard

— 22 — 2015-02-10 = Sumlmm -

Namespace

49— Parameter

Comment 4 Element
NamedElement
name
visibility
type
Type 0.1 ; TypedElement RedefElement redefdElem
AN h . *
type
Feature
|
Classifier StructFeature BehavFeature
Class .
0..1
Operation

0..1

11/63

Classes roma, 2007p, 327

— 22 — 2015-02-10 = Sumlmm -

Classifier

ﬁ& {redefines general}

Class

t+ /superClass

*

{subsets classifier,
subsets namespace,

StructuralFeature

Property

* +subsettedProperty

rd

; i {subsets attribute,
iug:sigés featuringClassifier} subsets ownedMember,
ordered}
+ownedAttribute
*
0.1

isDerived : Boolean

isReadOnly : Boolean
isDerivedUnion : Boolean
/default : String

aggregation : AggregationKind
/IsComposite : Boolean

Relationship Classifier
{subsets member, ordered}
+memberEnd +association| Association
2.% 0.1

{subsets memberEnd,
subsets feature, subsets

ownedMember, ordered}

{subsets association,
subsets namespace,

+ownedEnd Subsets featuringClassifier}
+owningAssociation
" P
0.1
subsets owner}
navigableOwnedEnd
* 0.1

isDerived : Boolean

{subsets redefinedElement}
+ redefinedProperty

{subsets namespace,
subsets redefinitionContext}
+class

|

{subsets owner}
+owningProperty

(subsets ownedElement}
+defaultValue

I

*

N

ValueSpecification

0.1 0.1

+lopposite
0.1

{subsets ownedMember, ordered}
+nestedClassifier

Classifier

0.1

{subsets redefinitionContext,
subsets namespace,
subsets featuringClassifier}
+class

{subsets feature, subsets
ownedMember, ordered}
+ownedOperation

Operation

-
0.1

Figure 7.12 - Classes diagram of the Kernel package

0.1

<<enumeration>>
AggregationKind

none
shared
composite

{readOnly, odered}
+/endType

Type

12/63

Operations [oMG, 2007b, 31]

— 22 — 2015-02-10 = Sumlmm -

*

RefavioraiFeaturo
‘T‘ {subsets namespace} {redefines ownedParameter}
- + operstion + ownedParameter | parameter
Operation - 01 .
izCuery | Boolean
. subsets context feubsets ownedRule]
Eza:'?qel-::q Elggllzlaenan {+ preg:unte:cp + + precondition -
: e -
Nowver © Integer [0.1] 0.1 * Constraint
Jupper : Unlimitedrlatural [0..1]
{subsets context} Tsubsets ownedRulel
+ postContest + postoondtion
0.1 +
feubsets context: feubsets ownedRule:
: + bodyConte:xt + hodyCondition
0.1 01"
+ ftype - Type
-
* 0.1
. fredefines raisedE}{cd%ptiD
+ raisedaception
-

{eubsets redefinedElernent}

+ redefinedCperation
-

e,

*

Figure 7.11 - Operations diagram of the Kernel package

13/63

Operations [oMG, 2007b, 30]

— 22 — 2015-02-10 = Sumlmm -

| RadefinabiaFiamant

Ireadorly, union} freadCnly, unionk

MNamespace

|

RehavioraiFoaturo

+ MesturingClazsifier + Mesture
Classifier - Faature
IsStatic | Boolean
MultiplicityEfement TypedEfement
Structuraifeature

JsReadOnly | Boolean

genumeration:
ParameterDirectionKind

in

TypedEfement

NuftiplicityElernront

i i

Parameter

inout
oLt
return
{subsets
ownedMernber,
ordered}
0.1 + owrnedParameter .|
o
+ owynerFormalParam *

feubsets namespace:

direction : ParameterDirectionkind
Jddefault © String

{subzets owner
0.1 [+ owwningParameter

+ taizedException

Figure 7.10 - Features diagram of the Kernel package

%

Type

feubsats ownedElement -

0.1 |+ defaultvalue

VaiuaSpacification

14/63

Classifiers joma, 2007b, 29]

— 22 — 2015-02-10 = Sumlmm -

DirectedRelationship

Generalization

izzubstitutable | Boolean

Eal
*

‘k! NamedFiemont

MNamedFiomont RedefinabioFlomont Namespace Type
? ? fsubsets target} x
Classifier * general
{I’EEII:].O.F.I|'5I', uriar} Isd bstract : Booleah 1
+ fredefintionConte:xt
~ {subsets
RodefinabieFlontont - {subsets source,
" x subsets owher: owhnedElerment
Isleaf : Boofean TreadOnly, union} + SpECHIC + generalization
+ fredefinedElement 1 *
* {readCnly, subsets member}
+ finheritedilember.
*
{=ubsets redefinedElerment’}
freadOrly, union, {subsets + redefinedClassifier
subsets feature} redefinitionContext: *
Property + fattribute + clazzifier
* 0.1
. N
+ Jgeneral |*

Figure 7.9 - Classifiers diagram of the Kernel package

15/63

Namespaces joma, 2007b, 26]

— 22 — 2015-02-10 = Sumlmm -

Element

<<enumeration>>
VisibilityKind
NamedElement
public
Name : String [O..l] private
visibility : VisibilityKind 0.1 protected
JqualifiedName : String [0..1] package
readOnly, union
{readOnly, subsets member} +{/membery N ! e "
: amedElemen
PackageableElement [/mPortedMember | Namespace |« e
. * | +/ownedMember
{readOnly, union,
visibility : VisibilityKind subsets owner} {readOnly, union, subsets
+/namespace member, subsets ownedElement}
.
0..1 DirectedRelationship
{subsets source, subsets owner} {subsets target}
+ importingNamespace | + importedElement
*
Elementimport I 5| PackageableElement
1 +elementimport| \jsijlity : VisibilityKind | 1 1
{subsets alias : String [0..1]

ownedElement}

DirectedRelationship
{subsets source,
subsets owner} . (subsets © 4
+importingNamespace [subsets targe
Packagelmport + importedPackage
+packagelmport| visibility : VisibilityKind | 17| Package
{subsets ownedElement}

Figure 7.4 - Namespaces diagram of the Kernel package

16/63

Root Diagram [oma, 2007p, 25]

— 22 — 2015-02-10 = Sumlmm -

Efement -

Taubsets owrner}: Lsubsets ownedElement}-
+ owyningElement

+ owynedComment --..! Comment I
0.1 e

Rl e AR

*

P

+ oy ner

freadOnly, unionk

TreadCnly, unionk

+ lrelatedElemeant
Heflatforsiip —
* 1..%
freadonly, union,
subisets relatedElerment
NractedRoelationsiip + ftarget —
—_

£ -1__*

+ fEOUrCe.,

—

Elarnent

+ annotatedElement

* 1..*

TreadCnly, union,

subsets relatedElernent}

Figure 7.3 - Root diagram of the Kernel package

*

£

Comment

body © String

17/63

Interesting: Declaration/Definition jomc, 2007p, 424]

— 22 — 2015-02-10 = Sumlmm -

UML::Classes: UML::Classes::
Kernel::Classifier Kernel::Class
BehavioredClassifier {subsets ownedBehavior Behavior
+ classifierBehavior _ — -
isRecntrant © Boolean
0.1 0.1
+ fcontext
{subsets redefinitionContext:
0.1 4
+ ovwynedBehavior
g =
0.1 4
{subsets ownedMember
BehavioralFeature o
Aheiract Boolean + specification + method Tsubsets redefinedElement
0.1 + redefinedBehaviar
<
UML::Classes:: " 0.1 . *
Kermel::Parameter
+ ownedParameter
{subsets ownedMermber, .

ordered}

[

OpaqueBehavior
bady : String [*]
language : String [*]

FunctionBehavior

Figure 13.6 - Common Behavior

18/63

UML Architecture romac, 2003, 8

— 22 — 2015-02-10 — Swhole —

o Meta-modelling has already
been used for UML 1.x.

e For UML 2.0, the request
for proposals (RFP) asked

for a separation of concerns:

Infrastructure and
Superstructure.

e One reason:
sharing with MOF (see
later) and, e.g., CWM.

Infrastructure
(with semantics)

= =

Superstructure
(abstract syntax)

= =

Superstructure
(concrete syntax)

J L

Diagram
Interchange

Class, Object
__________ > Action, Filmstrip
Package, Snapshot

__________ > Class, State,
Transition,
Flow, ...

TransitionLine, ...

__________ > Node, Edge...

FigureO-1 Overviewofarchitecture

ClassBox, StateBox,

Profiles

19/63

UML Superstructure Packages jomc, 2007a, 15]

— 22 — 2015-02-10 — Swhole —

1

UseCases

1 ¥

]

CommonBehaviors

/ I

StateMachines

Activities

Actions

1

Classes

1

Interactions

[—

CompositeStructures

1

Components

1

Deployments

Figure 7.5 - The top-level package structure of the UML 2.1.1 Superstructure

AuxiliaryConstruE:ts

20/63

Reading the Standard

— 22 — 2015-02-10 — Sreading —

Table of Contents
L SCOPE o 1
2. ConformancCe 1
2.1 Language Units e 2
2.2 Compliance Levels 2
2.3 Meaning and Types of Compliance 6
2.4 Compliance Level Contentsttt 8
3. Normative References i . 10
4. Terms and Definitions 10
5. Symbols ... 10
6. Additional Information 10
6.1 Changes to Adopted OMG Specifications 10
6.2 Architectural Alignment and MDA Support 10
6.3 Onthe Run-Time Semanticsof UML 11
6.3.1 The BASIC PreMISESiiiiciiiiie ittt et e e st e e et e e eentaaeeaaes
6.3.2 The Semantics Architecture ..
6.3.3 The Basic Causality Modelcccccovvrnrnen.
6.3.4 Semantics Descriptions in the SpPecificationc.ccvceiieeieiieiineeeeeeeee 13
6.4 The UML Metamodel e 13
6.4.1 Models and What They MOGElc..eiiiiiiiiiiiiiic et 13
6.4.2 Semantic Levels and NamMiNGccccuiiiiiiieiiiiee e ee s ieee e sieee e 14
6.5 How to Read this Specification. 15
6.5.1 SPecCificatioNn FOrMALcoouiiiiiii e 15
6.5.2 Diagram fOrMALeeeiiiiiiieii ettt 18
6.6 Acknowledgements 19
Part | - Structure i, 21
7. ClaSSeS .. i 23
UML Superstructure Specification, v2.1.2

21/63

Reading the Standard

— 22 — 2015-02-10 — Sreading —

Table of Contents

2. Conformance
2.1 Language Units
2.2 Compliance Levels .
2.3 Meaning and Types
2.4 Compliance Level C(¢
Normative References

Terms and Definitions

o o &~ w

Additional Information
6.1 Changes to Adopted
6.2 Architectural Alignmg

6.3 On the Run-Time Se

6.3.1 The Basic Premis|
6.3.2 The Semantics Al
6.3.3 The Basic Causal
6.3.4 Semantics Descri

6.4 The UML Metamode

6.4.1 Models and What]
6.4.2 Semantic Levels

6.5 How to Read this Sp

6.5.1 Specification form
6.5.2 Diagramformat ..

6.6 Acknowledgements

Part | - Structure ..

7. Classes

UML Superstructure Specification, v2.1.2

T.L OVEIVIEW oottt e e e 23

7.2 ADSIraCt SYNTAX . ..ottt 24

7.3 Class DesCriptionst 38
7.3.1 Abstraction (from DEPENUENCIES)eeeiurreiiiiiieiiiiie ettt 38
7.3.2 AggregationKind (from Kernel) 38
7.3.3 Association (fromKernel)cccoccevvviiiiennnnns ... 39
7.3.4 AssociationClass (from AssociationClasses) 47
7.3.5 BehavioralFeature (from Kernel) 48
7.3.6 BehavioredClassifier (from Interfaces) . .. 49
7.3.7 Class (fromKernel)ccceeiiiiniiieiiiiiee e, ... 49
7.3.8 Classifier (from Kernel, Dependencies, PowerTypes) 52
7.3.9 Comment (fromM KEIMEI)veiiiiiiieiiie e 57
7.3.10 Constraint (from Kernel)ooiiiiiiiiiieiie e 58
7.3.11 DataType (from Kernel)
7.3.12 Dependency (from DEPENTENCIES)veeiiiiiiieiiiie et sieee s 62
7.3.13 DirectedRelationship (from Kernel)cc.coooiiiiiiiiiiiiiiie e 63
7.3.14 Element (from Kernel)
7.3.15 Elementimport (from Kernel)cocooiiiiiiiiiiei e 65
7.3.16 Enumeration (from Kernel)cocuiiiiiiiiiiie et 67
7.3.17 EnumerationLiteral (from Kernel) 68
7.3.18 Expression (from Kernel) 69

7.3.19 Feature (fromKernel)cccceeviiniienneens .. 70
7.3.20 Generalization (from Kernel, PowerTypes)
7.3.21 GeneralizationSet (from PowerTypes)

7.3.22 InstanceSpecification (from Kernel) ..., 82
7.3.23 InstanceValue (from Kernel) ..o 85
7.3.24 Interface (from Interfaces)

7.3.25 InterfaceRealization (from INterfaces)cccooevveiinieiiiec e 89
7.3.26 LiteralBoolean (from Kernel)occooieiiiiiiiii e
7.3.27 Literalinteger (from Kernel) ...
7.3.28 LiteralNull (from Kernel)cccoiiiiiiieieeeeee e
7.3.29 LiteralSpecification (from Kernel)ccceoveiiiiiiinineecceee e 92

7.3.30 LiteralString (from Kernel)92
7.3.31 LiteralUnlimitedNatural (from Kernel) 93
7.3.32 MultiplicityElement (from Kernel)ccccoeen. .. 94
7.3.33 NamedElement (from Kernel, Dependencies) . .. 97
7.3.34 Namespace (fromKernel)cccccovcveeernnees, ... 99
7.3.35 OpaqueExpression (from Kernel)101
7.3.36 Operation (from Kernel, Interfaces) . .103
7.3.37 Package (fromKernel)ccooueeee. . 107
7.3.38 PackageableElement (from Kernel)cccooiiiiiiiiiieiiiieciee e 109
7.3.39 Packagelmport (from Kernel)

7.3.40 PackageMerge (from Kernel) .
7.3.41 Parameter (from Kernel, ASSOCIatioNClaSSES)eevvvreiiiiieieiiiiieeiiieeesiieee e 120
7.3.42 ParameterDirectionKind (from Kernel)ccccoeoiiiiiiiiiiie e 122
7.3.43 PrimitiveType (from Kernel) .
7.3.44 Property (from Kernel, ASSOCIatioNCIaSSES)ccovvuviieiirieiiiiiieeiiiieeesieeeesiiee e 123
7.3.45 Realization (from DEPENdENCIES)occueiiiiiiiiiiie ettt 129
7.3.46 RedefinableElement (from Kernel)ccoooiiiiiiiiiiiienieeee e 130

UML Superstructure Specification, v2.1.2

21/63

Reading the Standard

— 22 — 2015-02-10 — Sreading —

2.1
2.2
2.3
2.4

o o &~ w

6.1
6.2
6.3

6.4

6.5

6.6

Table of Contents

2. Conformance

Normative References

Terms and Definitions

Additional Information

Part | - Structure ..

7. Classes

Language Units

Compliance Levels .
Meaning and Types
Compliance Level Cqd

Changes to Adopted
Architectural Alignmg

On the Run-Time Se
6.3.1 The Basic Premis|
6.3.2 The Semantics A
6.3.3 The Basic Causal
6.3.4 Semantics Descr

The UML Metamode
6.4.1 Models and What]
6.4.2 Semantic Levels

How to Read this Sp
6.5.1 Specification form
6.5.2 Diagramformat ..

Acknowledgements

UML Superstructure Specification, v2.1.2

7.1 Overview
7.2 Abstract Syntax
7.3 Class Descriptions .

7.3.1 Abstraction (from
7.3.2 AggregationKind
7.3.3 Association (from
7.3.4 AssociationClass
7.3.5 BehavioralFeatur:
7.3.6 BehavioredClass
7.3.7 Class (from Kerng
7.3.8 Classifier (from K
7.3.9 Comment (from K
7.3.10 Constraint (from
7.3.11 DataType (from

7.3.12 Dependency (frg
7.3.13 DirectedRelatio
7.3.14 Element (from K
7.3.15 Elementimport (
7.3.16 Enumeration (frg
7.3.17 EnumerationLitg
7.3.18 Expression (fron
7.3.19 Feature (from K4
7.3.20 Generalization (
7.3.21 GeneralizationS
7.3.22 InstanceSpecifig
7.3.23 InstanceValue (f
7.3.24 Interface (from Iy
7.3.25 InterfaceRealiza
7.3.26 LiteralBoolean (f
7.3.27 Literallnteger (fr
7.3.28 LiteralNull (from
7.3.29 LiteralSpecificat
7.3.30 LiteralString (fro
7.3.31 LiteralUnlimited
7.3.32 MultiplicityElemg
7.3.33 NamedElement
7.3.34 Namespace (fro
7.3.35 OpaqueExpress
7.3.36 Operation (from
7.3.37 Package (from K|
7.3.38 PackageableEl¢
7.3.39 Packagelmport

7.3.40 PackageMerge

7.3.41 Parameter (from|
7.3.42 ParameterDirec
7.3.43 PrimitiveType (fi}
7.3.44 Property (from K]
7.3.45 Realization (fron
7.3.46 RedefinableElen

7.3.47 Relationship (from Kernel)cccooiiiiiiiii s 132

7.3.48 Slot (from Kernel)
7.3.49 StructuralFeature (from Kernel)ccoveoiiiiiiinicie e 133
7.3.50 Substitution (from DEPENENCIES)ccvurreiiiirieeiiiiie et 134
7.3.51 Type (fromKernel)ccccveeenne ... 135
7.3.52 TypedElement (from Kernel) 136
7.3.53 Usage (from Dependencies) 137
7.3.54 ValueSpecification (from Kernel) .. 137
7.3.55 VisibilityKind (from KerNel)ccueoiiiiiiiiiieeieee e 139
7.4 DIagramS ..ottt 140
8. Components 143
8.1 OVEIVIEW . .ottt 143
8.2 AbStraCt SYNtaxot 144
8.3 Class DesCriptions it e e 146
8.3.1 Component (from BasicComponents, PackagingComponents)cccccceceeeen. 146

8.3.2 Connector (from BasiCCOMPONENES)c.cccuireeriirierieeiisieere e
8.3.3 ConnectorKind (from BasicComponents)
8.3.4 ComponentRealization (from BasicCCOMPONENLES)cccuveieriieeeiniieeeiiinee e 157

8.4 DIagramsS . ..ot 159

9. Composite Structures
9.1 OVEIVIEW . .ttt
9.2 ADStraCt SYNtaXot e

9.3 Class DesCriptionst e

9.3.1 Class (from StruCturedCIASSES)ccoiurriiiiiiiiieeiiie ettt
9.3.2 Classifier (from Collaborations)ccooiuieiiiiiiee e
9.3.3 Collaboration (from Collaborations)

9.3.4 CollaborationUse (from Collaborations)ccoveireeriieiiieiie e 171
9.3.5 ConnectableElement (from INternalStruCtures)ccceeeeevieerieineeniiesieesee 174
9.3.6 Connector (from InternalStructures)
9.3.7 ConnectorEnd (from InternalStructures, POrS)cccccovivieiiiiicniieneseece e 176
9.3.8 EncapsulatedClassifier (from POIS)ccccoevveiieiiieeiiieeeese e 178
9.3.9 InvocationAction (from InvocationActions) 178
9.3.10 Parameter (from Collaborations) 179
9.3.11 Port (from POrts)cccccevvvveennns ... 179
9.3.12 Property (from InternalStructures) 183
9.3.13 StructuredClassifier (from InternalStructures) ... 186
9.3.14 Trigger (from InvocationACtions)cc.c..... ... 190
9.3.15 Variable (from StructuredACtiVIties)cccoociiiiiiiiiiicie e 191
9.4 DIAgraMS . . ettt 191

10. Deployments

UML Superstructure Specification, v2.1.2

....... PO p—)

21/63

Reading the Standard Cont’d

— 22 — 2015-02-10 — Sreading —

Window

public
size: Area = (100, 100)
defaultSize: Rectangle
protected
visibility: Boolean = true
private
XWin: XWindow
public
display()
hide()
private
attachX(xWin: XWindow)

Figure 7.29 - Class notation: attributes and operations grouped according to visibility
7.3.8 Classifier (from Kernel, Dependencies, PowerTypes)
A classifier is a dassification of instinces, it desribes a sebf instances that have features in common.

Generalizations
« “Namegpace(from Kernel)”on page 99
« “RedefinableElement (frorkernel)” on pag 130
« “Type (fran Kernel)”on page 135

Description

A clasdfier is anamespace who® memberscan includefeatures. Classifier is an abstract metaclass

A classifier is a type and can own geal&zations,thereby makig it possible todefine generalization relatiorigls to
othe classifiers. A classfier can speify a generalzation hierarchy byeferening its generatlassifiers.

A classifier is a ralefinableelemet, meaiing thatit is posible to redéine neded dassifiers

Attributes

* isAbstract: Boolean
If true, the Clasifier does noprovide acomplete declaration and capically notbeinstantiated. An abstract
classifier is intended the used bytherclassifiers(e.g.,as the taget of generalmetarelatioships or generakation
relationships). Defaultvalue isfalse.

Associations

« Jattribute: Property*]
Refers to albf the Properties thare direct (i.e.,not inherited or inported) attributesof the classifierSubses
Classifier: :feature andis a derved urion.

« /feature : Feature [*]
Spedfies each feaure defined in the ckafier. Subsets Namespace::member. This is a derivedinion.

« /general : Classiir[*]
Specifies the general Chfiers for this Classfier. This is dened.

52 UML Superstructure Specification, v2.1.2

22/63

Reading the Standard Cont’d

— 22 — 2015-02-10 — Sreading —

wing

public
size: Area = (]
defaultSize: R
protected
visibility: Boolg
private
XWin: XWindo|
public
display()
hide()
private
attachX(xWin:

Figure 7.29 - Cl
7.3.8 Clas
A classifier is g

Generalizatio
* “Nameg]
« “Redefir]
« “Type (fi

Description

A clasdfier is 4

A classifier is
othe clasifiers

A classifier is g

Attributes

¢ isAbstract]
If true,
classif
relatio

Associations

« Jattribute:
Referg
Classif]

e [feature:
Spedfi

* /general:
Specif

52

« generalization: Generalization[*]
Specfiesthe Gereralizationrelationshps for his Classfier. These Generaliziatns navgate tomore gereral
classfiersin the generalizatiohierarchy SubsetBlement: :ownedElement

¢ /inheritedMemter: NamedElenent[*]
Specifies all elementsnherited by thisclassifier from thegeneral classifierSub®tsNamespace::member. This is
derived.

« redefinedClassifier: Classifi¢t]
References the Clafiers thatareredefined by this Classifier StbsetRedefinableElement: :redefinedElement

Package Dependencies

e substitution : Substitution
Referenceghe substitutionsthat are owmed by tlis Classfier. SubsetBlement::ownedElement and
NamedElement: : clientDependency.)

Package PowerTypes

* powertyExtent: GeneralizationSet
Desigratesthe GeneralzationSet of wiich the associate@lassifier is apowertype.

Constraints

[1] The geeralclassifiersarethe classifierseferenced byhe generalizébn relationshps.
general = self.parents()

[2] Generédization hierarchiesnust be diected andcyclical. Aclassfier cannotbe both a tramsitively general and
transtively specific clasdier of thesameclassifier

not self.allParents()->includes(self)

[3] A classfier mayonly speciaize classifiers of avalid type.
self.parents()->forAll(c | self.maySpecializeType(c))

[4] TheinheritedMember assoeitionis derivedby inheriting the inheritabé membersof the parents.
self.inheritedMember->includesAll(self.inherit(self.parents()->collect(p | p.inheritableMembers(self)))

Package PowerTypes

[5] The Clasifier thatmgps to aGenealizationSeimay neither be apecific nor a generaClassfier in any ofthe
Generailzation rektionships definedor that GenerakationSet In other words,a power type may notbe an irstance of
itself nor may its instarwes also be its sulasises.

Additional Operations
[1] ThequeryalFeature§) gives all ofthe features in the namespace of the classifi general, through mechanissschas
inheritance, ths will be a lager set than feate.
Classifier::allFeatures(): Set(Feature);
allFeatures = member->select(oclisKindOf(Feature))
[2] The query parerts() gives al of theimmaliate ancestorsf ageneralized Classifier
Classifier::parents(): Set(Classifier);
parents = generalization.general

UML Superstructure Specification, v2.1.2 53

22/63

Reading the Standard Cont’d

— 22 — 2015-02-10 — Sreading —

[3] The query allParenfsgives al of thedirect andndirect ance®rs ofa generalizelassifier
Classifier::allParents(): Set(Classifier);

* generaliza

Specfi allParents = self.parents()->union(self.parents()->collect(p | p.allParents())
classfiq [4] The queryinheritabbeMernbers()gives all of the membersf aclassifierthat maybe irherited inone of its descendas,
Wind i it it
Sabic « Jinherited\ subjeﬁtto Yvhat.ever visilhi ty reStICtIOh? appy.
size: Area = (1 Specif Classifier::inheritableMembers(c: Classifier): Set(NamedElement);
defaultSize: R derived pre: c.allParents()->includes(self)
protected X f - - _ il
visibility: Boold * redefinedd] inheritableMembers = member->select(m | c.hasVisibilityOf(m))
private Refere] [5] The query hasVisibilityOf() determineswhetheranamel element is visiblén the chssfier. By default all are visiblelt is
XWin: XWindo only called wien the agyumert is something owned by a paren
bli A
”Zis';ayo Package Depe| Classifier::hasVsibilityOf(n: NamedElement) : Boolean;
hide() « substitution| pre: self.allParents()->collect(c | c.member)->includes(n)
p;;itcehx(xWin: Refere) if (self.inhgrjtngember»ir)c]udgs(n)) therj
Named. hasVisibilityOf = (n.visibility <> #private)
Figure 7.29 - Cl else
Package Powg hasVisibilityOf = true
7.3.8 Clasy . powertyeE [6] The quety cpdqrmsTo() gives true for a chssifier that _definea typethat conformgo anotherThis isused, for example,
Desi in the specfication of sgnaure conformane for operations.
e [elt
A classifier is g Classifier::conformsTo(other: Classifier): Boolean;
Constraints conformsTo = (self=other) or (self.allParents()->includes(other))

Generalizatio [1] The gmera| [7] The query inkrit() defineshow toinherit a set of @mens. Herethe operatia is defied toinherit trem all It is intended

+ “Nameq] general = s¢ to be redefined in circumstancebereinheritances affected byredefinition.
« “Redefin [2] Generdizaf F:Iasyﬂer::|nher|t(|nhs: Set(NamedElement)): Set(NamedElement);
« “Type (f transtively inherit = inhs
o not self.alp| [8] The query raySpecialzeType() deérmines wletherthis classiier may have a generalizatin relatonshp to clssifiers 6
Description the specifiedype. By default a classifienay specialize cladgers of the ame or amore gereral type. It is itended to be

[3] A classfier
A clasdfier is g self.parents

A classifier is | [4] Theinherit
othe clasifier

redefinedby classfiers that have different speciatiation consaints.
Classifier::maySpecializeType(c : Classifier) : Boolean;
maySpecializeType = self.ocllsKindOf(c.oclType)

self.inherite
A classifier is g Semantics

Package Powg

; A classifier is a dassification of insances according totheir featires.
Attributes | [5] The Clasif 9

« isAbstract] Generalzafl A Classifier may participate in generalizatirelationships with other Classifiers. Arstance ofa specificClassifier is
If true, itselfnor m{ also an (indirect) ingance of eah of the gnerd Classifiers. Therefore, featurs spedfied for instacesof the gmerd
classif classifier ae implicitly specifed for instances of the specifitassifier Any canstraint applying to instances tife

relatio] Additional Op| general classifier also applies to instances of the specific classifier
[1] Thequeryd Py ; - o : ;
Associations . | The specific semntics of how generalizeon afects each concrete subtype@ibssfier varies. All instances of a
inheritance o } o .
classifier have valkes corresponding to the classifieattributes.
e /attribute: Classifier::a
Referg allFeatures | A Classifier defires a type. ¥pe conformace between generalizal@assifiers isdefined o that aClassifier conforms
i to itself and to all of its ances®in the gneralizationhierarch
Classif [2] The qeery d e y
+ [feature: Classifier::p
Spedii parents = gq
* /general:
Specif
54 UML Superstructure Specification, v2.1.2
52 UML Superstructae Speiiduult, va. L.z 00 =

22/63

— 22 — 2015-02-10 — Sreading —

wing

public
size: Area = (]
defaultSize: R

protected
visibility: Boolg

private
XWin: XWindo|

public
display()
hide()

private
attachX(xWin:

Figure 7.29 - Cl
7.3.8 Clas
A classifier is g

Generalizatio
* “Nameg]
« “Redefir]
« “Type (fi

Description

A clasdfier is 4

A classifier is
othe clasifiers

A classifier is g

Attributes

¢ isAbstract]
If true,
classif
relatio

Associations

« Jattribute:
Referg
Classif]

e [feature:
Spedfi

* /general:
Specif

52

* generaliza
Specfi
classfi

¢ [inheritedM
Specif
derived

« redefinedd
Refere

Package Depe

« substitution|
Refere
Named

Package Powsg

e powertypeH
Design

Constraints
[1] The gmera
general = sg

[2] Generéizat
transtively

not self.allP]
[3] A clasgfier
self.parents
[4] Theinherit
self.inherite

Package Powg
[5] The Clasifi

[3] The query
Classifier::a|
allParents 3

[4] The queryi
subjectto W
Classifier::ir|
pre: c.allPal
inheritableM

[5] The queryH
only called|
Classifier:hy
pre: self.allf

if (self.
hal
else

ha|

[6] Thequery d
in the spec]
Classifier::c|
conformsTo|

[7] The query
to be rede
Classifier::ir|
inherit = inh|

[8] The query
the specifi
redefinedb

Classifier::nf
maySpecial

Semantics

A classifier is g

Reading the Standavd Cont’d

Package PowerTypes

The ndion of power type was inspired by the notion of power A power se is ddined @& a $t whoseinstancesare
subsets In esence, thena power type is a clgswhoseinstances aresubclasses ThepowetypeExtent association reést
a Classifiewith a set of generalizatisithat a) have a comom specific Classifigrard b) represent a collection of subset|
for that class.

o7

Semantic Variation Points

The precise lifecycle semantics ajgegation is a seamtic variation point.

Notation

Classifieris an abstract modelement,and so properly speald has no notation. It is nextheless convenierb define
in one place a default ratton available foany concrete subads of Classifr for which this notation is suitable. The
default notation for a classifier is a solid-outline rectangintaining the classifiername, and optimally with
compartments separated by horizontal lines containing featu@be@membe's of theclasifier. The pedfic type of
classifiercan be shown in guillemegbowe the name. Soespecializations of Clad$er have tkir own disinct notatims.

The name of an abstract Classifier is shown in italics.

An attribute can be shown as a text string. The format ofsthigg is specified in the Notation sub clause of “Property
(from Kernel, AssociationClasses)” on pazs.

Presentation Options

Any compartment may be spiegssed. A separator line is indrawn for a suppressed compartment. If a panment is
suppressedjo inference can bérawn about the presenoe absence of eleemts in it. Compartment nas can be used
to remove ambiguityif necessary

An abstract Classifier can be showsing the keyword {abstrécafter or below the name of the Classifier

Thetype, visiblity, default, multiplicity property string may bguppressed from beig displayed, even if there avalues
in the model.

The individual properties of an attribute can be shaw columns rather thaas a continuas string.

Style Guidelines

« Attribute nanes typically begn with a lowercase letteMulti-word narnes are often forrad by concatenating the wordp
and usindowercag for all letters excegor upcadng the firg letter ofeach word buthe first.

Generailzatl A Classifier m « Centerthe name ofhe clasier in boldface.
itselfnor M{ also an (indired « Center leyword (including stereotpe names) irplain face wthin guillemets above #hclassifiername.
» classifier ae in - For those langages thatlistinguishbetveen upprcaseand lowercase charactersapitdize nanes (i.e, begn them
Additional Op| general classi with anuppeca character).
[1] Thequeryal The gpecific s « Left justify attributes ad operations in plain face.
inheriance classifier have) « Begin attributeandoperatiornames with dowercase letter
Classifier::a - « Show full attributesand operationsshen needed arsuppress hemin other contexts or references.
A Classifier dq
allFeatures ;
to itself and to
[2] The query g
Classifier::p|
parents = g
UML Superstructure Specification, v2.1.2 55
54 — - —
- i
UML Superstructure speciicauuil, ve.L.z 00

22/63

- - — a -

Reading the R 1111 A Exampies

Package Powg

— 22 — 2015-02-10 — Sreading —

[3] The query| The ndion of p
. generaliza Classifier::a] subsets In ess| ClassA
Specfi allParents 9§ a Classifiemit| name: String
classfi{ [4] The qeryi for that class. ih;g::- Efé:;??(li 1
wing f
: : subjectto W | area: Integer {readOnl
public * /inherited) o] Semantic Vari height: Inte%eri 5 4
size: Area = (1 Specif Classifier::ir o width: Integer
defaultSize: R deriveq pre: c.allPal] The precise lif
protected X f i
visibility: Boold ¢ redefinedd inheritablel Notation Zr
private Refere| [5] The queryH
ﬁ‘t’)\:i'gi XWindoj only called| classifieris an ClassB
pdisplay() Package Depe Classifier:n in one place a| | id {redefines name}
hide() . substitution pre: self.all] default notatio Ehapr?: Square
i eight =7
P e (aWin: Refere if (self{ compartments| | "
: Named ha|] classifiercan b
) else
Figure 7.29 - Cl N The name of d -
Package Powg a Figure 7.30 - Examples of attributes
7.3.8 Clas 6] Th i g . - .
* powertyred [l in tehgﬁ)zmc 2:10;“&2[:;2'“ The attributesn Figure7.30are explained below.
Design ' .)) .)
A classifier is a Classifier-:d « ClassA:naneis an attribte with type Sring.
Constraints conformsTo] Presentation « ClassA::fapeis an attrbute with type Rectangé.
Generalizatio « ClassA:sizeisa puliic attribute of type Ineger with mutiplicity 0..1.
[1] The gmera| [7]1 The query| Any compartm &Pl i w . HpIERy
« “Nameq] general = sq to be redel suppressedo + ClassA:area ia derivedattibute with type Integer. It is marked asead-aly.
« “Redefir] [2] Generdizat Classifier::if to remove ami « ClassA:height is anattribute of type Integer with a defaultinitial value of 5.
« “Type (f transtively inherit = inh| An abstract Cl . CIassA:_wifﬂh is ar?attribute of typelnteger.
o not self.alp| [8] The query + ClassBid is anatribute that redsfines ClassAmarre.
Description 3] A claséfier the specifi .Thehtype, :j”s|lbl « ClassB::hapeis an attribute that efines ClassAshape.It hastype Square, apecializabn of Recangk.
A clasdfier is ¢ self.parents redefinedb) In the model. + ClassB:heigtt is anattibutethat redefine<ClassA::teight. It hasa defait of 7 for ClassBinstanceshat overrideshe
' Classifier::nf T
A classifier is | [4] Theinherit " The individual ClassA defalt of 5.
othe classifiers <elf inherite maySpecial « ClassB:width isa derivedattribute that redefines ClassAwidth, which is nat derived.
e ' . Style Guidelin
A classifier is g Semantics Y An attribute may also be shown using agation notation, with no adornments at the taflthe arrow ashown in Figure
Package Powg A classifier i + Attributq 7.371.
; classifier is g i
Attributes [5] The Clasif 9 and usin
. isAbstract: Generalza A Classifier m + Centerth
If true, itselfnor m{ also an (indireq - Center size
classif » classifier ae in . For tho Window > Area
relatio] Additional Op| general classi with and 1
o [1] Thequeryd ifi « Left just
Associations inherince The specific s !] o _ _
classifier have) « Beginaff Figure 7.31 - Association-like notation for attribute
e /attribute: Classifier::a|
. « Show fu
Refery allFeatures :'\ (_:tlaslfs'f'e; ?E
i o itself and to
Classif [2] The qeery d
y /fea;ured::f_ Classifier::p
peat -
/ | parents = g 56 UML Superstructure Specification, v2.1.2
. general : | _
Specif UML Superstructure specnicauuii, ve.1.2 00
54 R
- ' ' i
52 UML Superstructure speciicauuil, ve.L.z 00

22/63

Reading the S

-

1A/

— 22 — 2015-02-10 — Sreading —

wing

public
size: Area = (]
defaultSize: R
protected
visibility: Boolg
private
XWin: XWindo|
public
display()
hide()
private
attachX(xWin:

Figure 7.29 - Cl
7.3.8 Clas
A classifier is g

Generalizatio
* “Nameg]
« “Redefir]
« “Type (fi

Description

A clasdfier is 4

A classifier is
othe clasifiers

A classifier is g

Attributes

¢ isAbstract]
If true,
classif
relatio

Associations

« Jattribute:
Referg
Classif]

e [feature:
Spedfi

* /general:
Specif

52

* generaliza
Specfi
classfi

¢ [inheritedM
Specif
derived

« redefinedd
Refere
Package Depe

« substitution|

Refere]
Named
Package Powsg
e powertypeH

Design

Constraints
[1] The gmera
general = sg

[2] Generéizat
transtively

not self.allP]
[3] A clasgfier
self.parents
[4] Theinherit
self.inherite

Package Powg

[5] The Clasif
Generailzat]
itself nor m

Additional Op
[1] Thequeryd
inheritance
Classifier::a|
allFeatures
[2] The query g
Classifier::p|
parents = gg

[3] The query
Classifier::a|
allParents 3

[4] The queryi
subjectto W
Classifier::ir|
pre: c.allPal
inheritableM

[5] The queryH
only called|
Classifier:hy
pre: self.allf

if (self.
hal
else

ha|

[6] Thequery d
in the spec]
Classifier::c|
conformsTo|

[7] The query
to be rede
Classifier::ir|
inherit = inh|

[8] The query
the specifi
redefinedb

Classifier::nf
maySpecial

Semantics
A classifier is g

A Classifier m
also an (indired
classifier ae in|
general classi

The specific s
classifier have)

A Classifier deg
to itself and to

Package Powg

The ndion of (g
subsets In ese|
a Classifiemwit
for that class.

Semantic Vari

The precise lif

Notation

Classifieris an
in one place a
default notatio
compartments
classifiercan b

The name of 4

An attribute cg
(from Kernel,

Examples

Class

name: String
shape: Rectang
+ size: Integer [}
| area: Integer {
height: Integer
width: Integer

?

Class

id {redefines na
shape: Square
height =7

/ width

Figure 7.30 - EX

The attributesn|

Package PowerTypes

For example, a Bank Accountype clasifier could have a poertype assoation with a GeneralizationSet. This
GeneralizationSet could then associate with Genedlizations whee the ¢ass (i.e., genelaClassifier) Bank Account
has two specific subcaes (i.e., Clasdfiers): Cheking Account and Savings Account. Checkiigcountand Savings
Account, then, are instances of the power type: BanlodwcType. In other words, Checkingcdount and Savings
Account aréborh: instances bBank Account Ype, as well as subdaes of Bank Account. (For moreptanationand
examples see Examplesn the GaeraliationSet ab clause bdow.)

7.3.9 Comment (from Kernel)
A comnent is a textual annotation thatnche attached to a set of elements.

Generalizations

« “Element(from Kernel)” on page64.

Description

A comment gives the ability tattach various remarks to elents. Acommnent carres ro senantic force,but may cotain
informationthat is usafl to a modeler

A comment can be owned by any element.

Attributes

« ClassA:l * multiplicitybody: String [0..1]
Presentation . ClassA: Specifies a gring thatis thecomment
Any compartm * g:assﬁ: Associations
suppressedo © MRS L annottedElerent: Elemren{*]
to remove amt + ClassA: References the Element{®ingcommented.
An abstract ClI » ClassA: .
« ClassB:] Constraints
Thetype, visit| + ClassB:] No additional constraints
in the model. .
» ClassB:
The irdividual ClassA{ Semantics
o + ClassBY A comment adds no semantics to the annotated ebesy butmay represent inforation useful to the reader of the
Style Guidelin . model
An attribute m ’
« Attributqd 7.31.
and usin Notation
+ Centerth A Comnent is shown as a rectaeglvith the upper right coer bet (this isalso known asa “note ymbol”). The
. CenterJ rectandge contains ta body of theComment. The connection teach anatated element ishown by a separate dashed
« Fortho Window | line.
with any
. Leftjust Presentation Options
« Beginafl Figure 7.31-Ad Thedasled line connecting the note toetlanndated element(siay besuppressed if it is clear frothe context, or not
. Show fu important in this diagram.
UML Superstructure Specification, v2.1.2 57
56 e e
UML Superstructme SpeLiLduull, ve. L.z 00

54

UML Superstructure speciicauuil, ve.L.z

R

o

22/63

— 22 — 2015-02-10 — main

Meta Object Facility (MOF)

23/63

Open Questions...

— 22 — 2015-02-10 — Smof —

e Now you've been “tricked” again. Twice.

o We didn't tell what the modelling language for meta-modelling is.

e We didn't tell what the is-instance-of relation of this language is.

e ldea: have a minimal object-oriented core comprising the notions of
class, association, inheritance, etc. with “self-explaining” semantics.

e This is Meta Object Facility (MOF),
which (more or less) coincides with UML Infrastructure [OMG, 2007a].

So: things on meta level

e MO are object diagrams/system states
e M1 are words of the language UML
e M2 are words of the language MOF

e M3 are words of the language . ..

24/63

MOF Semantics

— 22 — 2015-02-10 — Smof —

e One approach:

e Treat it with our signature-based theory

e This is (in effect) the right direction, but may require new (or extended)
signatures for each level.
(For instance, MOF doesn’t have a notion of Signal, our signature has.)

e Other approach:

e Define a generic, graph based “is-instance-of” relation.

o Object diagrams (that are graphs) then are the system states —
not only graphical representations of system states.

e If this works out, good: We can easily experiment with different language
designs, e.g. different flavours of UML that immediately have a
semantics.

e Most interesting: also do generic definition of behaviour within a closed

modelling setting, but this is clearly still research, e.g.
|[Buschermohle and Oelerink, 2008]. 25/63

— 22 — 2015-02-10 — main

Meta-Modelling: (Anticipated) Benefits

26/63

Benefits: Overview

— 22 — 2015-02-10 — Sbenefits —

o We'll (superficially) look at three aspects:

o Benefits for Modelling Tools.
e Benefits for Language Design.

e Benefits for Code Generation and MDA.

27/63

Benefits for Modelling Tools

— 22 — 2015-02-10 — Sbenefits —

e The meta-model My of UML immediately provides a data-structure
representation for the abstract syntax (~ for our signatures).

If we have code generation for UML models, e.g. into Java,
then we can immediately represent UML models in memory for Java.

(Because each MOF model is in particular a UML model.)

o There exist tools and libraries called MOF-repositories, which can
generically represent instances of MOF instances (in particular UML
models).

And which can often generate specific code to manipulate instances of
MOF instances in terms of the MOF instance.

28/63

Benefits for Modelling Tools Cont’d

— 22 — 2015-02-10 — Sbenefits —

e And not only in memory, if we can represent MOF instances in files, we
obtain a canonical representation of UML models in files, e.g. in XML.

— XML Metadata Interchange (XMI)

e Note: A priori, there is no graphical information in XMI (it is only abstract
syntax like our signatures) — OMG Diagram Interchange.

o Note: There are slight ambiguities in the XMI standard.

And different tools by different vendors often seem to lie at opposite ends on the
scale of interpretation. Which is surely a coincidence.

In some cases, it's possible to fix things with, e.g., XSLT scripts, but full vendor
independence is today not given.

Plus XMI compatibility doesn’t necessarily refer to Diagram Interchange.

e To re-iterate: this is generic for all MOF-based modelling languages such
as UML, CWM, etc.

And also for Domain Specific Languages which don't even exit yet.
29/63

Benefits: Overview

— 22 — 2015-02-10 — Sbenefits —

o We'll (superficially) look at three aspects:

o Benefits for Modelling Tools. v/
e Benefits for Language Design.

e Benefits for Code Generation and MDA.

30/63

Benefits for Language Design

— 22 — 2015-02-10 — Sbenefits —

e Recall: we said that code-generators are possible “readers” of stereotypes.

o For example, (heavily simplifying) we could

e introduce the stereotypes Button, Toolbar, ...

e for convenience, instruct the modelling tool to use special pictures for
stereotypes — in the meta-data (the abstract syntax), the stereotypes are
clearly present.

e instruct the code-generator to automatically add inheritance from Gtk::Button,
Gtk:: Toolbar, etc. corresponding to the stereotype.

Et voila: we can model Gtk-GUIs and generate code for them.

e Another view:

o UML with these stereotypes is a new modelling language: Gtk-UML.
e Which lives on the same meta-level as UML (M2).
e It's a Domain Specific Modelling Language (DSL).

One mechanism to define DSLs (based on UML, and “within” UML): Profiles.

31/61

Benefits for Language Design Cont’d

— 22 — 2015-02-10 — Sbenefits —

For each DSL defined by a Profile, we immediately have

e in memory representations,
e modelling tools,

o file representations.

Note: here, the semantics of the stereotypes (and thus the language of
Gtk-UML) lies in the code-generator.

That's the first “reader” that understands these special stereotypes.
(And that's what's meant in the standard when they’re talking about giving
stereotypes semantics).

One can also impose additional well-formedness rules, for instance that

certain components shall all implement a certain interface (and thus have
certain methods available). (Cf. [Stahl and Volter, 2005].)

32/63

Benefits for Language Design Cont’d

— 22 — 2015-02-10 — Sbenefits —

One step further:
e Nobody hinders us to obtain a model of UML (written in MOF),

e throw out parts unnecessary for our purposes,

e add (= integrate into the existing hierarchy) more adequat new
constructs, for instance, contracts or something more close to hardware
as interrupt or sensor or driver,

e and maybe also stereotypes.

— a new language standing next to UML, CWM, etc.

Drawback: the resulting language is not necessarily UML any more,
so we can’t use proven UML modelling tools.

But we can use all tools for MOF (or MOF-like things).
For instance, Eclipse EMF/GMF /GEF.

33/63

Benefits: Overview

— 22 — 2015-02-10 — Sbenefits —

o We'll (superficially) look at three aspects:

o Benefits for Modelling Tools. v/
e Benefits for Language Design. v
e Benefits for Code Generation and MDA.

34/63

Benefits for Model (to Model) Transformation

— 22 — 2015-02-10 — Sbenefits —

e There are manifold applications for model-to-model transformations:

e For instance, tool support for re-factorings, like moving common
attributes upwards the inheritance hierarchy.

This can now be defined as graph-rewriting rules on the level of MOF.
The graph to be rewritten is the UML model

e Similarly, one could transform a Gtk-UML model into a UML model,
where the inheritance from classes like Gtk::Button is made explicit:

The transformation would add this class Gtk::Button and the inheritance
relation and remove the stereotype.

e Similarly, one could have a GUI-UML model transformed into a
Gtk-UML model, or a Qt-UML model.

The former a PIM (Platform Independent Model), the latter a PSM
(Platform Specific Model) — cf. MDA.

35/63

Special Case: Code Generation

e Recall that we said that, e.g. Java code, can also be seen as a model.

So code-generation is a special case of model-to-model transformation;
only the destination looks quite different.

o Note: Code generation needn’t be as expensive as buying a modelling tool
with full fledged code generation.

o If we have the UML model (or the DSL model) given as an XML file,
code generation can be as simple as an XSLT script.

“Can be" in the sense of

“There may be situation where a graphical and abstract
representation of something is desired which has a clear and
direct mapping to some textual representation.”

In general, code generation can (in colloquial terms) become arbitrarily
difficult.

— 22 — 2015-02-10 — Sbenefits —

36/63

Example: Model and XMI

{(pt100))
SensorA

gather

(65C02))

1

<7xml version = ’1.0’ encoding = ’UTF-8’ 7>

<XMI xmi.version = ’1.2’° xmlns:UML = ’org.omg.xmi.namespace.UML’ timestamp = ’Mon Feb 02 18:23:12 CET 2009°’>

—R2 — 2015-02-10 — Sbenefits —

<XMI.content>

<UML:Model xmi.id = ’...’>

<UML:Namespace.ownedElement>
<UML:Class xmi.id = ’...

</UML:Class>

<UML:Class xmi.id = ’...

</UML:Class>

<UML:Class xmi.id = ’...

</UML:Class>

<UML:Association xmi.id
<UML:Association xmi.id

ControllerA

update

> name = ’SensorA’>

<UML:ModelElement.stereotype>
<UML:Stereotype name = ’pt100°/>

</UML:ModelElement.stereotype>

> name = ’ControllerA’>

<UML:ModelElement.stereotype>
<UML:Stereotype name = ’65C02°/>

</UML:ModelElement.stereotype>

> name = ’UsbA’>
<UML:ModelElement.stereotype>

<UML:Stereotype name = ’NET2270’/>
</UML:ModelElement.stereotype>

)

)

.’ name
.’ name

</UML:Namespace.ownedElement>

</UML:Model>
</XMI.content>
/XMI>

’in’ >...</UML:Association>
out’ >...</UML:Association>

(NET2270))
UsbA

37/63

— 22 — 2015-02-10 — main —

Wrapup & Questions

38/63

Content

— 22 — 2015-02-10 — main —

Lecture 1:
Lecture 2:

Lecture 3:
Lecture 4:

Lecture 5:
Lecture 6:
Lecture 7:
ecture 8:
Lecture 9:

Lecture 10:
Lecture 11;
Lecture 12:
Lecture 13:
Lecture 14:
Lecture 15:
Lecture 16:
Lecture 17:

Lecture 18:
Lecture 19:

Lecture 20:
Lecture 21:

Lecture 22:

Motivation and Overview
Semantical Model

Object Constraint Language (OCL)
OCL Semantics

Object Diagrams

Class Diagrams |

Type Systems and Visibility
Class Diagrams ||

Class Diagrams Il|

Constructive Behaviour, State Machines Overview
Core State Machines |

Core State Machines 1l

Core State Machines ||

Core State Machines IV

Core State Machines V, Rhapsody

Hierarchical State Machines |

Hierarchical State Machines I

Live Sequence Charts |
Live Sequence Charts Il

Inheritance |
Meta-Modelling, Inheritance 1l

Wrapup & Questions

39/63

Course Path: Over Map

— 22 — 2015-02-10 — main —

CD, SM o € OCL CD, SD :
v v y o
S =(T,6,V,atr), SM expr <, SD
v
4 v v v
M= (X%,A9,—su) v B = (Qsp,q,As,—sp, Fsp)
v 4
(V4
m = (00, €0) (Conszsnd0)> (01,€1)" - wr = ((03, cons;, Snd;));en
v v
G=(N,E,f)
v
OD

Motivation
Semantical Model
OCL

Object Diagrams
Class Diagrams
State Machines

Live Sequence
Charts

Real—+ime
Components

Inheritance
Meta-Modeling

40/63

Wrapup: Motivation

— 22 — 2015-02-10 — main —

Lecture 1:

Lecture 2:

Lecture 3:
Lecture 4:

Lecture 5:
Lecture 6:
Lecture 7:
ecture 8:
Lecture 9:

Lecture 10:
Lecture 11;
Lecture 12:
Lecture 13:
Lecture 14:
Lecture 15:
Lecture 16:
Lecture 17:

Lecture 18:
Lecture 19:

Lecture 20:
Lecture 21:

Lecture 22:

Motivation and Overview
Semantical Model

Object Constraint Language (OCL)
OCL Semantics

Object Diagrams

Class Diagrams |

Type Systems and Visibility
Class Diagrams ||

Class Diagrams Il|

Constructive Behaviour, State Machines Overview
Core State Machines |

Core State Machines 1l

Core State Machines ||

Core State Machines IV

Core State Machines V, Rhapsody

Hierarchical State Machines |

Hierarchical State Machines I

Live Sequence Charts |
Live Sequence Charts Il

Inheritance |
Meta-Modelling, Inheritance 1l

Wrapup & Questions

41/63

Wrapup: Motivation

— 22 — 2015-02-10 — main —

Lecture 1:

e Educational Objectives: you should

be able to explain the term model.
know the idea (and hopes and promises) of model-driven SW development.

be able to explain how UML fits into this general picture.

know what we-H-de we've done in the course, and why.

thus be able to decide whether you want to stay with us...

How can UML help with software development?
Where is which sublanguage of UML useful?
For what purpose? With what drawbacks?

42/63

Wrapup: Examining Motivation

— 22 — 2015-02-10 — main —

e what is a model? for example?
e “a model is an image or a pre-image’ — of what? please explain!

e when is a model a good model?

e what is model-based software engineering?

o MDA? MDSE?
e what do people hope to gain from MBSE? Why? Hope Justified?

e what are the fundamental pre-requisites for that?

e what are purposes of modelling guidelines?

e could you illustrate this with examples?

e how can we establish/enforce them? can tools or procedures help?

e what's the qualitative difference between the modelling guideline “all association
ends have a multiplicity” and "all state-machines are deterministic” ?

43/63

Wrapup: Examining Motivation

— 22 — 2015-02-10 — main —

e what is UML (definitely)? why?

o what is it (definitely) not? why?

e how does UML relate to programming languages?

e what are the intentions of UML?

e what is the history of UML? Why could it be useful to know that?

e where can (what part of) UML be used in MBSE?

e for what purpose? to improve what?

e we discussed a notion of “UML mode” by M. Fowler.

e what is that? why is it useful to think about it?

44/63

Wrapup: Examining “The Big Picture”

— 22 — 2015-02-10 — main —

e what kinds of diagrams does UML offer?
e what is the purpose of the X diagram?

e what do the diagrams X and Y have in common?
e what is a UML model (our definition)? what does it mean?

e what is the difference between well-formedness ruless
and modelling guidelines?

e what is meta-modelling?

e could you explain it on the example of UML?

e what is a class diagram in the context of meta-modelling?
e what benefits do people see in meta-modelling?

e the standard is split into the two documents “Infrastructure” and
“Superstructure”. what is the rationale behind that?

e in what modelling language is UML modelled?

45/63

Wrapup: Modelling Structure

— 22 — 2015-02-10 — main —

Lecture 1: Motivation and Overview

Lecture 2:

Lecture 3:
Lecture 4:

Lecture 5:
Lecture 6:
Lecture 7:
Lecture 8:
Lecture 9:

Lecture 10:
Lecture 11;
Lecture 12:
Lecture 13:
Lecture 14:
Lecture 15:
Lecture 16:
Lecture 17:

Lecture 18:
Lecture 19:

Lecture 20:
Lecture 21:

Lecture 22:

Semantical Model

Object Constraint Language (OCL)
OCL Semantics

Object Diagrams

Class Diagrams |

Type Systems and Visibility
Class Diagrams |I

Class Diagrams IlI

Constructive Behaviour, State Machines Overview
Core State Machines |

Core State Machines 1l

Core State Machines ||

Core State Machines IV

Core State Machines V, Rhapsody

Hierarchical State Machines |

Hierarchical State Machines I

Live Sequence Charts |
Live Sequence Charts Il

Inheritance |
Meta-Modelling, Inheritance 1l

Wrapup & Questions

46/63

Wrapup: Modelling Structure

— 22 — 2015-02-10 — main —

Lecture 2:

e Educational Objectives: Capabilities for these tasks/questions:

Why is UML of the form it is?
Shall one feel bad if not using all diagrams during software development?

What is a signature, an object, a system state, etc.?
What's the purpose in the course?

How do Basic Object System Signatures relate to UML class diagrams?

Lecture 3 & 4:

e Educational Objectives: Capabilities for these tasks/questions:

Please explain/read out this OCL constraint. Is it well-typed?
Please formalise this constraint in OCL.

Does this OCL constraint hold in this (complete) system state?
Can you think of a system state satisfying this constraint?
Please un-abbreviate all abbreviations in this OCL expression.

In what sense is OCL a three-valued logic? For what purpose?

47/63
HAw avre (Y AanAd ~ - vala+ad?

Wrapup: Modelling Structure

— 22 — 2015-02-10 — main —

Lecture 5:

e Educational Objectives: Capabilities for following tasks/questions.

What is an object diagram? What are object diagrams good for?

When is an object diagram called partial? What are partial ones good for?
How are system states and object diagrams related?

What does it mean that an OCL expression is satisfiable?
When is a set of OCL constraints said to be consistent?

Can you think of an object diagram which violates this OCL constraint?
Is this UML model M consistent wrt. Inv(M)?

Lecture 6:

o Educational Objectives: Capabilities for following tasks/questions.

What is a class diagram?
For what purposes are class diagrams useful?
Could you please map this class diagram to a signature?

Could you please map this signature to a class diagram?

48/63

Wrapup: Modelling Structure

— 22 — 2015-02-10 — main —

Lecture 7:

e Educational Objectives: Capabilities for following tasks/questions.

Is this OCL expression well-typed or not? Why?

How/in what form did we define well-definedness?

e What is visibility good for? Where is it used?

Lecture 8 & 9:

o Educational Objectives: Capabilities for following tasks/questions.

Please explain/illustrate this class diagram with associations.

Which annotations of an association arrow are (semantically) relevant?
In what sense? For what?

What's a role name? What's it good for?
What's “multiplicity” ? How did we treat them semantically?
What is “reading direction”, “navigability”, “ownership”, ...7?

What's the difference between “aggregation” and “composition”?

49/63

Wrapup: Modelling Structure

— 22 — 2015-02-10 — main —

Lecture 9:

e Educational Objectives: Capabilities for following tasks/questions.

o What are purposes of modelling guidelines? (Example?)
e When is a class diagram a good class diagram?

e Discuss the style of this class diagram.

Lecture 20 & 21:

o Educational Objectives: Capabilities for following tasks/questions.

e What's the effect of inheritance on System States?

e What does the Liskov Substitution Principle mean regarding structure?
e What is the subset, what the uplink semantics of inheritance?

e What's the idea of Meta-Modelling?

50/63

Wrapup: Modelling Behaviour, Constructive

— 22 — 2015-02-10 — main —

Lecture 1: Motivation and Overview

Lecture 2: Semantical Model

Lecture 3: Object Constraint Language (OCL)
Lecture 4: OCL Semantics

Lecture 5: Object Diagrams

Lecture 6: Class Diagrams |

Lecture 7: Type Systems and Visibility
Lecture 8: Class Diagrams I

Lecture 9: Class Diagrams IlI

Lecture 10:
Lecture 11:
Lecture 12:
Lecture 13:
Lecture 14:
Lecture 15:
Lecture 16:
Lecture 17:

Lecture 18:
Lecture 19:

Lecture 20:
Lecture 21:

Lecture 22:

Constructive Behaviour, State Machines Overview
Core State Machines |

Core State Machines Il

Core State Machines IlI

Core State Machines IV

Core State Machines V, Rhapsody

Hierarchical State Machines |

Hierarchical State Machines ||

Live Sequence Charts |
Live Sequence Charts Il

Inheritance |
Meta-Modelling, Inheritance 1l

Wrapup & Questions

51/63

Wrapup: Modelling Behaviour, Constructive

— 22 — 2015-02-10 — main —

Main and General:

o Educational Objectives: Capabilities for following tasks/questions.

e What does this State Machine mean?
e What happens if | inject this event?

e Can you please model the following behaviour.

(And convince readers that your model is correct.)

52/63

Wrapup: Modelling Behaviour, Constructive

— 22 — 2015-02-10 — main —

Lecture 10:

e Educational Objectives: Capabilities for following tasks/questions.

e What's the difference between reflective and constructive descriptions of

behaviour?

e What's the Basic Causality Model?
e What does the standard say about the dispatching method?

o What is (intuitively) a run-to-completion step?

Lecture 11:

o Educational Objectives: Capabilities for following tasks/questions.

Can you please model the following behaviour.

What is: trigger, guard, action?

Please unabbreviate this abbreviated transition annotation.
What is an ether? Example? Why did we introduce it?

What's the difference: signal, signal event, event, trigger, reception,
consumption?

What's a system configuration?

53/63

Wrapup: Modelling Behaviour, Constructive

Lecture 12 & 13:

e Educational Objectives: Capabilities for following tasks/questions.

What is a transformer? Example? Why did we introduce it?

What is a re-use semantics? What of the framework would we change to go to
a non-re-use semantics?

What labelled transition system is induced by a UML model?
What is: discard, dispatch, commence?

What's the meaning of stereotype “signal,env”?

Does environment interaction necessarily occur?

What happens on “division by 0”7

Lecture 14 & 15:

— 22 — 2015-02-10 — main —

e Educational Objectives: Capabilities for following tasks/questions.

o What is a step (definition)? Run-to-completion step (definition)? Microstep

(intuition)?

e Do objects always finally become stable?

a In whAat canca ic Antir PRTC carmantire nAtr ~rArmAAciFiAanal?

54/63

Wrapup: Modelling Behaviour, Constructive

— 22 — 2015-02-10 — main —

Lecture 16:

e Educational Objectives: Capabilities for following tasks/questions.

e What's a kind of a state? What's a pseudo-state?

e What's a region? What's it good for?

e What is: entry, exit, do, internal transition?

e What's a completion event? What has it to do with the ether?

Lecture 17:

e Educational Objectives: Capabilities for following tasks/questions.

e What's a state configuration?
e When are two states orthogonal? When consistent?
e What's the depth of a state? Why care?

What is the set of enabled transitions in this system configuration and this state
machine?

55/63

Wrapup: Modelling Behaviour, Constructive

— 22 — 2015-02-10 — main —

Lecture 18:

e Educational Objectives: Capabilities for following tasks/questions.

What's a history state? Deep vs. shallow?
What is: junction, choice, terminate?
What is the idea of “deferred events'?

What is a passive object? Why are passive reactive objects special? What did
we do in that case?

What's a behavioural feature? How can it be implemented?

56/63

Wrapup: Modelling Behaviour, Reflective

— 22 — 2015-02-10 — main —

Lecture 1:
Lecture 2:

Lecture 3:
Lecture 4:

Lecture 5:
Lecture 6:
Lecture 7:
ecture 8:
Lecture 9:

Lecture 10:
Lecture 11;
Lecture 12:
Lecture 13:
Lecture 14:
Lecture 15:
Lecture 16:
Lecture 17:

Motivation and Overview
Semantical Model

Object Constraint Language (OCL)
OCL Semantics

Object Diagrams

Class Diagrams |

Type Systems and Visibility
Class Diagrams ||

Class Diagrams Il|

Constructive Behaviour, State Machines Overview
Core State Machines |

Core State Machines 1l

Core State Machines ||

Core State Machines IV

Core State Machines V, Rhapsody

Hierarchical State Machines |

Hierarchical State Machines I

Lecture 18: Live Sequence Charts |
Lecture 19: Live Sequence Charts Il

Lecture 20
Lecture 21

Lecture 22

. Inheritance |
: Meta-Modelling, Inheritance Il

: Wrapup & Questions

57/63

Wrapup: Modelling Behaviour, Reflective

— 22 — 2015-02-10 — main —

Lecture 18, & 19:

e Educational Objectives: Capabilities for following tasks/questions.

Is each LSC description of behaviour necessarily reflective?

There exists another distinction between “inter-object” and “intra-object”

behaviour. Discuss in the context of UML.

What does this LSC mean?
Are this UML model’'s state machines consistent with the interactions?

Please provide a UML model which is consistent with this LSC.

What is: activation (mode, condition), hot/cold condition, pre-chart, cut,
hot/cold location, local invariant, legal exit, hot/cold chart etc.?

58/63

Wrapup: Inheritance

— 22 — 2015-02-10 — main —

Lecture 1:
Lecture 2:

Lecture 3:
Lecture 4:

Lecture 5:
Lecture 6:
Lecture 7:
ecture 8:
Lecture 9:

Lecture 10:
Lecture 11;
Lecture 12:
Lecture 13:
Lecture 14:
Lecture 15:
Lecture 16:
Lecture 17:

Lecture 18:
Lecture 19:

Motivation and Overview
Semantical Model

Object Constraint Language (OCL)
OCL Semantics

Object Diagrams

Class Diagrams |

Type Systems and Visibility
Class Diagrams ||

Class Diagrams Il|

Constructive Behaviour, State Machines Overview
Core State Machines |

Core State Machines 1l

Core State Machines ||

Core State Machines IV

Core State Machines V, Rhapsody

Hierarchical State Machines |

Hierarchical State Machines I

Live Sequence Charts |
Live Sequence Charts Il

Lecture 20: Inheritance |
Lecture 21: Meta-Modelling, Inheritance Il

Lecture 22

: Wrapup & Questions

59/63

Wrapup: Inheritance

— 22 — 2015-02-10 — main —

Lecture 20 & 21:

e Educational Objectives: Capabilities for following tasks/questions.

What's the effect of inheritance on LSCs, State Machines, System States?
What's the Liskov Substitution Principle?

What is commonly understood under (behavioural) sub-typing?

What is the subset, what the uplink semantics of inheritance?

What is late/early binding?

What's the idea of Meta-Modelling?

60/63

Hmm...

e Open book or closed book...?

— 22 — 2015-02-10 — main —

61/63

References

62/63

— utew — 01-¢0-910¢ — ¢C —

— 22 — 2015-02-10 — main —

[Buschermohle and Oelerink, 2008] Buschermohle, R. and Oelerink, J. (2008). Rich meta
object facility. In Proc. 1st IEEE Int'l workshop UML and Formal Methods.

[OMG, 2003] OMG (2003). Uml 2.0 proposal of the 2U group, version 0.2,
http://www.2uworks.org/uml2submission.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version 2.1.2.
Technical Report formal /07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version 2.1.2.
Technical Report formal /07-11-02.

[Stahl and Volter, 2005] Stahl, T. and Volter, M. (2005). Modellgetriebene
Softwareentwicklung. dpunkt.verlag, Heidelberg.

63/63

	Contents & Goals
	Meta-Modelling: Idea and Example
	Meta-Modelling: Why and What
	Meta-Modelling: Example
	UML Meta-Model: Extract from UML 2.0 Standard

	Meta-Modelling: Principle
	Modelling vs. Meta-Modelling
	Well-Formedness as Constraints in the Meta-Model

	The UML 2.x Standard Revisited
	Claim: Extract from UML 2.0 Standard
	Classes [32]OMG2007b
	Operations [31]OMG2007b
	Operations [30]OMG2007b
	Classifiers [29]OMG2007b
	Namespaces [26]OMG2007b
	Root Diagram [25]OMG2007b
	Interesting: Declaration/Definition [424]OMG2007b
	UML Architecture [8]OMG2003a
	UML Superstructure Packages [15]OMG2007c
	Reading the Standard
	Reading the Standard Cont'd

	Meta Object Facility (MOF)
	Open Questions...
	MOF Semantics

	Meta-Modelling: (Anticipated) Benefits
	Benefits: Overview
	Benefits for Modelling Tools
	Benefits for Modelling Tools Cont'd
	Benefits: Overview
	Benefits for Language Design
	Benefits for Language Design Cont'd
	Benefits for Language Design Cont'd
	Benefits: Overview
	Benefits for Model (to Model) Transformation
	Special Case: Code Generation
	Example: Model and XMI

	Wrapup & Questions
	Content
	Course Path: Over Map
	Wrapup: Motivation
	Wrapup: Motivation
	Wrapup: Examining Motivation
	Wrapup: Examining Motivation
	Wrapup: Examining ``The Big Picture''
	Wrapup: Modelling Structure
	Wrapup: Modelling Structure
	Wrapup: Modelling Structure
	Wrapup: Modelling Structure
	Wrapup: Modelling Structure
	Wrapup: Modelling Behaviour, Constructive
	Wrapup: Modelling Behaviour, Constructive
	Wrapup: Modelling Behaviour, Constructive
	Wrapup: Modelling Behaviour, Constructive
	Wrapup: Modelling Behaviour, Constructive
	Wrapup: Modelling Behaviour, Constructive
	Wrapup: Modelling Behaviour, Reflective
	Wrapup: Modelling Behaviour, Reflective
	Wrapup: Inheritance
	Wrapup: Inheritance
	Hmm...

	References
	

