
–
1
9
–
2
0
1
5
-0
1
-2
9
–
m
a
in

–

Software Design, Modelling and Analysis in UML

Lecture 19: Hierarchical State Machines III

2015-01-29

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany



Contents & Goals
–
1
9
–
2
0
1
5
-0
1
-2
9
–
S
p
re
li
m

–

2/28

Last Lecture:

• Initial and Final State

• Composite State Semantics started

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• What does this State Machine mean? What happens if I inject this event?

• Can you please model the following behaviour.

• What does this hierarchical State Machine mean? What may happen if I
inject this event?

• What is: AND-State, OR-State, pseudo-state, entry/exit/do, final state, . . .

• Content:

• Composite State Semantics cont’d

• The Rest



Composite States

(formalisation follows [Damm et al., 2003])

–
1
9
–
2
0
1
5
-0
1
-2
9
–
m
a
in

–

3/28



–
1
9
–
2
0
1
5
-0
1
-2
9
–
S
h
ie
rs
tm

–

4/28

A Partial Order on States
–
1
8
–
2
0
1
5
-0
1
-2
2
–
S
h
ie
rs
tm

–

14/30

The substate- (or child-) relation induces a partial order on states:

• top ≤ s, for all s ∈ S,

• s ≤ s′, for all s′ ∈ child(s),

• transitive, reflexive, antisymmetric,

• s′ ≤ s and s′′ ≤ s implies s′ ≤ s′′ or s′′ ≤ s′.

s

s1
s2

s3

s′

s′
1

s′
2

s′
3

s′′
1

s′′
2

s′′
3



–
1
9
–
2
0
1
5
-0
1
-2
9
–
S
h
ie
rs
tm

–

5/28

Least Common Ancestor and Ting
–
1
8
–
2
0
1
5
-0
1
-2
2
–
S
h
ie
rs
tm

–

15/30

• The least common ancestor is the function lca : 2S \ {∅} → S such that

• The states in S1 are (transitive) children of lca(S1), i.e.

lca(S1) ≤ s, for alls ∈ S1 ⊆ S,

• lca(S1) is minimal, i.e. if ŝ ≤ s for all s ∈ S1, then ŝ ≤ lca(S1)

• Note: lca(S1) exists for all S1 ⊆ S (last candidate: top).

s

s1
s2

s3

s′

s′
1

s′
2

s′
3

s′′
1

s′′
2

s′′
3



–
1
9
–
2
0
1
5
-0
1
-2
9
–
S
h
ie
rs
tm

–

6/28

Least Common Ancestor and Ting
–
1
8
–
2
0
1
5
-0
1
-2
2
–
S
h
ie
rs
tm

–

16/30

• Two states s1, s2 ∈ S are called orthogonal, denoted s1 ⊥ s2, if and only if

• they are unordered, i.e. s1 6≤ s2 and s2 6≤ s1, and

• they “live” in different regions of an AND-state, i.e.

∃ s, region(s) = {S1, . . . , Sn} ∃ 1 ≤ i 6= j ≤ n : s1 ∈ child
∗(Si)∧s2 ∈ child

∗(Sj),

s

s1
s2

s3

s′

s′
1

s′
2

s′
3

s′′
1

s′′
2

s′′
3

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift



–
1
9
–
2
0
1
5
-0
1
-2
9
–
S
h
ie
rs
tm

–

7/28

Least Common Ancestor and Ting
–
1
8
–
2
0
1
5
-0
1
-2
2
–
S
h
ie
rs
tm

–

17/30

• A set of states S1 ⊆ S is called consistent, denoted by ↓ S1,
if and only if for each s, s′ ∈ S1,

• s ≤ s′, or

• s′ ≤ s, or

• s ⊥ s′.

s

s1
s2

s3

s′

s′
1

s′
2

s′
3

s′′
1

s′′
2

s′′
3



–
1
9
–
2
0
1
5
-0
1
-2
9
–
S
h
ie
rs
tm

–

8/28

Legal Transitions
–
1
8
–
2
0
1
5
-0
1
-2
2
–
S
h
ie
rs
tm

–

18/30

A hiearchical state-machine (S, kind , region,→, ψ, annot) is called
well-formed if and only if for all transitions t ∈→,

(i) source and destination are consistent, i.e. ↓ source(t) and ↓ target(t),

(ii) source (and destination) states are pairwise orthogonal, i.e.

• forall s, s′ ∈ source(t) (∈ target(t)), s ⊥ s′,

(iii) the top state is neither
source nor destination, i.e.

• top /∈ source(t) ∪ source(t).

• Recall: final states are
not sources of transitions.

Example:

•

•
s1

s2
•
s3

s8s4

•

s5

s6

E/

F/

F/
E/

G/

s7

[true]/

F/

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift



The Depth of States
–
1
9
–
2
0
1
5
-0
1
-2
9
–
S
h
ie
rs
tm

–

9/28

• depth(top) = 0,

• depth(s′) = depth(s) + 1, for all s′ ∈ child(s)

Example:

•

•
s1

s2
•

s3

s8s4

•

s5

s6

E/

F/

F/
E/

G/

s7

[true]/

F/

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift



Enabledness in Hierarchical State-Machines
–
1
9
–
2
0
1
5
-0
1
-2
9
–
S
h
ie
rs
tm

–

10/28

• The scope (“set of possibly affected states”) of a transition t is the least
common region of

source(t) ∪ target(t).

• Two transitions t1, t2 are called consistent if and only if their scopes are
orthogonal (i.e. states in scopes pairwise orthogonal).

westphal
Bleistift



Enabledness in Hierarchical State-Machines
–
1
9
–
2
0
1
5
-0
1
-2
9
–
S
h
ie
rs
tm

–

10/28

• The scope (“set of possibly affected states”) of a transition t is the least
common region of

source(t) ∪ target(t).

• Two transitions t1, t2 are called consistent if and only if their scopes are
orthogonal (i.e. states in scopes pairwise orthogonal).

• The priority of transition t is the depth of its innermost source state, i.e.

prio(t) := max{depth(s) | s ∈ source(t)}

• A set of transitions T ⊆→ is enabled in an object u if and only if

• T is consistent,

• T is maximal wrt. priority,

• all transitions in T share the same trigger,

• all guards are satisfied by σ(u), and

• for all t ∈ T , the source states are active, i.e.

source(t) ⊆ σ(u)(st) (⊆ S).

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift



Transitions in Hierarchical State-Machines
–
1
9
–
2
0
1
5
-0
1
-2
9
–
S
h
ie
rs
tm

–

11/28

• Let T be a set of transitions enabled in u.

• Then (σ, ε)
(cons,Snd)
−−−−−−→ (σ′, ε′) if

• σ′(u)(st) consists of the target states of t,

i.e. for simple states the simple states themselves, for composite states
the initial states,

• σ′, ε′, cons, and Snd are the effect of firing each transition t ∈ T one by
one, in any order, i.e. for each t ∈ T ,

• the exit transformer of all affected states, highest depth first,

• the transformer of t,

• the entry transformer of all affected states, lowest depth first.

 adjust (2.), (3.), (5.) accordingly.

westphal
Bleistift

westphal
Bleistift



The Concept of History, and Other Pseudo-States

–
1
9
–
2
0
1
5
-0
1
-2
9
–
m
a
in

–

12/28



History and Deep History: By Example
–
1
9
–
2
0
1
5
-0
1
-2
9
–
S
h
is
t
–

13/28

susp

•
s0

act

H H
∗

•
s1 s2

s3
sb

•
s4

s5

E/

B/

C/

D/

F/

Rs/
Rd/

A/

S/

Rs/
Rd/

What happens on...

• Rs?
s0, s2

• Rd?
s0, s2

• A,B,C, S,Rs?
s0, s1, s2, s3, susp, s3

• A,B,C, S,Rd?
s0, s1, s2, s3, susp, s3

• A,B,C,D,E, S,Rs?
s0, s1, s2, s3, s4, s5, susp, s3

• A,B,C,D,E, S,Rd?
s0, s1, s2, s3, s4, s5, susp, s5

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift



Junction and Choice
–
1
9
–
2
0
1
5
-0
1
-2
9
–
S
h
is
t
–

14/28

• Junction (“static conditional branch”): •
[gd 1

]/a
ct 1

[gd
2 ]/act

2• good: abbreviation

• unfolds to so many similar transitions with different guards,
the unfolded transitions are then checked for enabledness

• at best, start with trigger, branch into conditions, then apply actions

• Choice: (“dynamic conditional branch”)

Note: not so sure about naming and symbols, e.g.,
I’d guessed it was just the other way round... ;-)

westphal
Bleistift



Junction and Choice
–
1
9
–
2
0
1
5
-0
1
-2
9
–
S
h
is
t
–

14/28

• Junction (“static conditional branch”): •
[gd 1

]/a
ct 1

[gd
2 ]/act

2• good: abbreviation

• unfolds to so many similar transitions with different guards,
the unfolded transitions are then checked for enabledness

• at best, start with trigger, branch into conditions, then apply actions

• Choice: (“dynamic conditional branch”)

• evil: may get stuck

• enters the transition without knowing whether there’s an enabled path

• at best, use “else” and convince yourself that it cannot get stuck

• maybe even better: avoid

Note: not so sure about naming and symbols, e.g.,
I’d guessed it was just the other way round... ;-)

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift



Entry and Exit Point, Submachine State, Terminate
–
1
9
–
2
0
1
5
-0
1
-2
9
–
S
h
is
t
–

15/28

• Hierarchical states can be “folded” for readability.
(but: this can also hinder readability.)

• Can even be taken from a different state-machine for re-use. S : s

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift



Entry and Exit Point, Submachine State, Terminate
–
1
9
–
2
0
1
5
-0
1
-2
9
–
S
h
is
t
–

15/28

• Hierarchical states can be “folded” for readability.
(but: this can also hinder readability.)

• Can even be taken from a different state-machine for re-use. S : s

• Entry/exit points ,

• Provide connection points for finer integration into the current level, than
just via initial state.

• Semantically a bit tricky:

• First the exit action of the exiting state,

• then the actions of the transition,

• then the entry actions of the entered state,

• then action of the transition from the entry point to an internal state,

• and then that internal state’s entry action.

• Terminate Pseudo-State

• When a terminate pseudo-state is reached,
the object taking the transition is immediately killed.

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift



Deferred Events in State-Machines

–
1
9
–
2
0
1
5
-0
1
-2
9
–
m
a
in

–

16/28



Deferred Events: Idea
–
1
9
–
2
0
1
5
-0
1
-2
9
–
S
d
ef
er

–

17/28

For ages, UML state machines comprises the feature of deferred events.

The idea is as follows:

• Consider the following state machine:

s1 s2 s3
E/ F/

• Assume we’re stable in s1, and F is ready in the ether.

• In the framework of the course, F is discarded.

• But we may find it a pity to discard the poor event
and may want to remember it for later processing, e.g. in s2,
in other words, defer it.

General options to satisfy such needs:

• Provide a pattern how to “program” this (use self-loops and helper attributes).

• Turn it into an original language concept. (← OMG’s choice)

westphal
Bleistift



Deferred Events: Syntax and Semantics
–
1
9
–
2
0
1
5
-0
1
-2
9
–
S
d
ef
er

–

18/28

• Syntactically,

• Each state has (in addition to the name) a set of deferred events.

• Default: the empty set.

• The semantics is a bit intricate, something like

• if an event E is dispatched,

• and there is no transition enabled to consume E,

• and E is in the deferred set of the current state configuration,

• then stuff E into some “deferred events space” of the object, (e.g. into the
ether (= extend ε) or into the local state of the object (= extend σ))

• and turn attention to the next event.

• Not so obvious:

• Is there a priority between deferred and regular events?

• Is the order of deferred events preserved?

• ...

[Fecher and Schönborn, 2007], e.g., claim to provide semantics for the complete

Hierarchical State Machine language, including deferred events.



And What About Methods?

–
1
9
–
2
0
1
5
-0
1
-2
9
–
m
a
in

–

19/28



And What About Methods?
–
1
9
–
2
0
1
5
-0
1
-2
9
–
S
m
et
h
o
d
s
–

20/28

• In the current setting, the (local) state of objects is only modified by
actions of transitions, which we abstract to transformers.

• In general, there are also methods.

• UML follows an approach to separate

• the interface declaration from

• the implementation.

In C++ lingo: distinguish declaration and definition of method.

• In UML, the former is called behavioural
feature and can (roughly) be

C

ξ1 f(τ1,1, . . . , τ1,n1
) : τ1 P1

ξ2 F (τ2,1, . . . , τ2,n2
) : τ2 P2

〈〈signal〉〉 E

• a call interface f(τ11 , . . . , τn1
) : τ1

• a signal name E

Note: The signal list can be seen as redundant (can be looked up in the state
machine) of the class. But: certainly useful for documentation (or sanity check).



Behavioural Features
–
1
9
–
2
0
1
5
-0
1
-2
9
–
S
m
et
h
o
d
s
–

21/28

C

ξ1 f(τ1,1, . . . , τ1,n1
) : τ1 P1

ξ2 F (τ2,1, . . . , τ2,n2
) : τ2 P2

〈〈signal〉〉 E

Semantics:

• The implementation of a behavioural feature can be provided by:

• An operation.

In our setting, we simply assume a transformer like Tf .

It is then, e.g. clear how to admit method calls as actions on transitions:
function composition of transformers (clear but tedious: non-termination).

In a setting with Java as action language: operation is a method body.

• The class’ state-machine (“triggered operation”).

• Calling F with n2 parameters for a stable instance of C
creates an auxiliary event F and dispatches it (bypassing the ether).

• Transition actions may fill in the return value.

• On completion of the RTC step, the call returns.

• For a non-stable instance, the caller blocks until stability is reached again.



Behavioural Features: Visibility and Properties
–
1
9
–
2
0
1
5
-0
1
-2
9
–
S
m
et
h
o
d
s
–

22/28

C

ξ1 f(τ1,1, . . . , τ1,n1
) : τ1 P1

ξ2 F (τ2,1, . . . , τ2,n2
) : τ2 P2

〈〈signal〉〉 E

• Visibility:

• Extend typing rules to sequences of actions such that
a well-typed action sequence only calls visible methods.

• Useful properties:

• concurrency

• concurrent — is thread safe

• guarded — some mechanism ensures/should ensure mutual exclusion

• sequential — is not thread safe, users have to ensure mutual exclusion

• isQuery — doesn’t modify the state space (thus thread safe)

• For simplicity, we leave the notion of steps untouched, we construct our semantics
around state machines. Yet we could explain pre/post in OCL (if we wanted to).



Discussion.

–
1
9
–
2
0
1
5
-0
1
-2
9
–
m
a
in

–

23/28



Semantic Variation Points
–
1
9
–
2
0
1
5
-0
1
-2
9
–
S
se
m
va
r
–

24/28

Pessimistic view: They are legion...

• For instance,

• allow absence of initial pseudo-states
can then “be” in enclosing state without being in any substate; or assume one
of the children states non-deterministically

• (implicitly) enforce determinism, e.g.
by considering the order in which things have been added to the CASE tool’s
repository, or graphical order

• allow true concurrency

Exercise: Search the standard for “semantical variation point”.

• [Crane and Dingel, 2007], e.g., provide an in-depth comparison of
Statemate, UML, and Rhapsody state machines — the bottom line is:

• the intersection is not empty
(i.e. there are pictures that mean the same thing to all three communities)

• none is the subset of another
(i.e. for each pair of communities exist pictures meaning different things)

Optimistic view: tools exist with complete and consistent code generation.



You are here.

–
1
9
–
2
0
1
5
-0
1
-2
9
–
m
a
in

–

25/28



Course Map
–
1
9
–
2
0
1
5
-0
1
-2
9
–
m
a
in

–

26/28

UML
M
o
d
e
l

In
s
t
a
n
c
e
s

N

S

W E

CD, SM

S = (T,C, V, atr ), SM

M = (ΣD
S
, AS ,→SM )

ϕ ∈ OCL

expr

CD, SD

S ,SD

B = (QSD , q0, AS ,→SD , FSD)

π = (σ0, ε0)
(cons0,Snd0)
−−−−−−−−→

u0

(σ1, ε1)· · · wπ = ((σi, consi,Snd i))i∈N

G = (N,E, f) Mathematics

OD UML

✔ ✔

✔ ✔

✔
✔

✔

✔

✔

✔

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift



References

–
1
9
–
2
0
1
5
-0
1
-2
9
–
m
a
in

–

27/28



–
1
9
–
2
0
1
5
-0
1
-2
9
–
m
a
in

–

28/28

[Crane and Dingel, 2007] Crane, M. L. and Dingel, J. (2007). UML vs. classical vs.
rhapsody statecharts: not all models are created equal. Software and Systems
Modeling, 6(4):415–435.

[Damm et al., 2003] Damm, W., Josko, B., Votintseva, A., and Pnueli, A. (2003). A
formal semantics for a UML kernel language 1.2. IST/33522/WP
1.1/D1.1.2-Part1, Version 1.2.

[Fecher and Schönborn, 2007] Fecher, H. and Schönborn, J. (2007). UML 2.0 state
machines: Complete formal semantics via core state machines. In Brim, L.,
Haverkort, B. R., Leucker, M., and van de Pol, J., editors, FMICS/PDMC, volume
4346 of LNCS, pages 244–260. Springer.

[Harel and Kugler, 2004] Harel, D. and Kugler, H. (2004). The rhapsody semantics
of statecharts. In Ehrig, H., Damm, W., Große-Rhode, M., Reif, W., Schnieder, E.,
and Westkämper, E., editors, Integration of Software Specification Techniques for
Applications in Engineering, number 3147 in LNCS, pages 325–354.
Springer-Verlag.

[OMG, 2007] OMG (2007). Unified modeling language: Superstructure, version
2.1.2. Technical Report formal/07-11-02.


	Contents & Goals
	Composite States [] (formalisation follows DammJoskoVotintsevaPnueli2003)
	
	
	
	
	
	The Depth of States
	Enabledness in Hierarchical State-Machines
	Transitions in Hierarchical State-Machines

	The Concept of History, and Other Pseudo-States
	History and Deep History: By Example
	Junction and Choice
	Entry and Exit Point, Submachine State, Terminate

	Deferred Events in State-Machines
	Deferred Events: Idea
	Deferred Events: Syntax and Semantics

	And What About Methods?
	And What About Methods?
	Behavioural Features
	Behavioural Features: Visibility and Properties

	Discussion.
	Semantic Variation Points

	You are here.
	Course Map

	References
	 




