17 - 20150120

Software Design, Modelling and Analysis in UML

Lecture 17: Hierarchical State Machines Ib

2015-01-20

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitit Freiburg, Germany

UML State-Machines: What do we have to cover?

1-20 - Shiersyn

17 - 20150

S s s

Contents & Goals

Last Lecture:
« State Machines and OCL
 Rhapsody Demo I

This Lecture:

o Educational Objectives: Capabilities for following tasks/questions.

ject this event?

* What does this State Machine mean? What happens

 Can you please model the following behaviour.

* What does this hierarchical State Machine mean? What may happen if |
inject this event?

o What is: AND-State, OR-State, pseudo-state, entry/exit/do, final state, ..

« Content:

o Hierarchical State Machines Syntax

o Initial and Final State

» Composite State Semantics

* The Rest 2z

The Full Story

UML distinguishes the following kinds of states:

example example
pseudo-state
initial

(shallow) history

simple state

&5 deep history

final state fork /join

composite state R }
Jjunction, choice

OR
entry point
exit point
7 AND terminate

submachine state

Hierarchical State Machines

17 - 2015.01-20 - main —

Representing All Kinds of States

wce shh dishrede sk
/ y

50 €S8, = CSx(EU{}) x Eapryp x Acty x S

o Until NOW: 4/ chke

/

YM 80, WY
T T *
mv& s g jond ki

LEnx20 xm,3,)

= E[od] /xtr &7 -

ke Hopilias
il
NEY" (f0,50,55, 4T, St , denses],

§domsitin , 1 ({55, £52.553), -f
—: 7

jucidsuce Ao hin,

015.01-20 — Shiersyn

o
o

Representing All Kinds of States

o Until now:

(S.s0,—), so€S,— CSx(EU{}) x Expry x Acty x S

o From now on: (hierarchical) state machines

11.1 (S, kind, region, —, ., annot)
o
S:mﬂm s..«

© S D {top} is a finite set of states

is a function which labels states with their kind,

O ehs of ek of shhs
wﬁ of :ma;_o:m\x edys) — st s

an incidence function, and

£ e amnot: (5) - (EU{D) x Bapry x Acty

provides an annotation for each transition

(as before),

kind : S — {st, init, fin, shist, dhist, fork, join, junc, choi, ent, exi, term}

(new)

region : S — 22" is a function which characterises the regions of a state,

(new)
(changed)
(new)

(new)

Well-Formedness: Regions (follows from diagram)

simple state s st 0

final state s fin 0
composite state s st {S1,....5.}n>1
pseudo-state s | init, ... 0

implicit top state top st {S1}

© Each state (except for top) lies in exactly one region,

o States s € S with kind(s) = st may comprise regions.

« No region: simple state.
© One region: OR-state. QJ‘&* shi

* Two or more regions: ~ AND-state.
o Final and pseudo states don’t comprise regions.

o The region function induces a child function.

es kind region C 25,5; C 8

child C S
0
0
S1U---uUS,
0
S1
—_—

“(5.)

=155, 510

T?ts:&

937

From UML to Hierarchical StM: By Example

(S, kind, region, —, ¥, annot) i

example €S kind region
mple state s s B
, iy pusled sciibin) [?»
final state @ wm P fin 4
composite state
OR s L3 %,m: nrhwwm
2
region
AND . o MT.‘ 83 $s1,s3
£s,5¢ m
submachine state (later)
pseudo-state o ®. § |wt, b, Vs
—_—

(s.kind(s)) for short

o el skl U b ::hu o l\?
O =N

o

g (c) =558 * ‘@?Q ok
o)= E8533 (4 wot
wel]. v

From UML to Hierarchical StM: By Example

S " _x_ __”_0

, _UOZ.A_‘_ UOZ«F /
_ L%

,, Mm%%nv ? %&»\S lped' | ,v

, Tt e,

(_ 7

... translates to (S, kind, region, —,), annot) =

(§f (s, 58), (4, i02) (92,), (o, 2),
S, kind
(v, 100, sp g, ko §i5.52.30

region

i Q Clo (£03,19), &m (F3,145)f

J\|\

§emltoghactl, 4 I‘_.\&)
RN A I

annot

837

Well-Formedness: Initial State (requir. on diagram)

« Each non-empty region has exactly one initial pseudo-state and at least one
transition from there, i.e.

for each s € S with region(s) = {S1,...,Su}, n > 1, for each 1 <i <n,

there exists exactly one initial pseudo-state (s}, init) € S; and

at least one transition t €— with s as source,

and such transition's target s is in S;, and
(for simplicity!) kind(s3) = st, and
annot(t) = (., true, act).

* No _:mom:w transitions to initial states.

® Recall: DON'T! DON'T!
;nl.ﬁ&ﬂ\pnu -
o

Plan ol | campke

pseudo-state
initial

le state (shallow) history

deep history

final state fork/join

osite state
junction, choice

entry point

exit point

terminate

o Entry/do/exit actions, internal transitions.
o Initial pseudostate, final state.

o Composite states.

o History and other pseudostates, the rest.

137

Internal Transitions

s1
entry
U:wa\\m“m: -
o/ act§ entry
. exit entry/acts
E, /o' exit/act$ dojactg®

By/actp,

exit/act§ ™

En/actp,

o For internal transitions, taking the one for E}, for instance,
still amounts to taking only tacty, -
o Intuition: The state is neither left nor entered, so: no exit, no entry.

~~ adjust (2.) accordingly.
« Note: internal transitions also start a run-to-completion step.

« Note: the standard seems not to clarify whether internal transitions have
priority over regular transitions with the same trigger at the same state.

. Some code generators assume that

Entry/Do/Exit Actions, Internal Transitions

Alternative View: ...as Abbreviations

trolgdol/ actoentryTact?™
exit] act$t
Ey/actp,

trilgd,)/acty 52
entry/actS™™

tralgds]/ acts| exit/actgit

© ... as abbrevation for

#
acd 2 kit

15/37

Entry/Do/Exit Actions

entry/acts™ — %)
o In general, with each state dofact{® . trlgdl/act ontrTaci™
X it/ acte
s € S there is associated exit/ act do/ actge
Eafact, exit/actgt
© an entry, a do, and an exit - 2
E,/actp,

action (default: skip)

o a possibly empty set of
trigger/action pairs called internal transitions, (default: empty).
Note: Ey,..., E, € &, ‘entry’, 'do’

, ‘exit" are reserved names!

each action’s supposed to have a transformer. Here: #, eny, ,yguit, .

o Recal
i

e Ta

g the transition above then amounts to applying

t

2 0 tact © Ly

actS)

instead of only
tact

~+ adjust (2.), (3.) accordingly. 13/37

Alternative View: ... as Abbreviations

5
antryact |trlod)/acty

i exit
exit/ act§

tro[gdy]/acto 52

entry/acts™™

9da]/ acts| exit/acts

o That is: Entry/Internal /Exit don't add expressive power to Core State Machines.
If internal actions should have priority, s; can be embedded into an OR-state (later)

* Abbreviation view may avoid confusion in context of hierarchical states (later). .

Do Actions (&

entry/actS™

do/act{®
exit/ act?t
Ey/actp,

\En/actg,

»
trlgd)/ ot gty acts®

2

do/act$®
exit/act§

Intuition: after entering a state, start its do-action.

If the do-action terminates,

© then the state is considered completed (— later)

otherwise,

Recall the overall UML State Machine philosophy:

either

“An object

the state is left before termination, the do-action is stopped.

le or doing a run-to-completion step.

» Now, what is it exactly while the do action is executing...?

Crane and Dingel, 2007] Crane, M. L. and Dingel, J. (2007). UML vs. classical vs.
rhapsody statecharts: not all models are created equal. Software and Systems
Modeling, 6(4):415-435.

[Damm et al., 2003] Damm, W., Josko, B., Votintseva, A., and Pnueli, A. (2003). A
formal semantics for a UML kernel language 1.2. 1ST/33522/WP
1.1/D1.1.2-Partl, Version 1.2.

References [Fecher and Schénborn, 2007] Fecher, H. and Schénborn, J. (2007). UML 2.0 state
¢jerence machines: Complete formal semantics via core state machines. In Brim, L.,
Haverkort, B. R., Leucker, M., and van de Pol, J., editors, FMICS/PDMC, volume
4346 of LNCS, pages 244-260. Springer.

[Harel and Kugler, 2004] Harel, D. and Kugler, H. (2004). The rhapsody semantics
of statecharts. In Ehrig, H., Damm, W., GroBe-Rhode, M., Reif, W., Schnieder, E.
and Westka , E., editors, /i ion of Software ification Te i for
Applications in Engineering, number 3147 in LNCS, pages 325-354.
Springer-Verlag.

[OMG, 2007] OMG (2007). Unified modeling language: Superstructure, version
2.1.2. Technical Report formal /07-11-02

[Stérrle, 2005] Stérrle, H. (2005). UML 2 fiir Studenten. Pearson Studium.

3737

