Stubborn Sets for Reduced State Space Generation
Seminar Talk

Dominik Winterer
Albert-Ludwigs-Universität Freiburg

February 8, 2016
Transition Systems and Model Checking

Abstraction
- Shrink transition system to tractable size
- "Solve" smaller transition system
- Use solution for regular transition system

Partial Order Reduction
- Detect structural symmetries
- Fire only necessary transitions in each state
Partial Order Reduction - Example: Putting Shoes on

- Left shoe
- Right shoe
- Right shoe
- Left shoe
Partial Order Reduction ctd.

Observations:

- Commutative transitions
- Algorithms do not detect such symmetries without modifications
Example - Concurrent Program

Setting

- Three processes \(P_1, P_2, P_3 \) share variables \(X, Y, Z, R \)
- Initially: All variables are zero, \(X = Y = Z = R = 0 \)

\[
\begin{align*}
P_1 & \quad X := 1 \\
& \quad R := X \cdot Y \cdot Z \\

P_2 & \quad Y := 2 \\

P_3 & \quad Z := 1
\end{align*}
\]
Example - Concurrent Program

Setting

- Three processes P1, P2, P3 share variables X, Y, Z, R
- Initially: All variables are zero, X = Y = Z = R = 0

\[
\begin{align*}
P1 & \\
X & := 1 \\
R & := X \cdot Y \cdot Z
\end{align*}
\]

\[
\begin{align*}
P2 & \\
Y & := 2
\end{align*}
\]

\[
\begin{align*}
P3 & \\
Z & := 1
\end{align*}
\]

Observation: First statements of P1, P2, P3 independent
Variable/Transition Systems

Definition (variable/transition system)

A variable/transition system is a five-tuple \((V, T, type, next, ss_0)\), where

- \(V\) is a finite set of variables
- \(T\) is a finite set of transitions
- \(type\) is a function assigning a type to each variable
- \(next\) is the next state function
- \(ss_0\) is the initial state
Variable/Transition Systems ctd.

Concurrent Program as v/t system \((V, T, type, next, ss_0)\) where

- \(V = \{X, Y, Z, R\}\)
- \(T = \{t_1, \ldots, t_4\}\)
- \(type(v) = INT\) for all \(v \in V\)
- state encoding XYZR, \(next = \{(0000, t_1, 1000), \ldots\}\)
- \(ss_0 = XYZR = 0000\)

\[
\begin{align*}
\text{P1} & \quad t_1 \quad X := 1 \quad t_4 \quad R := X \cdot Y \cdot Z \\
\text{P2} & \quad t_2 \quad Y := 2 \\
\text{P3} & \quad t_3 \quad Z := 1
\end{align*}
\]
Enabledness/Disabledness

- A transition t is enabled in state s if we can "fire" it.
- If transition t is enabled in state s we denote this by $en(s, t)$.
- If transition t is not enabled in state s it is disabled, i.e. $next(s, t) = undefined$.
- A state is terminal if there is no enabled transition.
Enabledness/Disabledness - Example

Enabled Transitions in $ss_0 = 0000$: t_1, t_2, t_3
Disabled Transitions in $ss_0 = 0000$: t_4
Terminal state: $s = 1212$

P1
\[
t_1 \quad X := 1 \\
\]
\[
t_4 \quad R := X \cdot Y \cdot Z
\]

P2
\[
t_2 \quad Y := 2
\]

P3
\[
t_3 \quad Z := 1
\]
Enabled with respect to a Variable Set

Definition (enabled with respect to variable set)
Transition t is enabled with respect to a set of variables $U \subseteq V$ in state s iff there exist a state s' s.t for all $v \in U : s'(v) = s(v)$

Notation: $en(s, t, U)$
Enabled with Respect to Variable Set - Example

State $XYZR = 1000$: t_4 is enabled with respect to $U = \{X\}$

P1
t_1 $X := 1$
t_4 $R := X \cdot Y \cdot Z$

P2
t_2 $Y := 2$

P3
t_3 $Z := 1$
Definition (write up set)

A write up A set w.r.t \(t \) and \(U \), \(wrup(U, t) \) is a set of transitions that make \(t \) enabled w.r.t \(U \) in some state \(s \).
Write up Set - Example

Example
A = \{ t_1 \} is a write up set w.r.t \ t_4 \ and \ \{ X \}

P1
\begin{align*}
 t_1 & \quad X := 1 \\
 t_4 & \quad R := X \cdot Y \cdot Z
\end{align*}

P2
\begin{align*}
 t_2 & \quad Y := 2
\end{align*}

P3
\begin{align*}
 t_3 & \quad Z := 1
\end{align*}
Commutativity - The Diamond Property

Definition (commutativity)
Transition \(t \) and \(t' \) are commutative iff for every \(s, s' \) and \(s_1 \) there is a state \(s'_1 \) such that:

\[
\begin{align*}
\text{Transition } t & \Rightarrow t' \\
\text{State } s & \Rightarrow s' \\
\text{State } s_1 & \Rightarrow s'_1
\end{align*}
\]
Semistubborn Set

Definition (semistubborn set)

A set of transition $T_s \subseteq T$ is *semistubborn* in state s, if and only if for every $t \in T_s$

1. $\neg en(s, t) \implies \exists U \subseteq V : \neg en(s, t, U) \land \text{wrup}(t, U) \subseteq T_s$
2. $en(s, t) \implies \forall t' \notin T_s : t$ and t' are commutative
Semistubborn Set - Example

A Semistubborn Set in state $ss_0 = 0000$: $T_{ss_0} = \{t_1, t_4\}$
t_1 is enabled and commutative to t_2, t_3
t_4 has write up set $\{t_1\}$ w.r.t to $\{X\}$

P1
\[
\begin{align*}
& t_1 \quad X := 1 \\
& t_4 \quad R := X \cdot Y \cdot Z
\end{align*}
\]

P2
\[
\begin{align*}
& t_2 \quad Y := 2
\end{align*}
\]

P3
\[
\begin{align*}
& t_3 \quad Z := 1
\end{align*}
\]
Semistubborn Set - Counterexample I

A Semistubborn Set in state \(ss_0 = 0000 \): \(T_{ss_0} = \emptyset \)
Empty \(T_{ss_0} \rightarrow \) no conditions to be satisfied

<table>
<thead>
<tr>
<th>P1</th>
<th>P2</th>
<th>P3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1) (X := 1)</td>
<td>(t_2) (Y := 2)</td>
<td>(t_3) (Z := 1)</td>
</tr>
<tr>
<td>(t_4) (R := X \cdot Y \cdot Z)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A Semistubborn Set in state $ss_0 = 0000$: $T_{ss_0} = \{t_5\}$

P1
\begin{align*}
t_1 & \quad X := 1 \\
t_4 & \quad R := X \cdot Y \cdot Z
\end{align*}

P2
\begin{align*}
t_2 & \quad Y := 2
\end{align*}

P3
\begin{align*}
t_3 & \quad Z := 1 \\
t_5 & \quad V := 1000
\end{align*}
Definition (stubborn sets)

A set of transitions $T_s \subseteq T$ is stubborn in state s, iff

1. T_s is semistubborn in s
2. T_s contains an enabled transition in s (key transition)
A Stubborn Set in state $ss_0 = 0000$: $T_{ss0} = \{t_1, t_4\}$

<table>
<thead>
<tr>
<th>P1</th>
<th>P2</th>
<th>P3</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>t_2</td>
<td>t_3</td>
</tr>
<tr>
<td>$X := 1$</td>
<td>$Y := 2$</td>
<td>$Z := 1$</td>
</tr>
<tr>
<td>t_4</td>
<td>$R := X \cdot Y \cdot Z$</td>
<td></td>
</tr>
</tbody>
</table>
State Space Reduction with Stubborn Sets

No reduction

States: $2^3 + 1$
Transitions: $3! + 1$

Stubborn Sets

States: $3 + 1$
Transitions: $(3 + 1) + 1$
Computation of Stubborn Sets

<table>
<thead>
<tr>
<th>Stubborn Set</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>non-trivial</td>
<td>NP-hard</td>
</tr>
<tr>
<td>minimal enabled</td>
<td>NP-hard</td>
</tr>
<tr>
<td>optimal</td>
<td>PSPACE-hard</td>
</tr>
</tbody>
</table>

Properties

- Any superset of a stubborn set is a stubborn set
- Therefore T is stubborn
- Tradeoff reduction/overhead of stubborn set computation
Conclusion

- Stubborn set method: State space reduction technique
- Valmari provided theoretical foundation
- State space reduction can increase the performance/decrease memory usage of verification
- Similar concepts: Ample Sets, Persistent Sets
- Various applications of partial order reduction