Contents & Goals

Last Lecture:
- System configuration cont’d
- Action language and transformer

This Lecture:
- Educational Objectives: Capabilities for following tasks/questions.
 - What does this State Machine mean? What happens if I inject this event?
 - Can you please model the following behaviour.
 - What is: Signal, Event, Ether, Transformer, Step, RTC.

- Content:
 - Step, Run-to-Completion Step
Transition Relation

Definition. Let A be a set of labels and S a (not necessarily finite) set of states. We call

$$\rightarrow \subseteq S \times A \times S$$

a (labelled) transition relation.

Let $S_0 \subseteq S$ be a set of initial states. A (finite or infinite) sequence

$${s_0} \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} \ldots$$

with $s_i \in S$, $a_i \in A$ is called computation of the labelled transition system (S, A, \rightarrow, S_0) if and only if

- **initiation**: $s_0 \in S_0$
- **consecution**: $(s_i, a_i, s_{i+1}) \in \rightarrow$ for $i \in \mathbb{N}_0$.
Active vs. Passive Classes/Objects

- **Note:** From now on, for simplicity, assume that all classes are **active**.

 We’ll later briefly discuss the Rhapsody framework which proposes a way how to integrate non-active objects.

- **Note:** The following RTC “algorithm” follows Harel and Gery (1997) (i.e. the one realised by the Rhapsody code generation) if the standard is ambiguous or leaves choices.

From Core State Machines to LTS

Definition. Let $\mathcal{S}_0 = (\mathcal{F}_0, \mathcal{V}_0, \mathcal{V}_0, \mathcal{A}_0, \mathcal{E})$ be a signature with signals (all classes in \mathcal{C}_0 **active**), \mathcal{D}_0 a structure of \mathcal{S}_0, and $(\mathcal{E}, \text{ready}, \oplus, \ominus, \cdot)$ an ether over \mathcal{S}_0 and \mathcal{D}_0. Assume there is one core state machine M_C per class $C \in \mathcal{C}$.

We say, the state machines **induce** the following labelled transition relation on states $S := (\Sigma \times \mathcal{E}) \cup \{\#\}$ with labels $A := 2^\mathcal{E} \times 2^{(\mathcal{E} \cup \{+, \cdot\})} \times 2^{\mathcal{C}}$.

- $\bullet (\sigma, \epsilon) (\text{cons, Snd}) (\sigma', \epsilon')$ if and only if
 (i) an event with destination u is **discarded**,
 (ii) an event is **dispatched** to u, i.e. stable object processes an event, or
 (iii) run-to-completion processing by u **continues**, i.e. object u is not stable and continues to process an event,
 (iv) the environment interacts with object u,

- $\bullet s (\text{cons}, \emptyset) \xrightarrow{u} \#$ if and only if
 (v) an **error condition** occurs during consumption of cons, or
 $s = \#$ and $\text{cons} = \emptyset$.

(i) Discarding An Event

\[(\sigma, \varepsilon) \xrightarrow{u} (\sigma', \varepsilon') \]

if

- an \(E \)-event (instance of signal \(E \)) is ready in \(\varepsilon \) for object \(u \) of a class \(C \), i.e. if

\[u \in \text{dom}(\sigma) \cap \mathcal{P}(C) \land \exists u_E \in \mathcal{P}(E) : u_E \in \text{ready}(\varepsilon, u) \]

- \(u \) is stable and in state machine state \(s \), i.e. \(\sigma(u)(\text{stable}) = 1 \) and \(\sigma(u)(st) = s \),

- but there is no corresponding transition enabled (all transitions incident with current state of \(u \) either have other triggers or the guard is not satisfied)

\[\forall (s, F, \text{expr}, act, s') \in \rightarrow(SM_C) : F \neq E \lor I[\text{expr}](\sigma, u) = 0 \]

and

- in the system configuration, stability may change, \(u_E \) goes away, i.e.

\[\sigma' = \sigma[u, \text{stable} \mapsto b] \setminus \{u_E \mapsto \sigma(u_E)\} \]

where \(b = 0 \) if and only if there is a transition with trigger ‘-’ enabled for \(u \) in \((\sigma', \varepsilon') \).

- the event \(u_E \) is removed from the ether, i.e.

\[\varepsilon' = \varepsilon \oplus u_E, \]

- consumption of \(u_E \) is observed, i.e.

\[\text{cons} = \{u_E\}, \quad \text{Snd} = \emptyset. \]
Example: Discard

\[G[x > 0]/x := y \]

\[H/z := y/x \]

\(SM_C: \)

\[
\begin{array}{c}
\text{Init}\: \sigma: \\
\begin{array}{l}
x = 1, z = 0, y = 2 \\
\text{stable} = 1
\end{array}
\end{array}
\]

\(\varepsilon: \)

\[(\text{signal}, \text{env}) \]

\((\text{signal}) \)

\(G, J \)

\(n \)

\[
\begin{array}{c}
\text{C} \\
\begin{array}{l}
x, z : \text{Int} \\
y : \text{Int} \langle \text{env} \rangle
\end{array}
\end{array}
\]

\((\text{signal}, \text{env}) \)

\(H \)

\(\langle \text{signal} \rangle \)

\(G, J \)

\(C \)

(ii) Dispatch

\[(\sigma, \varepsilon) \xrightarrow{(\text{cons}, \text{Snd})} (\sigma', \varepsilon') \]

if

- \(u \in \text{dom}(\sigma) \cap \mathcal{D}(C) \)
- \(u \in \mathcal{D}(E), u_E \in \text{ready}(\varepsilon, u) \)
- \(\forall F, expr, act, s' \in (SM_C): F \neq E \lor I[expr](\sigma, u) = 0 \)
- \(\sigma'(u)(\text{stable}) = 1, \sigma(u)(st) = s, \sigma' = \sigma[u.st \mapsto s', u.stable \mapsto b] \}
- \(\varepsilon' = \varepsilon \ominus u_E \)
- \(\text{cons} = \{ u_E \}, \text{Snd} = \emptyset \)

and

- \((\sigma', \varepsilon') \) results from applying \(t_{\text{act}} \) to \((\sigma, \varepsilon) \) and removing \(u_E \) from the ether, i.e.

\[(\sigma'', \varepsilon') \in t_{\text{act}}[u](\sigma', \varepsilon \ominus u_E), \]

\[\sigma' = (\sigma''[u.st \mapsto s', u.stable \mapsto b, u.params_E \mapsto \emptyset])|_{\mathcal{D}(E)} \]

where \(b \) depends (see (i))

- Consumption of \(u_E \) and the side effects of the action are observed, i.e.

\[\text{cons} = \{ u_E \}, \text{Snd} = \text{Observe}[u](\sigma, \varepsilon \ominus u_E). \]
Example: Dispatch

\[SMC: \]

\[G(x > 0) / x := y \]

\[H / z := y / x \]

\[\sigma: \]

\[x = 1, z = 0, y = 2 \]

\[st = s_1 \]

\[stable = 1 \]

\[\epsilon: \]

\[G \text{ for } c \]

\[(x_0, b) \]

\[x^c \]

\[x = 2, z = 0, y = 2 \]

\[st = s_1 \]

\[stable = 0 \]

\[\sigma': \]

\[\sigma' = \sigma / u.\text{params} \to \emptyset \]

\[\sigma'' = \sigma' / u.\text{params} \to \emptyset \]

\[cons = \{ u \} \]

\[Snd = \text{Obs}_{u.\text{params}}(\sigma, \epsilon) \]

(iii) Continue Run-to-Completion

\[(\sigma, \epsilon) \xrightarrow{(\text{cons}, \text{Snd})} (\sigma', \epsilon') \]

if

- there is an unstable object \(u \) of a class \(C \), i.e.

\[u \in \text{dom}(\sigma) \cap \mathcal{P}(C) \]

\[u \in \mathcal{P}(E) \]

- there is a transition without trigger enabled from the current state \(s = \sigma(u)(st) \), i.e.

\[\exists (s, F, \text{expr}, \text{act}, s') \in (SMC): F = E \land I[\text{expr}](\sigma, u) = 1 \]

and

- \((\sigma', \epsilon') \) results from applying \(t_{\text{act}} \) to \((\sigma, \epsilon) \), i.e.

\[(\sigma'', \epsilon') \in t_{\text{act}}[\sigma, \epsilon] \]

\[\sigma' = \sigma'' / u.(st) \to s', u.\text{stable} \to b \]

where \(b \) depends as before.

- Only the side effects of the action are observed, i.e.

\[cons = \emptyset, \quad Snd = \text{Obs}_{u.\text{params}}(\sigma, \epsilon). \]
Example: Commence (adapted) \[x > 0 \implies x := x - 1; n! J \]

SMC:

\[
\begin{align*}
&G[x > 0]/x := y \\
&H/z := y/x
\end{align*}
\]

H/z := y/x

\[
\begin{align*}
&x = 2, z = 0, y = 2 \\
&st = s_2 \\
&stable = 0
\end{align*}
\]

\[
\begin{align*}
&\sigma' = \sigma \cup \{u_E \mapsto \{v_i \mapsto d_i \mid 1 \leq i \leq n\}, \quad \epsilon' = \epsilon \oplus (u, u_E)
\end{align*}
\]

\[
\begin{align*}
&\sigma' = \sigma' \mapsto u, st \mapsto s', \, stable \mapsto b \\
&\epsilon' = \epsilon \oplus (u, u_E)
\end{align*}
\]

\[
\begin{align*}
&\forall v \in V \forall u \in \text{dom}(\sigma) : \sigma'(u)(v) \neq \sigma(u)(v) \implies v \in V_{env}
\end{align*}
\]

\[
\begin{align*}
&\epsilon' = \epsilon
\end{align*}
\]

(iv) **Environment Interaction**

Assume that a set \(\mathcal{E}_{env} \subseteq \mathcal{E} \) is designated as environment events and a set of attributes \(V_{env} \subseteq V \) is designated as input attributes.

Then

\[
\begin{align*}
&\left(\sigma, \epsilon\right) \xrightarrow{\text{cons, Snd}} \left(\sigma', \epsilon'\right)
\end{align*}
\]

if either (!)

- an environment event \(E \in \mathcal{E}_{env} \) is spontaneously sent to an alive object \(u \in \text{dom}(\sigma) \), i.e.

\[
\begin{align*}
&\sigma' = \sigma \cup \{u_E \mapsto \{v_i \mapsto d_i \mid 1 \leq i \leq n\}, \quad \epsilon' = \epsilon \oplus (u, u_E)
\end{align*}
\]

where \(u_E \notin \text{dom}(\sigma) \) and \(\text{atr}(E) = \{v_1, \ldots, v_n\} \).

- Sending of the event is observed, i.e. \(\text{cons} = \emptyset, \, \text{Snd} = \{u_E,\} \).

or

- Values of input attributes change freely in alive objects, i.e.

\[
\begin{align*}
&\forall v \in V \forall u \in \text{dom}(\sigma) : \sigma'(u)(v) \neq \sigma(u)(v) \implies v \in V_{env}
\end{align*}
\]

and no objects appear or disappear, i.e. \(\text{dom}(\sigma') = \text{dom}(\sigma) \).

- \(\epsilon' = \epsilon \).
(v) Error Conditions

if, in (i), (ii), or (iii),

- \(I[expr] \) is not defined for \(\sigma \) and \(u \), or
- \(t_{act}[u] \) is not defined for \((\sigma, \varepsilon) \),

and

- \(cons = \emptyset \), and \(Snd = \emptyset \).

Examples:

- \(E[x/0]/act \) to \(82 \)
- \(E[true]/act \) to \(83 \)
- \(E[expr]/x := x/0 \) to \(82 \)
Example: Error Condition

\[[x > 0]/x := x - 1; n! J \]

\[\langle \langle \text{signal}, \text{env} \rangle \rangle H \]

\[\langle \langle \text{signal} \rangle \rangle G, J \]

\[C \]

\[x, z: \text{Int} \quad y: \text{Int} \quad \langle \langle \text{env} \rangle \rangle \]

\[\sigma: \]

\[x = 0, z = 0, y = 27 \]

\[\text{st} = s_2 \]

\[\text{stable} = 1 \]

\[\varepsilon: \]

\[H \text{ for } e \]

- \(I[\text{expr}] \) not defined for \(\sigma \) and \(u \), or
- \(I[\text{act}] \) is not defined for \((\sigma, \varepsilon)\)
- \(\text{cons} = \emptyset \)
- \(\text{Snd} = \emptyset \)

Example Revisited

\[C \]

\[D \]

\[\text{Nr.} \quad 1_C: C \quad 5_D: D \quad \varepsilon \quad \text{rule} \]

<table>
<thead>
<tr>
<th>Nr.</th>
<th>(x)</th>
<th>(n)</th>
<th>(\text{st})</th>
<th>(\text{stable})</th>
<th>(p)</th>
<th>(\text{st})</th>
<th>(\text{stable})</th>
<th>(\varepsilon)</th>
<th>rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>27</td>
<td>5_D</td>
<td>(s_1)</td>
<td>1</td>
<td>1_C</td>
<td>(s_1)</td>
<td>1</td>
<td>(3_F, 1_C), (2_E, 1_C)</td>
<td>(C)</td>
</tr>
<tr>
<td>1</td>
<td>(s_1)</td>
<td>(s_2)</td>
<td>1</td>
<td>(s_1)</td>
<td>1</td>
<td>(2_E, 1_C)</td>
<td>(C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(s_2)</td>
<td>(s_3)</td>
<td>0</td>
<td>(s_1)</td>
<td>1</td>
<td>(2_F, s_2)</td>
<td>(C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(s_3)</td>
<td>(s_4)</td>
<td>1</td>
<td>(s_1)</td>
<td>1</td>
<td>(3_F, s_3)</td>
<td>(G_F)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(s_3)</td>
<td>(s_5)</td>
<td>0</td>
<td>(s_1)</td>
<td>0</td>
<td>-</td>
<td>(G_F)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(s_2)</td>
<td>(s_6)</td>
<td>0</td>
<td>(s_1)</td>
<td>0</td>
<td>-</td>
<td>(G_F)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
