Contents & Goals

Last Lecture:
• Transitions by Rule (i) to (v).

This Lecture:
• Educational Objectives:
 • What is a step / run-to-completion step?
 • What is divergence in the context of UML models?
 • How to define what happens at "system / model startup"?
 • What are roles of OCL constraints in behavioural models?
 • Is this UML model consistent with that OCL constraint?
 • What do the actions create / destroy do? What are the options and our choices (why)?

Content:
• Step / RTC-Step revisited, Divergence
• Initial states
• Missing pieces: create / destroy transformer
• A closer look onto code generation
• Maybe: hierarchical state machines

Notions of Steps: The Step

Note: we call one evolution \((\sigma, \varepsilon)\) \((\text{cons}, \text{Snd})\) \(-\rightarrow\) \((\sigma', \varepsilon')\) a step.

Thus in our setting, a step directly corresponds to one object (namely \(u\)) taking a single transition between regular states.

(We will extend the concept of "single transition" for hierarchical state machines.)

That is: We're going for an interleaving semantics without true parallelism.

Notions of Steps: The Run-to-Completion Step

What is a run-to-completion step...

• Intuition: a maximal sequence of steps of one object, where the first step is a dispatch step, all later steps are continue steps, and the last step establishes stability (or object disappears).

Note: while one step corresponds to one transition in the state machine, a run-to-completion step is in general not syntactically definable:
one transition may be taken multiple times during an RTC-step.

Example:
\[
\begin{align*}
 s_1 &\rightarrow E [x > 0] / \sigma_0 : C x = 2 \\
 s_2 &\rightarrow E [x > 0] / \epsilon_0 : E \text{ for } u
\end{align*}
\]

Proposal: Let \((\sigma_0, \epsilon_0)\) \((\text{cons}_0, \text{Snd}_0)\) \(-\rightarrow\) \(u_0\).

. . . \((\text{cons}_{n-1}, \text{Snd}_{n-1})\) \(-\rightarrow\) \(u_{n-1}\) \((\sigma_n, \epsilon_n))\), \(n > 0\),

be a finite (!), non-empty, maximal, consecutive sequence such that

• \((\text{cons}_0, \text{Snd}_0)\) indicates dispatching to \(u := u_0\) (by Rule (ii)), i.e. \(\text{cons} = \{ u_E \}\), \(u_E \in \text{dom}(\sigma_0) \cap \text{D}(E)\)

• if \(u\) becomes stable or disappears, then in the last step, i.e. \(\forall i > 0 \cdot (\sigma_i(u)(\text{stable}) = 1 \lor u / \in \text{dom}(\sigma_i)) = \Rightarrow i = n\)

Let \(0 = k_1 < k_2 < \cdot \cdot \cdot < k_N < n\) be the maximal sequence of indices such that \(u_{k_i} = u\) for \(1 \leq i \leq N\).

Then we call the sequence \((\sigma_0(u)) =) \sigma_{k_1}(u), \sigma_{k_2}(u), \ldots, \sigma_{k_N}(u), \sigma_n(u)\) a (!) run-to-completion step of \(u\) (from (local) configuration \(\sigma_0(u)\) to \(\sigma_n(u)\)).
We say, object u can diverge on reception σ_0 from (local) configuration $\sigma_0(u)$ if and only if there is an infinite, consecutive sequence $(\sigma_0, \epsilon_0)(\text{cons}_0, S_{\text{snd}}_0)\rightarrow u_0(\sigma_1, \epsilon_1)(\text{cons}_1, S_{\text{snd}}_1)\rightarrow \ldots$ where $u_i = u$ for infinitely many $i \in \mathbb{N}_0$ and $\sigma_i(u)(\text{stable}) = 0, i > 0$, i.e. u does not become stable again.

Run-to-Completion Step: Discussion.

Our definition of RTC-step takes a global and non-compositional view, that is:

- In the projection onto a single object we still see the effect of interaction with other objects.
- Adding classes (or even objects) may change the divergence behaviour of existing ones.
- Compositional would be: the behaviour of a set of objects is determined by the behaviour of each object “in isolation”. Our semantics and notion of RTC-step doesn’t have this (often desired) property.

Can we give (syntactical) criteria such that any (global) run-to-completion step is an interleaving of local ones?

Maybe:

- **Strict interfaces**.

 (Proof left as exercise...)

 - *(A)* Refer to private features only via “self”.
 - *(B)* Let objects only communicate by events, i.e. don’t let them modify each other’s local state via links at all.

Putting It All Together

Recall: a labelled transition system is (S, A, \rightarrow, S_0). We have:

- S: system configurations (σ, ϵ)
- \rightarrow: labelled transition relation $(\sigma, \epsilon)\rightarrow u(\sigma', \epsilon')$.

Wanted: initial states S_0.

Proposal: Require a (finite) set of object diagrams OD as part of a UML model (C_D, S_M, OD). And set $S_0 = \{ (\sigma, \epsilon) | \sigma \in G^{-1}(OD), OD \in OD, \epsilon = \text{empty} \}$.

Other Approach: (used by Rhapsody tool) multiplicity of classes (plus initialisation code).

We can read that as an abbreviation for an object diagram.

Semantics of UML Model (So Far)

The semantics of the UML model $M = (C_D, S_M, OD)$ where:

- some classes in C_D are stereotyped as ‘signal’ (standard), some signals and attributes are stereotyped as ‘external’ (non-standard),
- there is a 1-to-1 relation between classes and state machines,
- OD is a set of object diagrams over C_D, is the transition system (S, A, \rightarrow, S_0) constructed on the previous slide(s).

The computations of M are the computations of (S, A, \rightarrow, S_0).
Let $M = (C, D, S, M, O, D)$ be a UML model.

We call M consistent iff, for each OCL constraint $expr \in \text{Inv}(C, D)$, $\sigma | = expr$ for each "reasonable point" (σ, ϵ) of computations of M.

(Cf. exercises and tutorial for discussion of "reasonable point").

Note: we could define $\text{Inv}(S, M)$ similar to $\text{Inv}(C, D)$.

Pragmatics:

• In UML-as-blueprint mode, if S, M doesn’t exist yet, then $M = (C, D, \emptyset, O, D)$ is typically asking the developer to provide S, M such that $M' = (C, D, S, M, O, D)$ is consistent.

If the developer makes a mistake, then M' is inconsistent.

• Not common: if S, M is given, then constraints are also considered when choosing transitions in the RTC-algorithm. In other words: even in presence of mistakes, the S, M never move to inconsistent configurations.

Transformer: Create

abstract syntax concrete syntax

create($C, expr, v$)

intuitive semantics

Create an object of class C and assign it to attribute v of the object denoted by expression $expr$.

well-typedness $expr: T \rightarrow D, v \in \text{atr}(D)$, $\text{atr}(C) = \{\langle v_1: T_1, expr_0 \rangle | 1 \leq i \leq n\}$

semantics . . . observables . . . (error) conditions $I/llbracket expr/rrbracket(\sigma, \beta)$ not defined.

• We use an "and assign"-action for simplicity — it doesn’t add or remove expressive power, but moving creation to the expression language raises all kinds of other problems since then expressions would need to modify the system state.

• Also for simplicity: no parameters to construction (\sim parameters of constructor).

Adding them is straightforward (but somewhat tedious).

How To Choose New Identities?

• Re-use: choose any identity that is not alive now, i.e. not in $\text{dom}(\sigma)$.

• Doesn’t depend on history.

• May "undangle" dangling references — may happen on some platforms.

• Fresh: choose any identity that has not been alive ever, i.e. not in $\text{dom}(\sigma)$ and any predecessor in current run.

• Depends on history.

• Dangling references remain dangling — could mask "dirty" effects of platform.
Valid proposal for simple analysis: monotone frame semantics, no destruction at all. But provide garbage collection — and models shall (in general) be correct without assumptions. This is in line with "expect the worst", because there are target platforms which don't destroy x, u or remove σ alone? (garbage collection)

$\sigma, \beta \vdash [I] = [I]$, u may have been the last one linking to object $C \in$ observables

$\sigma \epsilon ''$ and $\sigma, \beta \vdash [I] = [I]$, u may still refer to it via association

Assume object $\sigma, \beta \vdash [I] = [I]$, u may still refer to it via association

Create an object of class $\sigma, \beta \vdash [I] = [I], u$ create

Destroy the object denoted by expression $\sigma, \beta \vdash [I] = [I], u$ destroy

Transformer: Create
UML distinguishes the following kinds of states:

- **Simple States**
 - **Entry**
 - **Do**
 - **Exit**

- **Composite States**
 - **AND**
 - **OR**

- **Pseudo-States**
 - **Initial**
 - **Terminate**

- **References**
 - **(Shallow) History**
 - **Deep History**
 - **Fork/Join**, **Junction**, **Choice**
 - **Entry Point**
 - **Exit Point**

References: