Contents & Goals

Last Lecture:
- step, RTC-step, divergence
- initial state, UML model semantics (so far)
- create, destroy actions

This Lecture:
- Educational Objectives: Capabilities for following tasks/questions.
 - What is simple state, OR-state, AND-state?
 - What is a legal state configuration?
 - What is a legal transition?
 - How is enabledness of transitions defined for hierarchical state machines?

Content:
- Legal state configurations
- Legal transitions
- Rules (i) to (v) for hierarchical state machines
Hierarchical State-Machines

The Full Story

UML distinguishes the following kinds of states:

<table>
<thead>
<tr>
<th>Kind of State</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple State</td>
<td>![Simple State Diagram]</td>
</tr>
<tr>
<td>Final State</td>
<td>![Final State Diagram]</td>
</tr>
<tr>
<td>Composite State</td>
<td>![Composite State Diagram]</td>
</tr>
<tr>
<td>OR</td>
<td>![OR Diagram]</td>
</tr>
<tr>
<td>AND</td>
<td>![AND Diagram]</td>
</tr>
<tr>
<td>Pseudo-State</td>
<td>![Pseudo-State Diagram]</td>
</tr>
<tr>
<td>Submachine State</td>
<td>![Submachine State Diagram]</td>
</tr>
</tbody>
</table>
Representing All Kinds of States

- Until now: (S, s_0, \to), $s_0 \in S, \to \subseteq S \times (\mathcal{E} \cup \{\bot\}) \times \text{Expr}_\mathcal{A} \times \text{Act}_\mathcal{A} \times S$

- From now on: (hierarchical) state machines $(S, \text{kind}, \text{region}, \to, \psi, \text{annot})$

where

- $S \supseteq \{\text{top}\}$ is a finite set of states (as before).
- $\text{kind} : S \to \{\text{st, init, fin, shist, dhist, fork, join, junc, choi, ent, exi, term}\}$ is a function which labels states with their kind, (new)
- $\text{region} : S \to 2^{2^S}$ is a function which characterises the regions of a state, (new)
- \to is a set of transitions, (changed)
- $\psi : (\to)^{-1} \times 2^S \times 2^S$ is an incidence function, and (new)
- $\text{annot} : (\to)^{-1} \to (\mathcal{E} \cup \{\bot\}) \times \text{Expr}_\mathcal{A} \times \text{Act}_\mathcal{A}$ provides an annotation for each transition. (new)

(s_0 is then redundant --- replaced by proper state (!) of kind 'init'.)
From UML to Hierarchical State Machine: By Example

Table

<table>
<thead>
<tr>
<th>Type</th>
<th>Example</th>
<th>(S, \text{kind}, \text{region}, \rightarrow, \psi, \text{annot})</th>
</tr>
</thead>
<tbody>
<tr>
<td>simple state</td>
<td></td>
<td>(s \in S, s_k, \emptyset)</td>
</tr>
<tr>
<td>final state</td>
<td></td>
<td>(s \in S, s_f, \emptyset)</td>
</tr>
<tr>
<td>composite state</td>
<td></td>
<td>(s \in S, s_{OR}, {s_1, s_2, s_3})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(s \in S, s_{AND}, {s_1, s_2, s_3}, {s_2, s_3})</td>
</tr>
<tr>
<td>submachine state</td>
<td>(later)</td>
<td>(s \in S, s_{sub}, \emptyset)</td>
</tr>
<tr>
<td>pseudo-state</td>
<td></td>
<td>(s \in S, s_{ps}, \emptyset)</td>
</tr>
</tbody>
</table>

\((s, \text{kind}(s)) \) for short

From UML to Hierarchical State Machine: By Example

... denotes \((S, \text{kind}, \text{region}, \rightarrow, \psi, \text{annot}) = \)

\[
\left\{ (s, \text{kind}), (s, \text{region}), (s, \rightarrow), (s, \psi), (s, \text{annot}) \right\}
\]

\[
\left\{ \{s_1, s_2, s_3\}, \{s_2, s_3\}, \{s_2, s_3\}, \{s_2, s_3\}, \{s_2, s_3\} \right\}
\]

\[
\left\{ \{s_1, s_2, s_3\}, \{s_2, s_3\}, \{s_2, s_3\}, \{s_2, s_3\}, \{s_2, s_3\} \right\}
\]

\[
\left\{ \{s_1, s_2, s_3\}, \{s_2, s_3\}, \{s_2, s_3\}, \{s_2, s_3\}, \{s_2, s_3\} \right\}
\]
Well-Formedness: Regions

- Final and pseudo states must not comprise regions.
- States $s \in S$ with $\text{kind}(s) = \text{st}$ may comprise regions.

Naming conventions can be defined based on regions:
- No region: simple state.
- One region: OR-state.
- Two or more regions: AND-state.
- Each state (except for top) must lie in exactly one region.
- Note: The region function induces a child function.
- Note: Diagramming tools (like Rhapsody) can ensure well-formedness.

Well-Formedness Continued

- Each non-empty region has exactly one initial pseudo-state and at least one transition from there to a state of the region, i.e.
 - for each $s \in S$ with $\text{region}(s) = \{S_1, \ldots, S_n\}$,
 - for each $1 \leq i \leq n$, there exists exactly one initial pseudo-state $(s_i^i, \text{init}) \in S_i$ and at least one transition $t \in \rightarrow$ with s_i^i as source,
- Initial pseudo-states are not targets of transitions.

For simplicity:
- The target of a transition with initial pseudo-state source in S_i is (also) in S_i.
- Transitions from initial pseudo-states have no trigger or guard, i.e. $t \in \rightarrow$ from s with $\text{kind}(s) = \text{st}$ implies $\text{annot}(t) = (_ \text{true}, \text{act})$.
- Final states are not sources of transitions.
• Composite states.
• Initial pseudostate, final state.
• Entry/do/exit actions, internal transitions.
• History and other pseudostates, the rest.

Composite States
• In a sense, composite states are about **abbreviation**, **structuring**, and **avoiding redundancy**.

• **Idea**: in Tron, for the Player’s Statemachine, instead of

- **OR-state**:

 \[n \rightarrow w \rightarrow e \rightarrow X/ \rightarrow resigned \]

- **AND-state**:

 \[n \rightarrow w \rightarrow e \rightarrow F/ \rightarrow fastN \]

 \[n \rightarrow F/ \rightarrow fast \]

 \[n \rightarrow F/ \rightarrow slow \]

 \[n \rightarrow F/ \rightarrow fast \]

and instead of

- **write**

 \[n \rightarrow w \rightarrow e \rightarrow X/ \rightarrow resigned \]

- **write**

 \[n \rightarrow w \rightarrow e \rightarrow F/ \rightarrow fast \]

 \[n \rightarrow F/ \rightarrow fast \]

 \[n \rightarrow F/ \rightarrow slow \]

 \[n \rightarrow F/ \rightarrow fast \]
Composite States: Blessing or Curse?

Plan:
States:
- what is the type of the implicit s attribute?
- what are legal state configurations?

Transitions:
- what are legal / well-formed transitions?
- when is a legal transition enabled?
- which effects do transitions have?

Syntax: Fork/Join

- For simplicity, we consider transitions with (possibly) multiple sources and targets, i.e.
 \[\psi : (\rightarrow) \rightarrow (2^S \setminus \emptyset) \times (2^S \setminus \emptyset) \]

- For instance,

\[
\begin{align*}
|s_1| & \rightarrow |s_2| \rightarrow |s_3| \rightarrow |s_4| \\
tr[gd]/act & \\
\end{align*}
\]

translates to

\[
\begin{aligned}
(S, \text{kind}, \text{region}, \{t_1\}, \{t_1 \mapsto \{(s_2, s_3), (s_5, s_6)\} \}, \{t_1 \mapsto (tr, gd, act)\})
\end{aligned}
\]

- Naming convention: $\psi(t) = (source(t), target(t))$.

...
State Configuration

- The type of (implicit attribute) \(st \) is from now on a set of states, i.e.
 \[\mathcal{P}(S_{MC}) = 2^S \]
- A set \(S_1 \subseteq S \) is called (legal) state configurations if and only if
 - \(top \in S_1 \), and
 - with each state \(s \in S_1 \) that has a non-empty region \(\emptyset \neq R \in \text{region}(s) \),
 exactly one (non pseudo-state) child of \(s \) is in \(S_1 \), i.e.
 \[\left| \{s \in R \mid \text{kind}(s) \in \{st, fin\} \} \right| = 1. \]

A Partial Order on States

The substate- (or child-) relation induces a partial order on states:
- \(top \leq s \), for all \(s \in S \),
- \(s \leq s' \), for all \(s' \in \text{child}(s) \),
- transitive, reflexive, antisymmetric,
- \(s' \leq s \) and \(s'' \leq s \) implies \(s' \leq s'' \) or \(s'' \leq s' \).

\[
\begin{align*}
\{ \text{n, not, o} \} & \quad \text{not OK} \\
\{ \text{n} \} & \quad \text{not OK}
\end{align*}
\]

\[
\begin{align*}
\{ \text{n, top} \} & \quad \text{not OK} \\
\{ \text{top, ingame, n, top} \} & \quad \text{top}
\end{align*}
\]
Least Common Ancestor

- The least common ancestor is the function $\text{lea} : 2^S \to S$ such that
 - The states in S_1 are (transitive) children of $\text{lea}(S_1)$, i.e.
 $$\text{lea}(S_1) \leq s,$$
 for all $s \in S_1 \subseteq S$,
 - $\text{lea}(S_1)$ is minimal, i.e. if $\hat{s} \leq s$ for all $s \in S_1$, then $\hat{s} \leq \text{lea}(S_1)$
 - Note: $\text{lea}(S_1)$ exists for all $S_1 \subseteq S$ (last candidate: top).

Orthogonal States

- Two states $s_1, s_2 \in S$ are called orthogonal, denoted $s_1 \perp s_2$, if and only if
 - they are unordered, i.e. $s_1 \not\leq s_2$ and $s_2 \not\leq s_1$, and
 - they live in different regions of an AND-state, i.e.
 $$\exists s, \text{region}(s) = \{S_1, \ldots, S_n\}, 1 \leq i \neq j \leq n : s_1 \in \text{child}(S_i) \land s_2 \in \text{child}(S_j),$$
Consistent State Sets

- A set of states \(S_1 \subseteq S \) is called **consistent**, denoted by \(\downarrow S_1 \), if and only if for each \(s, s' \in S_1 \),
 - \(s \leq s' \),
 - \(s' \leq s \), or
 - \(s \perp s' \).

Legal Transitions

A hierarchical state-machine \((S, \text{kind}, \text{region}, \to, \psi, \text{annot})\) is called **well-formed** if and only if for all transitions \(t \in \to \),
- source and destination are consistent, i.e. \(\downarrow \text{source}(t) \) and \(\downarrow \text{target}(t) \),
- source (and destination) states are pairwise orthogonal, i.e.
 - for all \(s, s' \in \text{source}(t) \) (\(\in \text{target}(t) \)), \(s \perp s' \),
- the top state is neither source nor destination, i.e.
 - \(\text{top} \notin \text{source}(t) \cup \text{source}(t) \).

Recall: final states are not sources of transitions.

Example: final states are not sources of transitions.
The Depth of States

- \(\text{depth}(\text{top}) = 0 \),
- \(\text{depth}(s') = \text{depth}(s) + 1 \), for all \(s' \in \text{child}(s) \)

Example:

Enabledness in Hierarchical State-Machines

- The scope ("set of possibly affected states") of a transition \(t \) is the least common region (!) of \(\text{source}(t) \cup \text{target}(t) \).

- Two transitions \(t_1, t_2 \) are called consistent if and only if their scopes are orthogonal (i.e. states in scopes pairwise orthogonal).

- The priority of transition \(t \) is the depth of its innermost source state, i.e.
 \[
 \text{prio}(t) := \max \{ \text{depth}(s) \mid s \in \text{source}(t) \}
 \]

- A set of transitions \(T \subseteq \rightarrow \) is enabled in an object \(u \) if and only if
 - \(T \) is consistent,
 - \(T \) is maximal wrt. priority (all transitions in \(T \) have the same highest priority),
 - all transitions in \(T \) share the same trigger,
 - for all \(t \in T \), the source states are active, i.e.
 \[
 \text{source}(t) \subseteq \sigma(u)(\text{st}) (\subseteq S).
 \]
 - all guards are satisfied by \(\sigma(u) \).
Transitions in Hierarchical State-Machines

- Let T be a set of transitions enabled in u.

- Then $(\sigma, \varepsilon) \xrightarrow{(\text{cons, Snd})}{_u} (\sigma', \varepsilon')$ if

 - $\sigma'(u)(st)$ consists of the target states of T,
 i.e. for simple states the simple states themselves,
 for composite states the initial states,

 - $\sigma', \varepsilon', \text{cons}$, and Snd are the effect of firing each transition $t \in T$
 one by one, in any order, i.e. for each $t \in T$,

 - the exit action transformer (\rightarrow later) of all affected states, highest depth first,
 - the transformer of t,
 - the entry action transformer (\rightarrow later) of all affected states, lowest depth first.

\[\Rightarrow\text{ adjust Rules (ii), (iii), (v) accordingly.}\]

Initial and Final States
Initial Pseudostate

Principle:
- when entering a non-simple state,
- then go to the destination state of a transition with initial pseudo-state source,
- execute the action of the chosen initiation transition(s) **between** exit and entry actions (→ later).

Recall: For simplicity, we assume exactly one initiation transitions — could be more, choose non-deterministically.

Special case: the region of *top*.
- If class *C* has a state-machine, then "create-*C* transformer" is the concatenation of
 - the transformer of the "constructor" of *C* (here not introduced explicitly) and
 - a transformer corresponding to one initiation transition of the top region.

Final States

Observation: *u* never "survives" reaching a state (*s, fin*) with *s* ∈ child(*top*).
References
