Software Design, Modelling and Analysis in UML

Lecture 15: Hierarchical State Machines I

2016-01-14

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany
Contents & Goals

Last Lecture:
- step, RTC-step, divergence
- initial state, UML model semantics (so far)
- create, destroy actions

This Lecture:
- **Educational Objectives:** Capabilities for following tasks/questions.
 - What is simple state, OR-state, AND-state?
 - What is a legal state configuration?
 - What is a legal transition?
 - How is enabledness of transitions defined for hierarchical state machines?

- **Content:**
 - Legal state configurations
 - Legal transitions
 - Rules (i) to (v) for hierarchical state machines
Hierarchical State-Machines
UML distinguishes the following kinds of states:

<table>
<thead>
<tr>
<th>Category</th>
<th>Example</th>
<th>pseudo-state</th>
<th>example</th>
</tr>
</thead>
<tbody>
<tr>
<td>simple state</td>
<td></td>
<td>initial (shallow) history</td>
<td></td>
</tr>
<tr>
<td>final state</td>
<td></td>
<td>deep history</td>
<td></td>
</tr>
<tr>
<td>composite state</td>
<td></td>
<td>fork/join</td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td>junction, choice</td>
<td>, </td>
</tr>
<tr>
<td>AND</td>
<td></td>
<td>entry point</td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td>exit point</td>
<td></td>
</tr>
<tr>
<td>AND</td>
<td></td>
<td>terminate</td>
<td></td>
</tr>
<tr>
<td>submachine state</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **entry/act**: action entry
- **do/act**: action
- **exit/act**: action exit
Until now: \((S, s_0, \rightarrow) \), \(s_0 \in S, \rightarrow \subseteq S \times (\mathcal{E} \cup \{_\}) \times \text{Expr } \mathcal{Q} \times \text{Act } \mathcal{Q} \times S \)

NEW: \((\{s_1, s_2, s_3, s_4, s, _\}, \{t_7, t_2\}, \{t_4 \mapsto (\{s_7\}, \{s_2, s_3\}), \ldots\}) \)

\(s_1 \rightarrow s_2 \)

\(s_1 \)
Representing All Kinds of States

- Until now:

$$(S, s_0, \rightarrow), \quad s_0 \in S, \rightarrow \subseteq S \times (\mathcal{E} \cup \{_\}) \times \text{Expr}_\mathcal{G} \times \text{Act}_\mathcal{G} \times S$$

- From now on: (hierarchical) state machines

$$(S, \text{kind}, \text{region}, \rightarrow, \psi, \text{annot})$$

where

- $S \supseteq \{\text{top}\}$ is a finite set of states
 - (as before),

- $\text{kind} : S \to \{\text{st}, \text{init}, \text{fin}, \text{shist}, \text{dhist}, \text{fork}, \text{join}, \text{junc}, \text{choi}, \text{ent}, \text{exi}, \text{term}\}$ is a function which labels states with their kind,
 - (new)

- $\text{region} : S \to 2^S$ is a function which characterises the regions of a state,
 - (new)

- \rightarrow is a set of transitions,
 - (changed)

- $\psi : (\rightarrow) \to 2^S \times 2^S$ is an incidence function, and
 - (new)

- $\text{annot} : (\rightarrow) \to (\mathcal{E} \cup \{_\}) \times \text{Expr}_\mathcal{G} \times \text{Act}_\mathcal{G}$ provides an annotation for each transition.
 - (new)

(s_0 is then redundant — replaced by proper state (!) of kind ‘init’.)

From UML to Hierarchical State Machine: By Example

\[(S, \text{kind}, \text{region}, \rightarrow, \psi, \text{annot})\]

<table>
<thead>
<tr>
<th>Example</th>
<th>∈ (S)</th>
<th>kind</th>
<th>region</th>
</tr>
</thead>
<tbody>
<tr>
<td>simple state</td>
<td>(s)</td>
<td>(\text{st})</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>final state</td>
<td>(q)</td>
<td>(\text{fin})</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>composite state</td>
<td>(s)</td>
<td>(\text{st})</td>
<td>({{s_1, s_2, s_3}})</td>
</tr>
</tbody>
</table>

submachine state

\(s, \text{kind}(s)\) for short

pseudo-state

\(\rho, \ldots\)
\[
\text{... denotes } (S, \text{kind}, \text{region}, \rightarrow, \psi, \text{annot}) = \\
\left(\left\{ (q, \text{init}), (s, \text{st}), (p, \text{fin}), (\text{top}, \text{st}) \right\} \right), \\
\left(S, \text{kind} \rightarrow \left\{ (q, \text{init}), (s, \text{st}), (p, \text{fin}), (\text{top}, \text{st}) \right\} \right), \\
\left(\text{region} \rightarrow \left\{ (t_0, t_2), (t_0 \rightarrow (s_1, s_3), t_2 \rightarrow (s_5, s_3)) \right\} \right), \\
\left(\psi \rightarrow \left\{ (t_0 \rightarrow (\text{st}, \text{gd}, \text{act}), t_2 \rightarrow \text{annot}) \right\} \right), \\
\left(\text{annot} \rightarrow \left\{ \right\} \right)
\]
Well-Formedness: Regions

<table>
<thead>
<tr>
<th></th>
<th>$\in S$</th>
<th>kind</th>
<th>region $\subseteq 2^S$, $S_i \subseteq S$</th>
<th>child $\subseteq S$</th>
</tr>
</thead>
<tbody>
<tr>
<td>final state</td>
<td>s</td>
<td>fin</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>pseudo-state</td>
<td>s</td>
<td>init</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>simple state</td>
<td>s</td>
<td>st</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>composite state</td>
<td>s</td>
<td>st</td>
<td>${S_1, \ldots, S_n}, n \geq 1$</td>
<td>$S_1 \cup \cdots \cup S_n$</td>
</tr>
<tr>
<td>implicit top state</td>
<td>top</td>
<td>st</td>
<td>${S_1}$</td>
<td>S_1</td>
</tr>
</tbody>
</table>

- Final and pseudo states **must not comprise** regions.
- States $s \in S$ with $\text{kind}(s) = \text{st}$ **may comprise** regions.

Naming conventions can be defined based on regions:

- No region: simple state.
- One region: OR-state.
- Two or more regions: AND-state.

- Each state (except for top) **must** lie in exactly one region.

Note: The region function induces a child function.

Note: Diagramming tools (like Rhapsody) can ensure well-formedness.
Each non-empty region has **exactly one** initial pseudo-state and at least one transition from there to a state of the region, i.e.

- for each \(s \in S \) with \(\text{region}(s) = \{ S_1, \ldots, S_n \} \),
- for each \(1 \leq i \leq n \), there exists exactly one initial pseudo-state \((s_i^1, \text{init}) \in S_i\) and at least one transition \(t \in \rightarrow \) with \(s_i^1 \) as source,

Initial pseudo-states are not targets of transitions.

For simplicity:

- The target of a transition with initial pseudo-state source in \(S_i \) is (also) in \(S_i \).
- Transitions from initial pseudo-states have no trigger or guard, i.e. \(t \in \rightarrow \) from \(s \) with \(\text{kind}(s) = \text{st} \) implies \(\text{annot}(t) = (_, \text{true}, \text{act}) \).
- Final states are not sources of transitions.
- Composite states.
- Initial pseudostate, final state.
- Entry/do/exit actions, internal transitions.
- History and other pseudostates, the rest.
Composite States
In a sense, composite states are about abbreviation, structuring, and avoiding redundancy.

Idea: in Tron, for the Player’s Statemachine, instead of
and instead of

![Diagram of Composite States]

write

AND-state:

- **slow**
- **F/**
- **fast**
- **F/**
Plan:

States:
- what is the type of the implicit st attribute?
- what are legal state configurations?

Transitions:
- what are legal / well-formed transitions?
- when is a legal transition enabled?
- which effects do transitions have?

- what may happen on E?
- what may happen on E, F?
- can E, G kill the object?
- ...

Composite States: Blessing or Curse?

![Diagram of composite states with nodes $s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8$ and transitions E, F, G.]
Syntax: Fork/Join

- For simplicity, we consider transitions with (possibly) multiple sources and targets, i.e.

\[\psi : (\rightarrow) \rightarrow (2^S \setminus \emptyset) \times (2^S \setminus \emptyset) \]

- For instance,

\[
\begin{align*}
\psi(t_1) &= (source(t_1), target(t_1)) \\
(S, \text{kind}, \text{region}, \{t_1\}, \{t_1 \mapsto (\{s_2, s_3\}, \{s_5, s_6\})\}, \{t_1 \mapsto (tr, gd, act)\}) \\
&\rightarrow \psi \\
\text{annot}
\end{align*}
\]

- Naming convention: \(\psi(t) = (source(t), target(t)) \).
State Configuration

- The type of (implicit attribute) \(st \) is from now on a set of states, i.e.
 \[\mathcal{D}(S_{MC}) = 2^S \]

- A set \(S_1 \subseteq S \) is called (legal) state configurations if and only if
 - \(\text{top} \in S_1 \), and
 - with each state \(s \in S_1 \) that has a non-empty region \(\emptyset \neq R \in \text{region}(s) \),
 exactly one (non pseudo-state) child of \(s \) is in \(S_1 \), i.e.
 \[|\{ s \in R \mid \text{kind}(s) \in \{ st, fin \}\} \cap S_1| = 1. \]

\[\{ n, fin \} \]
\[\text{not ok} \]

\[\{ n \} \]
\[\text{not ok} \]
The substate- (or child-) relation induces a partial order on states:

- \(\text{top} \leq s \), for all \(s \in S \),
- \(s \leq s' \), for all \(s' \in \text{child}(s) \),
- transitive, reflexive, antisymmetric,
- \(s' \leq s \) and \(s'' \leq s \) implies \(s' \leq s'' \) or \(s'' \leq s' \).
The least common ancestor is the function \(\text{lca} : 2^S \to S \) such that

- The states in \(S_1 \) are (transitive) children of \(\text{lca}(S_1) \), i.e.

\[
\text{lca}(S_1) \leq s, \text{ for all } s \in S_1 \subseteq S,
\]

- \(\text{lca}(S_1) \) is minimal, i.e. if \(\hat{s} \leq s \) for all \(s \in S_1 \), then \(\hat{s} \leq \text{lca}(S_1) \)

- Note: \(\text{lca}(S_1) \) exists for all \(S_1 \subseteq S \) (last candidate: \(\text{top} \)).
Orthogonal States

- Two states \(s_1, s_2 \in S \) are called **orthogonal**, denoted \(s_1 \perp s_2 \), if and only if
 - they are unordered, i.e. \(s_1 \not\leq s_2 \) and \(s_2 \not\leq s_1 \), and
 - they live in different regions of an AND-state, i.e.

\[
\exists s, \text{region}(s) = \{S_1, \ldots, S_n\}, 1 \leq i \neq j \leq n : s_1 \in \text{child}(S_i) \land s_2 \in \text{child}(S_j),
\]

\[
\begin{align*}
&\quad s_1 \\
&\quad s_2 \\
&\quad s_3 \\
\end{align*}
\]

\[
\begin{align*}
&\quad s_1' \\
&\quad s_2' \\
&\quad s_3' \\
\end{align*}
\]

\[
\begin{align*}
&\quad s_1'' \\
&\quad s_2'' \\
&\quad s_3'' \\
\end{align*}
\]
A set of states $S_1 \subseteq S$ is called **consistent**, denoted by $\downarrow S_1$, if and only if for each $s, s' \in S_1$,

- $s \leq s'$,
- $s' \leq s$, or
- $s \perp s'$.
A hierarchical state-machine \((S, \text{kind}, \text{region}, \rightarrow, \psi, \text{annot})\) is called \textbf{well-formed} if and only if for all transitions \(t \in \rightarrow,\)

- source and destination are consistent, i.e. \(\downarrow \text{source}(t)\) and \(\downarrow \text{target}(t),\)
- source (and destination) states are pairwise orthogonal, i.e.
 - \(\text{forall } s, s' \in \text{source}(t) (\in \text{target}(t)), s \perp s',\)
- the top state is neither source nor destination, i.e.
 - \(\text{top} \notin \text{source}(t) \cup \text{source}(t).\)

\textbf{Recall}: final states are not sources of transitions.

\textbf{Example}:

![Diagram showing a well-formed hierarchical state-machine with states and transitions labeled with conditions and regions.](image)
The Depth of States

- \(\text{depth}(\text{top}) = 0 \),
- \(\text{depth}(s') = \text{depth}(s) + 1 \), for all \(s' \in \text{child}(s) \)

Example:
Enabledness in Hierarchical State-Machines

• The **scope** ("set of possibly affected states") of a transition t is the **least common region** (!) of

$$source(t) \cup target(t).$$

• Two transitions t_1, t_2 are called **consistent** if and only if their scopes are orthogonal (i.e. states in scopes pairwise orthogonal).

• The **priority** of transition t is the depth of its innermost source state, i.e.

$$prio(t) := \max\{\text{depth}(s) \mid s \in source(t)\}$$

• A set of transitions $T \subseteq \rightarrow$ is **enabled** in an object u if and only if

 • T is consistent,

 • T is maximal wrt. priority (all transitions in T have the same, highest priority),

 • all transitions in T share the same trigger,

 • for all $t \in T$, the source states are active, i.e.

 $$source(t) \subseteq \sigma(u)(st) \subseteq S,$$

 • all guards are satisfied by $\sigma(u)$.

• Let T be a set of transitions enabled in u.

• Then $\left(\sigma, \varepsilon\right) \xrightarrow{\left(\text{cons, Snd}\right)} \left(\sigma', \varepsilon'\right)$ if

$\sigma'(u)(st)$ consists of the target states of T,

i.e. for simple states the simple states themselves, for composite states the initial states,

σ', ε', cons, and Snd are the effect of firing each transition $t \in T$ one by one, in any order, i.e. for each $t \in T$,

• the exit action transformer (\rightarrow later) of all affected states, highest depth first,
• the transformer of t,
• the entry action transformer (\rightarrow later) of all affected states, lowest depth first.

\leadsto adjust Rules (ii), (iii), (v) accordingly.
Initial and Final States
Initial Pseudostate

Principle:
- when entering a non-simple state,
- then go to the destination state of a transition with initial pseudo-state source,
- execute the action of the chosen initiation transition(s) **between** exit and entry actions (→ later).

Recall: For simplicity, we assume exactly one initiation transitions — could be more, choose non-deterministically.

Special case: the region of *top*.
- If class C has a state-machine, then “create-C transformer” is the concatenation of
 - the transformer of the “constructor” of C (here not introduced explicitly) and
 - a transformer corresponding to one initiation transition of the top region.
Final States

- If \((\sigma, \varepsilon) \xrightarrow{\text{cons, Snd}} (\sigma', \varepsilon')\)
 and all simple states in \(st \in \sigma(u)(st)\) are \textbf{final}, i.e. \(\text{kind}(s) = \text{fin}\), then
 - stay \textbf{unstable} if there is a common parent of the simple states in \(\sigma(u)(st)\)
 which is source of a transition without trigger and satisfied guard,
 - otherwise \textbf{kill} \(u\).

\(\sim\) adjust Rules (i), (ii), (iii), and (v) accordingly.

\textbf{Observation}: \(u\) never “survives” reaching a state \((s, \text{fin})\) with \(s \in \text{child}(\text{top})\).

\textbf{Observation}:

\begin{align*}
 &s_1 & E/\text{act}_1 & s_2 & /\text{act}_2 & s_3
\end{align*}

\(\text{vs.}\)

\begin{align*}
 &s_1 & E/\text{act}_1 & s_2 & \text{DONE/act}_2 & s_3
\end{align*}
References
