Contents & Goals

Last Lecture:
- Firedset, Cut
- Automaton construction
- Transition annotations

This Lecture:

Educational Objectives:
- What's the Liskov Substitution Principle?
- What is late/early binding?
- What is the subset / uplink semantics of inheritance?
- What's the effect of inheritance on LSCs, State Machines, System States?

Content:
- Inheritance in UML: concrete syntax
- Liskov Substitution Principle — desired semantics
- Two approaches to obtain desired semantics

Inheritance: Syntax

Abstract Syntax

A signature with inheritance is a tuple

\[\mathcal{S} = (\mathcal{T}, \mathcal{C}, \mathcal{V}, \mathcal{a}, \mathcal{E}, \mathcal{F}, \mathcal{m}, \triangleright) \]

where
- \((\mathcal{T}, \mathcal{C}, \mathcal{V}, \mathcal{a}, \mathcal{E})\) is a signature with signals and behavioural features (\(\mathcal{F}/\mathcal{m}\) are methods, analogous to \(\mathcal{V}/\mathcal{a}\) attributes), and
- \(\triangleright \subseteq \mathcal{C} \times \mathcal{C} \cup \mathcal{E} \times \mathcal{E}\) is an acyclic generalisation relation, i.e. \(\mathcal{C} \triangleright \mathcal{D} \triangleright \mathcal{C}\) for no \(\mathcal{C} \in \mathcal{C}\).

In the following (for simplicity), we assume that all attribute (method) names are of the form \(\mathcal{C}::v\) and \(\mathcal{C}::f\) for some \(\mathcal{C} \in \mathcal{C} \cup \mathcal{E}\) ("fully qualified names").

Read \(\mathcal{C} \triangleright \mathcal{D}\) as:
- \(\mathcal{D}\) inherits from \(\mathcal{C}\),
- \(\mathcal{C}\) is a generalisation of \(\mathcal{D}\),
- \(\mathcal{D}\) is a specialisation of \(\mathcal{C}\),
- \(\mathcal{C}\) is a super-class of \(\mathcal{D}\),
- \(\mathcal{D}\) is a sub-class of \(\mathcal{C}\),
- . . .

Helper Notions

Definition.
- (i) For classes \(\mathcal{C}_0, \mathcal{C}_1, \mathcal{D} \in \mathcal{C}\), we say \(\mathcal{D}\) inherits from \(\mathcal{C}_0\) via \(\mathcal{C}_1\) if and only if there are \(\mathcal{C}_1, \ldots, \mathcal{C}_n, \mathcal{C}_1, \ldots, \mathcal{C}_m \in \mathcal{C}\), \(n, m \geq 0\), s.t. \(\mathcal{C}_0 \triangleright \mathcal{C}_1 \triangleright \ldots \triangleright \mathcal{C}_n \triangleright \mathcal{C}_1 \triangleright \ldots \triangleright \mathcal{C}_m \triangleright \mathcal{D}\).
- (ii) We use \(\triangleright^\ast\) to denote the reflexive, transitive closure of \(\triangleright\).

Inheritance: Concrete Syntax

Common graphical representations (of \(\triangleright = \{(\mathcal{C}, \mathcal{D}_1), (\mathcal{C}, \mathcal{D}_2)\}\)):

\[
\begin{align*}
\mathcal{C} & \triangleright \mathcal{D}_1 \\
\mathcal{C} & \triangleright \mathcal{D}_2
\end{align*}
\]

Mapping Concrete to Abstract Syntax by Example:

\[
\begin{align*}
\mathcal{C}_0 & \triangleright \mathcal{X} \\
\mathcal{C}_1 & \triangleright \mathcal{X}\end{align*}
\]

Note: we can have multiple inheritance.
Note: \(\emptyset = \triangleright \) implies \(C \not\triangleright D \) when \(C \) is disjoint, i.e., all attributes of \(C \) or all attributes of \(C \) and identities of instances of classes not (transitively) related by generalisation are changed without a client being able to tell the difference whenever an instance of the supertype was expected.

In other words: the old setting coincides with the special case of \(\emptyset = \triangleright \) \(C \).
Example: Let’s build an interesting feature.

Expression Normalisation

- Case I: $\sigma : x < D$ context (where σ is public)

or

- Case II: $\sigma : x < D$ context (where σ is not public)

In Case I, we require a unique biggest superclass C with σ, i.e., τ.

Recall (part of the) OCL syntax and typing (OCL Syntax and Typing).
Late Binding – 20 – 2016-02-04 – Slatebind –

19/30

What transformer applies in what situation?

(Early (compile time) binding.)

```c
f not overridden in D
C
f() : Int
D
C
0
someC
someD
```

What one could want is something different:

(Late binding.)

```c
f overridden in D
C
f() : Int
```

```c
D
f() : Int
```

```c
valueof
someC/someD
```

```c
someC -> f()
C
:: f()
```

```c
C
:: f()
u1
```

```c
someD -> f()
D
:: f()
```

```c
D
:: f()
u2
```

Late Binding in the Standard and Programming Languages

• In the standard,
 Section 11.3.10, "CallOperationAction":

 "Semantic Variation Points
 The mechanism for determining the method to be invoked as a result of
 a call operation is unspecified."

 (OMG, 2007, 247)

• In C++,
 • methods are by default "(early) compile time binding",
 • can be declared to be "late binding" by keyword "virtual",
 • the declaration applies to all inheriting classes.

• In Java,
 • methods are "late binding";
 • there are patterns to imitate the effect of "early binding"

Note: late binding typically applies only to
 methods, not to
 attributes.

(But: getter/setter methods have been invented recently.)

Behaviour (Inclusion Semantics)

• Non late-binding: by normalisation.
• Late-binding: Construct a method call transformer, which looks up the method transformer
 corresponding to the class we are an instance of.

Transformers (Domain Inclusion)

• Transformers also basically remain the same, e.g. [VL 12, p. 18]

 update(expr1, v, expr2) : (σ, ε) ↦→ (σ', ε)

 where
 σ' = σ[u↦→ σ(u)] [v↦→ I_{D}(\llbracket expr2 \rrbracket(σ))]

 — after normalisation, e.g. assume
 v qualified.

Inheritance and State-Machines: Example

⟨ ⟨signal, env⟩ ⟩

E

⟨ ⟨signal, env⟩ ⟩
F

s1
s2

•Es/SM

A

:s1
s2

•E/SM

D

C

A

D
n
0, 1

u1:
A

st = s1
stable = 0

u2:
D

st = s1
stable = 1

n
(ii) Dispatch

\[(\sigma, \epsilon) \xrightarrow{\text{cons}, \text{Snd}} u(\sigma', \epsilon') \]

if \(u \in \text{dom}(\sigma) \cap D(C) \land \exists u_E \in D(E) : u_E \in \text{ready}(\epsilon, u) \)

- \(u \) is stable and in state machine state \(s \), i.e.
 \[\sigma(u)(\text{stable}) = 1 \land \sigma(u)(\text{st}) = s \],

- a transition is enabled, i.e.
 \[\exists(s, F, \text{expr}, \text{act}, s') \in \rightarrow(SM_C) : F = E \land \llbracket \text{expr} \rrbracket(\tilde{\sigma}, u) = 1 \]

where \(\tilde{\sigma} = \sigma[u.\text{params} \mapsto u_E] \).

and

- \((\sigma', \epsilon') \) results from applying \(\text{tact} \) to \((\sigma, \epsilon) \) and removing \(u_E \) from the ether, i.e.
 \[(\sigma'', \epsilon') \in \text{tact}[u](\tilde{\sigma}, \epsilon \ominus u_E) \],

\[\sigma' = (\sigma''[u.\text{st} \mapsto s', u.\text{stable} \mapsto b, u.\text{params} \mapsto \emptyset] | D(C)\{u_E}\) \]

where \(b \) depends (see (i))

- Consumption of \(u_E \) and the side effects of the action are observed, i.e.
 \[\text{cons} = \{u_E\}, \text{Snd} = \text{Obs}_{\text{tact}}[u](\tilde{\sigma}, \epsilon \ominus u_E) \].

Inheritance and Interactions

\[\langle \langle \text{signal}, \text{env} \rangle \rangle E \langle \langle \text{signal}, \text{env} \rangle \rangle F \]

\[a : A \rightarrow C \]

\[n_0, 1 \]

Domain Inclusion vs. Uplink Semantics

Wanted: a formal representation of "if \(C \triangleright \ast D \) then \(D' \) is a \(C \)'", that is,

(i) \(D \) has the same attributes and behavioural features as \(C \), and

(ii) \(D \) objects (identities) can replace \(C \) objects.

Two approaches to semantics:

- Domain-inclusion Semantics (more theoretical)
- Uplink Semantics (more technical)

References

