Software Design, Modelling and Analysis in UML

Lecture 20: Inheritance

2016-02-04

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Last Lecture:
- Firedset, Cut
- Automaton construction
- Transition annotations

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
 - What’s the Liskov Substitution Principle?
 - What is late/early binding?
 - What is the subset / uplink semantics of inheritance?
 - What’s the effect of inheritance on LSCs, State Machines, System States?

- Content:
 - Inheritance in UML: concrete syntax
 - Liskov Substitution Principle — desired semantics
 - Two approaches to obtain desired semantics
Inheritance: Syntax
A **signature with inheritance** is a tuple

\[\mathcal{I} = (\mathcal{T}, \mathcal{C}, V, atr, \mathcal{E}, F, mth, \triangleleft) \]

where

- \((\mathcal{T}, \mathcal{C}, V, atr, \mathcal{E})\) is a signature with signals and behavioural features \((F/mth\) are methods, analogous to \(V/atr\) attributes), and
- \(\triangleleft \subseteq (\mathcal{C} \times \mathcal{C}) \cup (\mathcal{E} \times \mathcal{E})\)
 is an **acyclic generalisation** relation, i.e. \(C \triangleleft^+ C\) for no \(C \in \mathcal{C}\).

In the following (for simplicity), we assume that all attribute (method) names are of the form \(C::v\) and \(C::f\) for some \(C \in \mathcal{C} \cup \mathcal{E}\) ("fully qualified names").

Read \(C \triangleleft D\) as...

- \(D\) **inherits** from \(C\),
- \(C\) is a **generalisation** of \(D\),
- \(D\) is a **specialisation** of \(C\),
- \(C\) is a **super-class** of \(D\),
- \(D\) is a **sub-class** of \(C\),
- ...
Definition.

(i) For classes $C_0, C_1, D \in \mathcal{C}$, we say D inherits from C_0 via C_1 if and only if there are $C_0^1, \ldots, C_0^n, C_1^1, \ldots, C_1^m \in \mathcal{C}$, $n, m \geq 0$, s.t.

\[
C_0 \triangleleft C_0^1 \triangleleft \ldots \triangleleft C_0^n \triangleleft C_1 \triangleleft C_1^1 \triangleleft \ldots \triangleleft C_1^m \triangleleft D.
\]

(ii) We use \triangleleft^* to denote the reflexive, transitive closure of \triangleleft.

Inheritance: Concrete Syntax

Common graphical representations (of $\sqsubseteq \{(C, D_1), (C, D_2)\}$):

![Graphical representations of inheritance](image)

Mapping Concrete to Abstract Syntax by Example:

$\varphi = \{ (C_0, C_1), (C_1, C_2), (D, C_2) \}$

Note: we can have *multiple inheritance.*
Inheritance: Desired Semantics
There is a classical description of what one expects from sub-types, which is closely related to inheritance in object-oriented approaches:

The principle of type substitutability Liskov (1988); Liskov and Wing (1994) (Liskov Substitution Principle (LSP)).

“If for each object \(o_1 \) of type \(S \)
there is an object \(o_2 \) of type \(T \)
such that for all programs \(P \) defined in terms of \(T \)
the behavior of \(P \) is unchanged when \(o_1 \) is substituted for \(o_2 \)
then \(S \) is a subtype of \(T \).”

In other words: Fischer and Wehrheim (2000)

“An instance of the sub-type shall be usable
whenever an instance of the supertype was expected,
without a client being able to tell the difference.”
Subtyping: Example

Teacher: 0, 1

Student: 0, 1

- **Genius**
- **Polite**
- **Clown**

GenStWorker: workload : Int

SM

- **SM_{Teacher}**
 - s1
 - s2

- **SM_{Student}**
 - s1
 - s2

- **SM_{Genius}**
 - s1
 - s2

- **SM_{Polite}**
 - s1
 - s2

- **SM_{Clown}**
 - s1
 - s2

- **SM_{GenStWorker}**
 - s1
 - s2
 - s3

Tasks

- **GoodAns**
- **WrongAns**
- **Silence**
- **StupidJoke**

Att:

- **Int**

GenStWorker

- **task : Int**
Domain Inclusion Semantics
A **domain inclusion structure** \mathcal{D} for signature $\mathcal{S} = (\mathcal{T}, \mathcal{C}, V, atr, \mathcal{E}, F, mth, \triangleleft)$

- [as before] maps types, classes, associations to domains,
- [for completeness] maps methods to transformers,
- [as before] has infinitely many object identities per class in $\mathcal{D}(D), \mathcal{D} \in \mathcal{C}$,
- [changed] the identities of a super-class comprise all identities of sub-classes, i.e.

$$\forall C \triangleleft D \in \mathcal{C} : \mathcal{D}(D) \subsetneq \mathcal{D}(C)$$

and identities of instances of classes not (transitively) related by generalisation are disjoint, i.e. $C \not\triangleleft^+ D$ and $D \not\triangleleft^+ C$ implies $\mathcal{D}(C) \cap \mathcal{D}(D) = \emptyset$.

Note: the old setting coincides with the special case $\triangleleft = \emptyset$.

![Diagram](image-url)
A **system state** of \mathcal{I} wrt. (domain inclusion structure) \mathcal{D} is a **type-consistent** mapping

$$\sigma : \mathcal{D}(\mathcal{C}) \rightarrow (V \rightarrow (\mathcal{D}(\mathcal{T}) \cup \mathcal{D}(\mathcal{C}_{0,1}) \cup \mathcal{D}(\mathcal{C}^*))$$

that is, for all $u \in \text{dom}(\sigma) \cap \mathcal{D}(\mathcal{C})$,

- **[as before]** $\sigma(u)(v) \in \mathcal{D}(T)$ if $v : T$,
- **[changed]** $\sigma(u), u \in \mathcal{D}(\mathcal{C})$, has values for all attributes of \mathcal{C} and all of its superclasses, i.e.

$$\text{dom}(\sigma(u)) = \bigcup_{C_0 \prec^* C} \text{atr}(C_0).$$

Example:

<table>
<thead>
<tr>
<th>$u_1 : \mathcal{C}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{C} : x = 0$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$u_2 : \mathcal{D}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{D} : x = 1$</td>
</tr>
<tr>
<td>$\mathcal{D} : y = 2$</td>
</tr>
</tbody>
</table>

Note: the old setting still coincides with the special case $\preceq = \emptyset$.
OCL Syntax and Typing

- Recall (part of the) OCL syntax and typing ($C, D \in \mathcal{C}, v, r \in V$)

\[
expr ::= \begin{array}{ll}
v(expr_1) & : \tau_C \rightarrow T(v), \quad \text{if } v : T \in \text{atr}(C), \quad T \in \mathcal{I} \\
r(expr_1) & : \tau_C \rightarrow \tau_D, \quad \text{if } r : D_{0,1} \in \text{atr}(C) \\
r(expr_1) & : \tau_C \rightarrow \text{Set}(\tau_D), \quad \text{if } r : D_\star \in \text{atr}(C)
\end{array}
\]

The syntax **basically** stays the same:

\[
expr ::= \begin{array}{ll}
C::v(expr_1) & : \tau_C \rightarrow T(v), \quad \text{if } C::v : T \in \text{atr}(C), \quad T \in \mathcal{I} \\
\ldots
\end{array}
\]

\[
\begin{array}{ll}
v(expr_1) & : \tau_C \rightarrow T(v), \\
r(expr_1) & : \tau_C \rightarrow \tau_D, \\
r(expr_1) & : \tau_C \rightarrow \text{Set}(\tau_D),
\end{array}
\]

but **typing rules change**: we require a unique biggest superclass $C_0 \downarrow^* C \in \mathcal{C}$ with, e.g., $v \in \text{atr}(C_0)$ and for this v we have $v : T$.

Example:

\begin{align*}
\text{context } C & \text{' inv } C::x > 0 \\
\text{context } D & \text{' inv } C::x > 0 \\
\text{context } D & \text{' inv } x > 0
\end{align*}

Note: the old setting still coincides with the special case $\triangleleft = \emptyset$.
Example:

<table>
<thead>
<tr>
<th></th>
<th>$v_1 < 0$</th>
<th>$v_2 < 0$</th>
<th>$v_3 < 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>context C inv:</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>context D inv:</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>$n.v_1 < 0$</td>
<td>$n.v_2 < 0$</td>
<td>$n.v_3 < 0$</td>
</tr>
<tr>
<td>context B inv:</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
</tr>
</tbody>
</table>

E.g. $v(\ldots (self) \ldots)$ is well-typed

- if v is public, or
- if v is private, and $self : \tau_C$ and $v \in atr(C)$, or
- if v is protected, and $self : \tau_C$ and $D \triangleleft^* C$ (unique, biggest) and $v \in atr(D)$.
\[I_{DI}[expr](\sigma) := I[\text{Normalise}(expr)](\sigma) \]

using the same \textbf{textual} definition of \(I \) that we have.
Expression Normalisation

Normalise:

- Given expression \(v(\ldots(w)\ldots) \) with \(w : \tau_D \),
- normalise \(v \) to (= replace by) \(C::v \),
- where \(C \) is the unique most special more general class with \(C::v \in \text{attr}(C) \), i.e.

\[
\forall C \triangleleft^* C_0 \triangleleft^* D \bullet C_0 = C.
\]

Note: existence of such an \(C \) is guaranteed by (the new) OCL well-typedness.

Example:

- context \(D \ inv : x < 0 \) \(\triangleright \) context \(D \ inv : \mathcal{C}::x > 0 \)
- context \(C \ inv : x < 0 \) \(\triangleright \) \(\triangleright \) \(\triangleright \)
- context \(A \ inv : x < 0 \) \(\triangleright \) \(\triangleright \) \(\triangleright \)
- context \(D \ inv : n < 0 \) \(\triangleright \) \(\triangleright \) \(\triangleright \)
- context \(C \ inv : n < 0 \) \(\triangleright \)
- context \(D \ inv : A::x < 0 \) \(\triangleright \) \(\triangleright \)
OCL Example

\(\sigma:\)

\[
\begin{align*}
 u_1 : A & \quad A::x = 0 \\
 u_2 : C & \quad A::x = 1 \quad C::x = 27 \\
 u_3 : D & \quad A::x = 2 \quad C::x = 13
\end{align*}
\]

- \(I[context \ D \ inv : A::x < 0](\sigma, \{self \mapsto u_3\})\)

\[
\llbracket \sigma(u_3)(A::x), 0 \rrbracket = \llbracket 2, 0 \rrbracket = false
\]

- \(I[context \ D \ inv : x < 0](\sigma, \{self \mapsto u_3\})\)

\[
\llbracket \sigma(u_3)(C::x), 0 \rrbracket = \llbracket 13, 0 \rrbracket = false
\]

\(I[v(expr_1)](\sigma, \beta) := \begin{cases}
\sigma(u_1)(v), & \text{if } u_1 \in \text{dom}(\sigma) \\
\bot, & \text{otherwise}
\end{cases}\)
Excursus: Late Binding of Behavioural Features
What transformer applies in what situation? (Early (compile time) binding.)

<table>
<thead>
<tr>
<th>f not overridden in D</th>
<th>f overridden in D</th>
<th>value of someC/someD</th>
</tr>
</thead>
<tbody>
<tr>
<td>C::f()</td>
<td>C::f()</td>
<td></td>
</tr>
<tr>
<td>C::f()</td>
<td>D::f()</td>
<td></td>
</tr>
<tr>
<td>C::f()</td>
<td>C::f()</td>
<td></td>
</tr>
<tr>
<td>someD -> f()</td>
<td>D::f()</td>
<td></td>
</tr>
<tr>
<td>someC -> f()</td>
<td>C::f()</td>
<td></td>
</tr>
<tr>
<td>someC -> f()</td>
<td>C::f()</td>
<td></td>
</tr>
</tbody>
</table>

What one could want is something different: (Late binding.)

<table>
<thead>
<tr>
<th>someC -> f()</th>
<th>C::f()</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>someD -> f()</td>
<td>D::f()</td>
<td></td>
</tr>
<tr>
<td>someC -> f()</td>
<td>C::f()</td>
<td></td>
</tr>
<tr>
<td>someC -> f()</td>
<td>C::f()</td>
<td></td>
</tr>
</tbody>
</table>

Diagram:

```
  C
  |    
  v    
 someC -> f() C::f()  
  |    
  v    
 someD -> f() D::f()  
```

```
  C
  |    
  v    
 someC -> f() C::f()  
  |    
  v    
 someD -> f() D::f()  
```
In the standard, Section 11.3.10, “CallOperationAction”:

“Semantic Variation Points
The mechanism for determining the method to be invoked as a result of a call operation is unspecified.” (OMG, 2007, 247)

In C++,
- methods are by default “(early) compile time binding”,
- can be declared to be “late binding” by keyword “virtual”,
- the declaration applies to all inheriting classes.

In Java,
- methods are “late binding”;
- there are patterns to imitate the effect of “early binding”

Note: late binding typically applies only to methods, not to attributes.
(But: getter/setter methods have been invented recently.)
Behaviour (Inclusion Semantics)
Semantics of Method Calls

- **Non late-binding**: by normalisation.

- **Late-binding**:

 Construct a **method call** transformer, which looks up the method transformer corresponding to the class we are an instance of.
Transformers also basically remain the same, e.g. [VL 12, p. 18]

\[
update(expr_1, v, expr_2) : (\sigma, \varepsilon) \mapsto (\sigma', \varepsilon)
\]

with

\[
\sigma' = \sigma[u \mapsto \sigma(u)[v \mapsto I_{DI}[expr_2](\sigma)]]
\]

where \(u = I_{DI}[expr_1](\sigma) \) — after normalisation, e.g. assume \(v \) qualified.
Inheritance and State-Machines: Example

\[\langle \text{signal, env} \rangle \]

\[E \]

\[\langle \text{signal, env} \rangle \]

\[F \]

\[\text{SM}_A: \]

\[/n!F \]

\[s_1 \rightarrow s_2 \]

\[\text{SM}_D: \]

\[E/ \]

\[s_1 \rightarrow s_2 \]

\[\text{C} \]

\[\text{A} \]

\[n \]

\[0, 1 \]

\[\text{D} \]

\[u_1 : A \]

\[st = s_1 \]

\[stable = 0 \]

\[n \]

\[u_2 : D \]

\[st = s_1 \]

\[stable = 1 \]

\[(\emptyset, (u_2, f_{1+})) \]

\[\text{v}_1 \]

\[\text{v}_1 : A \]

\[\frac{st = s_2}{stable = 1} \]

\[(f, \emptyset) \]

\[\text{v}_2 \]

\[\text{v}_2 : D \]

\[\frac{st = s_2}{stable = 1} \]

\[\epsilon : (f_1 u_2) \]

\[\epsilon : \epsilon \]
(ii) Dispatch

\[(\sigma, \varepsilon) \xrightarrow{\text{cons}, \text{Snd}}_{u} (\sigma', \varepsilon')\]

if

- \(u \in \text{dom}(\sigma) \cap \mathcal{D}(C) \land \exists u_E \in \mathcal{D}(E) : u_E \in \text{ready}(\varepsilon, u)\)
- \(u\) is stable and in state machine state \(s\), i.e. \(\sigma(u)(\text{stable}) = 1\) and \(\sigma(u)(\text{st}) = s\),
- a transition is enabled, i.e.

\[
\exists (s, F, \text{expr, act, } s') \in \rightarrow (SM_C) : F = E \land I[\text{expr}] (\tilde{\sigma}, u) = 1
\]

where \(\tilde{\sigma} = \sigma[u.\text{params}_E \mapsto u_E]\).

and

- \((\sigma', \varepsilon')\) results from applying \(t_{\text{act}}\) to \((\sigma, \varepsilon)\) and removing \(u_E\) from the ether, i.e.

\[
(\sigma'', \varepsilon') \in t_{\text{act}}[u](\tilde{\sigma}, \varepsilon \oplus u_E),
\]

\[
\sigma' = (\sigma''[u.\text{st} \mapsto s', u.\text{stable} \mapsto b, u.\text{params}_E \mapsto \emptyset])|\mathcal{D}(\varepsilon)\backslash\{u_E\}
\]

where \(b\) depends (see (i))

- Consumption of \(u_E\) and the side effects of the action are observed, i.e.

\[
\text{cons} = \{u_E\}, \quad \text{Snd} = \text{Obst}_{\text{act}}[u](\tilde{\sigma}, \varepsilon \oplus u_E).
\]
Inheritance and Interactions

\[\exists \beta, \beta(a) \in \mathcal{D}(A), \beta(c) \in C' \cdot \ldots \]

\(E^i \)

\(\langle \text{signal, env} \rangle \)

\(E \)

\(F \)

\(a : A \)

\(c : C \)

\(E \)

\(C \)

\(n \)

\(0, 1 \)

\(A \)

\(D \)

\(\langle \text{signal, env} \rangle \)

\(E \)

\(F \)

\(a : A \)

\(u_1 \)

\(u_2 \)

\(v_1 ; D \)

\((\sigma, u, \text{on}, \text{sw}) \)

\(E^i_{a,c} \)

\(\checkmark \)
Domain Inclusion vs. Uplink Semantics
Wanted: a formal representation of “if \(C \triangleleft^* D \) then \(D \) ‘is a’ \(C \)’, that is,

(i) \(D \) has the same attributes and behavioural features as \(C \), and (ii) \(D \) objects (identities) can replace \(C \) objects.

Two approaches to semantics:

- **Domain-inclusion** Semantics

 (more theoretical)

- **Uplink** Semantics

 (more technical)
References
References

