Antichain algorithms.
Using Antichains to solve reachability problems on non-deterministic finite automata.

Samuel Roth
Proseminar on Automata Theory at the chair of Software Engineering.
Supervised by Alexander Nutz.
Content

Preliminaries
 Partial orders
 Antichains
 Downward closure, Maximum

Antichains as representations of closed sets

Powerset determinization of Non-deterministic finite automata

Reachability problem
 Backward reachability fixpoint algorithm
 Antichain Backward reachability algorithm

Conclusion
Content

Preliminaries
Partial orders
Antichains
Downward closure, Maximum

Antichains as representations of closed sets

Powerset determinization of Non-deterministic finite automata

Reachability problem
Backward reachability fixpoint algorithm
Antichain Backward reachability algorithm

Conclusion
Partial orders

- V be a finite set
- \leq a binary relation $\leq \subseteq V \times V$
- \leq reflexive, transitive and anti-symmetric then it is called a partial order
- (\leq, V) is called a partially ordered set.
Partial orders

- V be a finite set
- \leq a binary relation $\leq \subseteq V \times V$
- \leq reflexive, transitive and anti-symmetric then it is called a partial order
- (\leq, V) is called a partially ordered set.

Example

- $(\leq, \{1, 2, 3, 42\})$, the \leq order of the natural numbers.
Partial orders

- \(V \) be a finite set
- \(\leq \) a binary relation \(\leq \subseteq V \times V \)
- \(\leq \) reflexive, transitive and anti-symmetric then it is called a partial order
- \((\leq, V) \) is called a partially ordered set.

Example

- \((\leq, \{1, 2, 3, 42\}) \), the \(\leq \) order of the natural numbers.
- \((\subseteq, 2^V) \), subset-inclusion in a powerset.
Preliminaries

Partial orders

Antichains

Downward closure, Maximum

Antichains as representations of closed sets

Powerset determinization of Non-deterministic finite automata

Reachability problem

Backward reachability fixpoint algorithm

Antichain Backward reachability algorithm

Conclusion
Antichain

- subsets of V pairwise *incompatible* with regard to \preceq.
Antichain

- subsets of V pairwise *incompatible* with regard to \preceq.

Example

- Powerset of \{x, y, z\} with \subseteq as partial order.
Antichain

- subsets of V pairwise *incompatible* with regard to \preceq.

Example

- Powerset of $\{x, y, z\}$ with \subseteq as partial order.
- $\{\{x, y\}, \{x, z\}\}$ is a antichain.
Antichain

- subsets of V pairwise *incompatible* with regard to \preceq.

Example

- Powerset of $\{x, y, z\}$ with \subseteq as partial order.
- $\{\{x, y\}, \{x, z\}\}$ is a antichain.
- $\{\{x\}, \{x, z\}\}$ is not a antichain.
Content

Preliminaries
 Partial orders
 Antichains
 Downward closure, Maximum

Antichains as representations of closed sets

Powerset determinization of Non-deterministic finite automata

Reachability problem
 Backward reachability fixpoint algorithm
 Antichain Backward reachability algorithm

Conclusion
Downward closure, Maximum of $S \subseteq V$

Downward closure

$$\text{Down}(\preceq, S) := \{ v' \in V \mid \exists v \in Sv' \preceq v \}$$

Maximum

$$\text{Max}(\preceq, S) := \{ v \in S \mid \forall v' \in S: v \preceq v' \Rightarrow v' \preceq v \}$$

Examples

$$\text{Max}(\subseteq, \{\{x\}, \{x, y\}, \{x, z\}, \{x, y, z\}\}) = \{\{x, y\}, \{x, z\}\}$$

$$\text{Max}(\subseteq, \{\{x\}, \{x, y\}, \{x, z\}, \{x, y, z\}\}) = \{\{x, y, z\}\}$$
Downward closure, Maximum of $S \subseteq V$

Downward closure

\[
\text{Down}(\subseteq, S) := \{v' \in V \mid \exists v \in Sv' \subseteq v\}
\]

Examples

- \(\text{Down}(\subseteq, \{x, y\}) = \{\emptyset, \{x\}, \{y\}, \{x, y\}\}\)
Downward closure, Maximum of $S \subseteq V$

Downward closure

$$\text{Down} (\preceq, S) := \{ v' \in V \mid \exists v \in S \ v' \preceq v \}$$

Maximum

$$\text{Max} (\preceq, S) := \{ v \in S \mid \forall v' \in S : v \preceq v' \Rightarrow v' \preceq v \}$$

Examples

- $\text{Max} (\subseteq, \{\{x\}, \{x, y\}, \{x, z\}, \{y, z\}\}) = \{\{x, y, z\}\}$
- $\text{Max} (\subseteq, \{\{x\}, \{x, y\}, \{x, z\}, \{y, z\}, \{x, y, z\}\}) = \{\{x, y, z\}\}$
Downward closure, Maximum of $S \subseteq V$

Downward closure

\[
Down(\preceq, S) := \{v' \in V \mid \exists v \in S : v' \preceq v\}
\]

Maximum

\[
Max(\preceq, S) := \{v \in S \mid \forall v' \in S : v \preceq v' \Rightarrow v' \preceq v\}
\]

Examples

- \(Max(\subseteq, \{\{x\}, \{x, y\}, \{x, z\}\}) = \{\{x, y\}, \{x, z\}\}\)
Downward closure, Maximum of $S \subseteq V$

Downward closure

$\text{Down}(\subseteq, S) := \{v' \in V \mid \exists v \in Sv' \subseteq v\}$

Maximum

$\text{Max}(\subseteq, S) := \{v \in S \mid \forall v' \in S : v \subseteq v' \Rightarrow v' \subseteq v\}$

Examples

- $\text{Max}(\subseteq, \{\{x\}, \{x, y\}, \{x, z\}\}) = \{\{x, y\}, \{x, z\}\}$
- $\text{Max}(\subseteq, \{\{x\}, \{x, y\}, \{x, z\}, \{x, y, z\}\}) = \{\{x, y, z\}\}$
Content

Preliminaries
 Partial orders
 Antichains
 Downward closure, Maximum

Antichains as representations of closed sets

Powerset determinization of Non-deterministic finite automata

Reachability problem
 Backward reachability fixpoint algorithm
 Antichain Backward reachability algorithm

Conclusion
Antichain as a representation for a downward closed set $S \subseteq V$.

- Use $S' := \text{Max}(\preceq, S)$ to represent S.

Example $S_1 := \{0\}, \{x\}, \{y\}$ so $S_1' = \{\{x\}, \{y\}\}$

$S_2 := \{0\}, \{x\}, \{y\}, \{x, y\}$ so $S_2' = \{\{x, y\}\}$
Antichain as a representation for a downward closed set $S \subseteq V$.

- Use $S' := Max(\preceq, S)$ to represent S.
- The question $v \in S$ becomes $\exists v' \in S' : v \preceq v'$
Antichain as a representation for a downward closed set $S \subseteq V$.

- Use $S' := \text{Max}(\preceq, S)$ to represent S.
- The question $v \in S$ becomes $\exists v' \in S' : v \preceq v'$

Example

$S_1 := \{\emptyset, \{x\}, \{y\}\}$ so $S'_1 = \{\{x\}, \{y\}\}$

$S_2 := \{\emptyset, \{x\}, \{y\}, \{x,y\}\}$ so $S'_2 = \{\{x,y\}\}$
Content

Preliminaries
 Partial orders
 Antichains
 Downward closure, Maximum

Antichains as representations of closed sets

Powerset determinization of Non-deterministic finite automata

Reachability problem
 Backward reachability fixpoint algorithm
 Antichain Backward reachability algorithm

Conclusion
Powerset determinization of Non-deterministic finite automata

- Let $A := (Loc, Init, Fin, \delta, \Sigma)$ be a finite automaton.
- $G(A) := (V, E, In, Fin)$ is the corresponding powerset automaton.
Powerset determinization of Non-deterministic finite automata

- Let $A := (\text{Loc}, \text{Init}, \text{Fin}, \delta, \Sigma)$ be a finite automaton.
- $G(A) := (V, E, \text{In}, \text{Fin})$ is the corresponding powerset automaton.
- $V := 2^{\text{Loc}}$
Powerset determinization of Non-deterministic finite automata

- Let $A := (Loc, Init, Fin, \delta, \Sigma)$ be a finite automaton.
- $G(A) := (V, E, In, Fin)$ is the corresponding powerset automaton.
- $V := 2^{Loc}$
- $In := \{ v \in 2^{Loc} | Init \in v \}$
Powerset determinization of Non-deterministic finite automata

- Let $A := (\text{Loc}, \text{Init}, \text{Fin}, \delta, \Sigma)$ be a finite automaton.
- $G(A) := (V, E, \text{In}, \text{Fin})$ is the corresponding powerset automaton.
- $V := 2^{\text{Loc}}$
- $\text{In} := \{v \in 2^{\text{Loc}} | \text{Init} \in v\}$
- $\text{Fin} := \{v \in 2^{\text{Loc}} | v \subseteq \text{Loc} \setminus \text{Fin}\}$
Powerset determinization of Non-deterministic finite automata

- Let $A := (\text{Loc}, \text{Init}, \text{Fin}, \delta, \Sigma)$ be a finite automaton.
- $G(A) := (V, E, \text{In}, \text{Fin})$ is the corresponding powerset automaton.
- $V := 2^{\text{Loc}}$
- $\text{In} := \{v \in 2^{\text{Loc}} | \text{Init} \in v\}$
- $\overline{\text{Fin}} := \{v \in 2^{\text{Loc}} | v \subseteq \text{Loc} \setminus \text{Fin}\}$
- $(v_1, v_2) \in E$ iff there exists a $\sigma \in \Sigma$ such that $\bigcup_{q \in v_1} \delta(q, \sigma) = v_2$.
Example $A := (\text{Loc}, \text{Init}, \text{Fin}, \delta, \Sigma)$ to $G(A) := (V, E, \text{In}, \text{Fin})$

- $V := 2^{\text{Loc}}$
- $\text{Fin} := \{ v \in 2^{\text{Loc}} | v \subseteq \text{Loc} \setminus \text{Fin} \}$
- $\text{In} := \{ v \in 2^{\text{Loc}} | \text{Init} \in v \}$
- $(v_1, v_2) \in E$ iff there exists a $\sigma \in \Sigma$ such that $\bigcup_{q \in v_1} \delta(q, \sigma) = v_2$.

![Diagram](image-url)
Example $A := (\text{Loc}, \text{Init}, \text{Fin}, \delta, \Sigma)$ to
$G(A) := (V, E, \text{In}, \text{Fin})$

- $V := 2^{\text{Loc}}$
- $\text{Fin} := \{v \in 2^{\text{Loc}} | v \subseteq \text{Loc} \setminus \text{Fin}\}$
- $\text{In} := \{v \in 2^{\text{Loc}} | \text{Init} \in v\}$
- $(v_1, v_2) \in E$ iff there exists a $\sigma \in \Sigma$ such that $\bigcup_{q \in v_1} \delta(q, \sigma) = v_2$.
Example $A := (\text{Loc}, \text{Init}, \text{Fin}, \delta, \Sigma)$ to $G(A) := (V, E, \text{In}, \text{Fin})$

- $V := 2^{\text{Loc}}$
- $\text{Fin} := \{v \in 2^{\text{Loc}} | v \subseteq \text{Loc} \setminus \text{Fin}\}$
- $\text{In} := \{v \in 2^{\text{Loc}} | \text{Init} \in v\}$
- $(v_1, v_2) \in E$ iff there exists a $\sigma \in \Sigma$ such that $\bigcup_{q \in v_1} \delta(q, \sigma) = v_2$.
Example $A := (\text{Loc}, \text{Init}, \text{Fin}, \delta, \Sigma)$ to $G(A) := (V, E, \text{In}, \text{Fin})$

- $V := 2^{\text{Loc}}$
- $\text{Fin} := \{v \in 2^{\text{Loc}} \mid v \subseteq \text{Loc} \setminus \text{Fin}\}$
- $\text{In} := \{v \in 2^{\text{Loc}} \mid \text{Init} \in v\}$
- $(v_1, v_2) \in E$ iff there exists a $\sigma \in \Sigma$ such that $\bigcup_{q \in v_1} \delta(q, \sigma) = v_2$.
Example $A := (Loc, Init, Fin, \delta, \Sigma)$ to $G(A) := (V, E, In, Fin)$

- $V := 2^{Loc}$
- $Fin := \{v \in 2^{Loc} | v \subseteq Loc \setminus Fin\}$
- $In := \{v \in 2^{Loc} | Init \in v\}$
- $(v_1, v_2) \in E$ iff there exists a $\sigma \in \Sigma$ such that $\bigcup_{q \in v_1} \delta(q, \sigma) = v_2$.
Example $A := (\text{Loc}, \text{Init}, \text{Fin}, \delta, \Sigma)$ to $G(A) := (V, E, \text{In}, \text{Fin})$

- $V := 2^{\text{Loc}}$
- $\text{Fin} := \{ v \in 2^{\text{Loc}} \mid v \subseteq \text{Loc} \setminus \text{Fin} \}$
- $\text{In} := \{ v \in 2^{\text{Loc}} \mid \text{Init} \in v \}$
- $(v_1, v_2) \in E$ iff there exists a $\sigma \in \Sigma$ such that $\bigcup_{q \in v_1} \delta(q, \sigma) = v_2$.
Example $A := (\text{Loc}, \text{Init}, \text{Fin}, \delta, \Sigma)$ to $G(A) := (V, E, \text{In}, \text{Fin})$

- $V := 2^{\text{Loc}}$
- $\text{Fin} := \{v \in 2^{\text{Loc}} | v \subseteq \text{Loc} \setminus \text{Fin}\}$
- $\text{In} := \{v \in 2^{\text{Loc}} | \text{Init} \in v\}$
- $(v_1, v_2) \in E$ iff there exists a $\sigma \in \Sigma$ such that $\bigcup_{q \in v_1} \delta(q, \sigma) = v_2$.
Example $A := (\text{Loc}, \text{Init}, \text{Fin}, \delta, \Sigma)$ to $G(A) := (V, E, \text{In}, \text{Fin})$

- $V := 2^{\text{Loc}}$
- $\overline{\text{Fin}} := \{v \in 2^{\text{Loc}} | v \subseteq \text{Loc} \setminus \text{Fin}\}$
- $\text{In} := \{v \in 2^{\text{Loc}} | \text{Init} \in v\}$
- $(v_1, v_2) \in E$ iff there exists a $\sigma \in \Sigma$ such that $\bigcup_{q \in v_1} \delta(q, \sigma) = v_2$.
Content

Preliminaries
 Partial orders
 Antichains
 Downward closure, Maximum

Antichains as representations of closed sets

Powerset determinization of Non-deterministic finite automata

Reachability problem
 Backward reachability fixpoint algorithm
 Antichain Backward reachability algorithm

Conclusion
Reachability problem in $G(A) = (V, E; In, Fin)$

- Asks if a subset $S \subseteq V$ is reachable from In.
- Where *Reachable* here means there is a *path* from In to S. This is $v_1, \cdots v_n$ such that $(v_i, v_{i+1}) \in E$ for all $0 < i < n$ and $v_1 \in In$ and $v_n \in S$.
Reachability problem in $G(A) = (V, E; \text{In}, \overline{\text{Fin}})$

- Asks if a subset $S \subseteq V$ is reachable from In.
- Where *Reachable* here means there is a *path* from In to S. This is $v_1, \cdots v_n$ such that $(v_i, v_{i+1}) \in E$ for all $0 < i < n$ and $v_1 \in \text{In}$ and $v_n \in S$.

Example

$S := \{\{1\}, \{1,2,3\}\}$ is reachable from In.
The predecessors of $S \subseteq V$ in $G(A) = (V, E; \text{In}, \text{Fin})$

The predecessors of $S \subseteq V$ are

$$\text{pre}(S) := \{v_1 \in V \mid \exists v_2 \in S : (v_1, v_2) \in E\}$$
The predecessors of \(S \subseteq V \) in \(G(A) = (V, E; In, Fin) \)

- The predecessors of \(S \subseteq V \) are

\[
pre(S) := \{ v_1 \in V \mid \exists v_2 \in S : (v_1, v_2) \in E \}
\]

Example

\(S := \{\{1\}, \{1, 2, 3\}\} \) then \(pre(S) = \{\{1\}, \{2\}, \{1, 2, 4\}, \{1, 4\}\} \).
Content

Preliminaries
 Partial orders
 Antichains
 Downward closure, Maximum

Antichains as representations of closed sets

Powerset determinization of Non-deterministic finite automata

Reachability problem
 Backward reachability fixpoint algorithm
 Antichain Backward reachability algorithm

Conclusion
Backward reachability fixpoint algorithm in
\(G(A) = (V, E; \text{In}, \text{Fin}) \)

- Solves the reachability problem for \(S \subseteq V \) by computing the monotone growing sequence of sets

\[
B_0 = S; B_i = B_{i-1} \cup \text{pre}(B_{i-1})
\]
Backward reachability fixpoint algorithm in $G(A) = (V, E; \text{In}, \text{Fin})$

Example starting with Fin

$B_0 = S; B_i = B_{i-1} \cup \text{pre}(B_{i-1})$
Backward reachability fixpoint algorithm in
\(G(A) = (V, E; \text{In}, \overline{\text{Fin}}) \)

Example starting with \(\overline{\text{Fin}} \)

\[B_0 = S; B_i = B_{i-1} \cup \text{pre}(B_{i-1}) \]

\[B_0 = \{\{\}\}, \{1\}\} \]
Backward reachability fixpoint algorithm in
\(G(A) = (V, E; \text{In, Fin}) \)

Example starting with \(\text{Fin} \)

\[
B_0 = S; B_i = B_{i-1} \cup \text{pre}(B_{i-1}) \\
B_0 = \{\}, \{1\} \} \\
B_1 = B_0 \cup \text{pre}(B_0)
\]
Backward reachability fixpoint algorithm in $G(A) = (V, E; \text{In}, \text{Fin})$

Example starting with Fin

\[B_0 = S; B_i = B_{i-1} \cup \text{pre}(B_{i-1}) \]

\[B_0 = \{\}, \{1\} \]

\[B_1 = B_0 \cup \text{pre}(B_0) \]

\[= \{\}, \{1\} \cup \text{pre}(\{\}, \{1\}) \]
Backward reachability fixpoint algorithm in $G(A) = (V, E; \text{In}, \text{Fin})$

Example starting with Fin

$B_0 = S; B_i = B_{i-1} \cup \text{pre}(B_{i-1})$

$B_0 = \{\{\}, \{1\}\}$

$B_1 = B_0 \cup \text{pre}(B_0)$

$= \{\{\}, \{1\}\} \cup \text{pre}(\{\{\}, \{1\}\})$

$= \{\{\}, \{1\}\} \cup \{\{1\}, \{2\}\} = \{\{\}, \{1\}, \{2\}\}$

![Graph](image)
Backward reachability fixpoint algorithm in
\[G(A) = (V, E; In, Fin) \]

Example starting with \(\overline{Fin} \)

\[B_0 = S; B_i = B_{i-1} \cup \text{pre}(B_{i-1}) \]

\[B_0 = \emptyset, \{1\} \]

\[B_1 = B_0 \cup \text{pre}(B_0) \]
\[= \emptyset, \{1\} \cup \text{pre}(\emptyset, \{1\}) \]
\[= \emptyset, \{1\} \cup \{\{1\}, \{2\}\} = \emptyset, \{1\}, \{2\} \]

\[B_2 = B_1 \cup \text{pre}(B_1) \]
Backward reachability fixpoint algorithm in
\[G(A) = (V, E; In, Fin) \]

Example starting with \(Fin \)

\[B_0 = S; B_i = B_{i-1} \cup pre(B_{i-1}) \]

\[B_0 = \{\}, \{1\} \]
\[B_1 = B_0 \cup pre(B_0) \]
\[= \{\}, \{1\} \cup pre(\{\}, \{1\}) \]
\[= \{\}, \{1\} \cup \{\{1\}, \{2\}\} = \{\}, \{1\}, \{2\} \]
\[B_2 = B_1 \cup pre(B_1) \]
\[= \{\}, \{1\}, \{2\} \cup pre(\{\}, \{1\}, \{2\}) \]
Backward reachability fixpoint algorithm in $G(A) = (V, E; In, Fin)$

Example starting with \overline{Fin}

$B_0 = S; B_i = B_{i-1} \cup pre(B_{i-1})$

$B_0 = \{\}, \{1\}$

$B_1 = B_0 \cup pre(B_0)$

$= \{\}, \{1\} \cup pre(\{\}, \{1\})$

$= \{\}, \{1\} \cup \{\{1\}, \{2\}\} = \{\}, \{1\}, \{2\}$

$B_2 = B_1 \cup pre(B_1)$

$= \{\}, \{1\}, \{2\} \cup pre(\{\}, \{1\}, \{2\})$

$= \{\}, \{1\}, \{2\} \cup \{\{1\}, \{2\}\} = \{\}, \{1\}, \{2\}$
Content

Preliminaries
 Partial orders
 Antichains
 Downward closure, Maximum

Antichains as representations of closed sets

Powerset determinization of Non-deterministic finite automata

Reachability problem
 Backward reachability fixpoint algorithm
 Antichain Backward reachability algorithm

Conclusion
Antichain Backward reachability algorithm

- Antichains can be used as representations for closed sets.
- Where can we introduce antichains in our algorithm?
Antichain Backward reachability algorithm

- Antichains can be used as representations for closed sets.
- Where can we introduce antichains in our algorithm?

Lemma 1

Given $G = (V, E; \text{In}, \text{Fin})$ then $\text{pre}(S)$ is downward closed for all downward closed sets $S \subseteq V$
Antichain Backward reachability algorithm

- Antichains can be used as representations for closed sets.
- Where can we introduce antichains in our algorithm?

Lemma 1

Given $G = (V, E; In, Fin)$ then $pre(S)$ is downward closed for all downward closed sets $S \subseteq V$.

Lemma 2

Fin is downward closed.
Proof "pre(S) is downward closed for all downward closed S."

Let $S \subseteq V$ be downward closed. We need to show that $v_1 \in \text{pre}(S)$ and $v_2 \subseteq v_1 \Rightarrow v_2 \in \text{pre}(S)$.

Let $v_1 \in \text{pre}(S)$, this means there exists $v_3 \in S$ where $(v_1, v_3) \in E$ and a $\sigma \in \Sigma$ s.t. $\bigcup q \in v_1 \delta(q, \sigma) = v_3$.

Looking at $v_2 \subseteq v_1$ we get $\bigcup q \in v_2 \delta(q, \sigma) = v_4 \subseteq v_3$.

Hence $v_2 \in \text{pre}(S)$.
Proof "\(\text{pre}(S) \) is downward closed for all downward closed \(S \)."

Let \(S \subseteq V \) be downward closed. We need to show that

\[
v_1 \in \text{pre}(S) \text{ and } v_2 \subseteq v_1 \Rightarrow v_2 \in \text{pre}(S)
\]
Proof "\(\text{pre}(S)\) is downward closed for all downward closed \(S\)."

Let \(S \subseteq V\) be downward closed. We need to show that

\[
\forall v_1 \in \text{pre}(S) \text{ and } v_2 \subseteq v_1 \Rightarrow v_2 \in \text{pre}(S)
\]

Let \(v_1 \in \text{pre}(S)\) this means there exists \(v_3 \in S\) where \((v_1, v_3) \in E\) and a \(\sigma \in \Sigma\) s.t. \(\bigcup_{q \in v_1} \delta(q, \sigma) = v_3\)
Proof "pre(S) is downward closed for all downward closed S."

Let $S \subseteq V$ be downward closed. We need to show that

$$v_1 \in \text{pre}(S) \text{ and } v_2 \subseteq v_1 \Rightarrow v_2 \in \text{pre}(S)$$

Let $v_1 \in \text{pre}(S)$ this means there exists $v_3 \in S$ where $(v_1, v_3) \in E$ and a $\sigma \in \Sigma$ s.t. $\bigcup_{q \in v_1} \delta(q, \sigma) = v_3$

Looking at $v_2 \subseteq v_1$ we get $\bigcup_{q \in v_2} \delta(q, \sigma) = v_4 \subseteq v_3$
Proof "\(\text{pre}(S) \) is downward closed for all downward closed \(S \)."

Let \(S \subseteq V \) be downward closed. We need to show that

\[
\forall v_1 \in \text{pre}(S) \text{ and } v_2 \subseteq v_1 \Rightarrow v_2 \in \text{pre}(S)
\]

Let \(v_1 \in \text{pre}(S) \) this means there exists \(v_3 \in S \) where \((v_1, v_3) \in E \) and a \(\sigma \in \Sigma \) s.t.

\[
\bigcup_{q \in v_1} \delta(q, \sigma) = v_3
\]

Looking at \(v_2 \subseteq v_1 \) we get \(\bigcup_{q \in v_2} \delta(q, \sigma) = v_4 \subseteq v_3 \)

Hence \(v_2 \in \text{pre}(S) \)
Recap: Definition of $\overline{\text{Fin}}$

$\overline{\text{Fin}} := \{ v \in 2^{\text{Loc}} | v \subseteq \text{Loc} \setminus \text{Fin} \}$

Proof "$\overline{\text{Fin}}$ is downward closed."

If $v_1 \in \overline{\text{Fin}}$ and $v_2 \subseteq v_1$ then $v_2 \subseteq v_1 \subseteq \text{Loc} \setminus \text{Fin}$ hence $v_2 \in \overline{\text{Fin}}$
Antichain Backward reachability algorithm

- We extend the fixpoint algorithm

\[B_0 = S; B_i = B_{i-1} \cup \text{pre}(B_{i-1}) \]

- to the antichain fixpoint algorithm

\[\tilde{B}_0 = \text{Max}(\subseteq, S); \tilde{B}_i = \text{Max}(\subseteq, \tilde{B}_{i-1} \cup \text{pre}(\text{Down}(\subseteq, \tilde{B}_{i-1}))) \]
Antichain Backward reachability algorithm. Starting with $S = \overline{Fin} = \{\{\}, \{1\}\}$;

Example starting with \overline{Fin}

$\overline{B}_0 = \text{Max}(\subseteq, S)$;

$\overline{B}_i = \text{Max}(\subseteq, \overline{B}_{i-1} \cup \text{pre}(\text{Down}(\subseteq, \overline{B}_{i-1})))$
Antichain Backward reachability algorithm. Starting with $S = \overline{\text{Fin}} = \{\{\}\}, \{1\}$;

Example starting with $\overline{\text{Fin}}$

$\widetilde{B}_0 = \text{Max}(\subseteq, S)$;
$\widetilde{B}_i = \text{Max}(\subseteq, \widetilde{B}_{i-1} \cup \text{pre}(\text{Down}(\subseteq, \widetilde{B}_{i-1})))$

$\widetilde{B}_0 = \text{Max}(\subseteq, \{\{\\}, \{1\}\}) = \{\{1\}\}$
Antichain Backward reachability algorithm. Starting with $S = \overline{Fin} = \{\{\}, \{1\}\}$;

Example starting with \overline{Fin}

$\overline{B}_0 = \text{Max}(\subseteq, S);$
$\overline{B}_i = \text{Max}(\subseteq, \overline{B}_{i-1} \cup \text{pre}(\text{Down}(\subseteq, \overline{B}_{i-1})))$

$\overline{B}_0 = \text{Max}(\subseteq, \{\{\}, \{1\}\}) = \{\{1\}\}$
$\overline{B}_1 = \text{Max}(\subseteq, \{1\} \cup \text{pre}(\text{Down}(\subseteq, \{1\})))$
Antichain Backward reachability algorithm. Starting with
\(S = \overline{\text{Fin}} = \{\{\}, \{1\}\}; \)

Example starting with \(\overline{\text{Fin}} \)

\[
\begin{align*}
\tilde{B}_0 &= \text{Max}(\subseteq, S); \\
\tilde{B}_i &= \text{Max}(\subseteq, \tilde{B}_{i-1} \cup \text{pre}(\text{Down}(\subseteq, \tilde{B}_{i-1}))) \\
\tilde{B}_0 &= \text{Max}(\subseteq, \{\{\}, \{1\}\}) = \{\{1\}\} \\
\tilde{B}_1 &= \text{Max}(\subseteq, \{1\} \cup \text{pre}(\text{Down}(\subseteq, \{1\}))) \\
&= \text{Max}(\subseteq, \{1\} \cup \text{pre}(\{\}, \{1\})) \\
&= \{\{1\}, \{2\}\}
\end{align*}
\]
Antichain Backward reachability algorithm. Starting with
\(S = \overline{\text{Fin}} = \{\emptyset, \{1\}\}; \)

Example starting with \(\overline{\text{Fin}} \)

\(\overline{B}_0 = \text{Max}(\subseteq, S); \)
\(\overline{B}_i = \text{Max}(\subseteq, \overline{B}_{i-1} \cup \text{pre}(\text{Down}(\subseteq, \overline{B}_{i-1}))) \)

\(\overline{B}_0 = \text{Max}(\subseteq, \{\emptyset, \{1\}\}) = \{\{1\}\} \)
\(\overline{B}_1 = \text{Max}(\subseteq, \{1\} \cup \text{pre}(\text{Down}(\subseteq, \{1\}))) \)
\[= \text{Max}(\subseteq, \{1\} \cup \text{pre}(\emptyset, \{1\})) \]
\[= \text{Max}(\subseteq, \{1\} \cup \{\emptyset, \{1\}\}) = \{\{1\}, \{2\}\} \)
Antichain Backward reachability algorithm. Starting with
\(S = \overline{\text{Fin}} = \{ \{ \}, \{ 1 \} \};\)

Example starting with \(\overline{\text{Fin}} \)

\(\overline{B}_0 = \text{Max}(\subseteq, S); \)
\(\overline{B}_i = \text{Max}(\subseteq, \overline{B}_{i-1} \cup \text{pre}(\text{Down}(\subseteq, \overline{B}_{i-1}))) \)

\(\overline{B}_0 = \text{Max}(\subseteq, \{ \{ \}, \{ 1 \} \}) = \{ \{ 1 \} \} \)
\(\overline{B}_1 = \text{Max}(\subseteq, \{ 1 \} \cup \text{pre}(\text{Down}(\subseteq, \{ 1 \}))) \)
\(\quad = \text{Max}(\subseteq, \{ 1 \} \cup \text{pre}(\{ \}, \{ 1 \})) \)
\(\quad = \text{Max}(\subseteq, \{ 1 \} \cup \{ \{ 1 \}, \{ 2 \} \}) = \{ \{ 1 \}, \{ 2 \} \} \)
\(\overline{B}_2 = \text{Max}(\subseteq, \{ \{ 1 \}, \{ 2 \} \} \cup \text{pre}(\text{Down}(\subseteq, \{ \{ 1 \}, \{ 2 \} \}))) \)
Antichain Backward reachability algorithm. Starting with $S = \overline{\text{Fin}} = \{\{\}, \{1\}\}$;

Example starting with $\overline{\text{Fin}}$

$\widetilde{B}_0 = \text{Max}(\subseteq, S)$;
$\widetilde{B}_i = \text{Max}(\subseteq, \widetilde{B}_{i-1} \cup \text{pre}(\text{Down}(\subseteq, \widetilde{B}_{i-1})))$

$\widetilde{B}_0 = \text{Max}(\subseteq, \{\{\}, \{1\}\}) = \{\{1\}\}$
$\widetilde{B}_1 = \text{Max}(\subseteq, \{\{\}, \{1\}\} \cup \text{pre}(\text{Down}(\subseteq, \{\{1\}\})))$

$\widetilde{B}_2 = \text{Max}(\subseteq, \{\{\}, \{1\}\} \cup \text{pre}(\text{Down}(\subseteq, \{\{1\}, \{2\}\})))$

$\widetilde{B}_2 = \text{Max}(\subseteq, \{\{\}, \{1\}\} \cup \text{pre}(\text{Down}(\subseteq, \{\{1\}, \{2\}\})))$

$\widetilde{B}_2 = \text{Max}(\subseteq, \{\{\}, \{1\}\} \cup \text{pre}(\text{Down}(\subseteq, \{\{1\}, \{2\}\})))$

$\widetilde{B}_2 = \text{Max}(\subseteq, \{\{\}, \{1\}\} \cup \text{pre}(\text{Down}(\subseteq, \{\{1\}, \{2\}\})))$

$\widetilde{B}_2 = \text{Max}\left(\subseteq, \{\{\}, \{1\}\} \cup \{\{1\}\} \cup \{\{1\}, \{2\}\}\right) = \{\{1\}\}$
Antichain Backward reachability algorithm. Starting with
$S = \overline{\text{Fin}} = \{\{\}, \{1\}\}$;

Example starting with $\overline{\text{Fin}}$

$\tilde{B}_0 = \text{Max}(\subseteq, S)$;
$\tilde{B}_i = \text{Max}(\subseteq, \tilde{B}_{i-1} \cup \text{pre}(\text{Down}(\subseteq, \tilde{B}_{i-1})))$

$\tilde{B}_0 = \text{Max}(\subseteq, \{\{\}, \{1\}\}) = \{\{1\}\}$
$\tilde{B}_1 = \text{Max}(\subseteq, \{1\} \cup \text{pre}(\text{Down}(\subseteq, \{1\})))$
 = $\text{Max}(\subseteq, \{1\} \cup \text{pre}(\{\}, \{1\})))$
 = $\text{Max}(\subseteq, \{1\} \cup \{\{1\}, \{2\}\}) = \{\{1\}, \{2\}\}$
$\tilde{B}_2 = \text{Max}(\subseteq, \{\{1\}, \{2\}\} \cup \text{pre}(\text{Down}(\subseteq, \{\{1\}, \{2\}\})))$
 = $\text{Max}(\subseteq, \{\{1\}, \{2\}\} \cup \text{pre}(\{\}, \{1\}, \{2\})))$
 = $\text{Max}(\subseteq, \{\{1\}, \{2\}\} \cup \{\{1\}, \{2\}\}) = \{\{1\}, \{2\}\}$
Content

Preliminaries
 Partial orders
 Antichains
 Downward closure, Maximum

Antichains as representations of closed sets

Powerset determinization of Non-deterministic finite automata

Reachability problem
 Backward reachability fixpoint algorithm
 Antichain Backward reachability algorithm

Conclusion
Conclusion

- Antichains can be used as representations of closed sets.
Conclusion

- Antichains can be used as representations of closed sets.
- In the powerset construction Fin is a downward closed set.
Conclusion

- Antichains can be used as representations of closed sets.
- In the powerset construction \overline{Fin} is a downward closed set.
- On the powerset automaton $\text{pre}(S)$ for closed S is downward closed. Thus we can use antichains in the classic backward reachability algorithm.
Antichains can be used as representations of closed sets.

In the powerset construction $\overline{\text{Fin}}$ is a downward closed set.

On the powerset automaton $\text{pre}(S)$ for closed S is downward closed. Thus we can use antichains in the classic backward reachability algorithm.

To be efficient, further improvements are possible and will be shown in antichain talk II.
Doyen, Laurent and Raskin, Jean-François
Antichain algorithms for finite automata

De Wulf, Martin and Doyen, Laurent and Henzinger, Thomas A and Raskin, J-F.