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Partial orders

V be a finite set
� a binary relation �⊆ V ×V
� reflexive, transitive and anti-symmetric then it is called a partial
order
(�,V ) is called a partially ordered set.

Example

(≤,{1,2,3,42}), the ≤ order of the natural numbers.
(⊆,2V )), subset-inclusion in a powerset.
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Antichain

subsets of V pairwise incompatible with regard to �.

Example

Powerset of {x,y,z} with ⊆ as
partial order.
{{x,y},{x,z}} is a antichain.
{{x},{x,z}} is not a antichain.
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Downward closure, Maximum of S ⊆ V

Downward closure
Down(�,S) := {v ′ ∈ V | ∃v ∈ Sv ′ � v}

Maximum
Max(�,S) := {v ∈ S | ∀v ′ ∈ S : v � v ′⇒ v ′ � v}

Examples

Max(⊆,{{x},{x,y},{x,z}}) =
{{x,y},{x,z}}
Max(⊆,{{x},{x,y},{x,z},{x,y,z}}) =
{{x,y,z}}
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Antichain as a representation for a downward closed set
S ⊆ V .

Use S′ := Max(�,S) to represent S.

The question v ∈ S becomes ∃v ′ ∈ S′ : v � v ′

Example

S1 := { /0,{x},{y}} so S′1 = {{x},{y}}
S2 := { /0,{x},{y},{x,y}} so S′2 = {{x,y}}
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Powerset determinization of Non-deterministic finite
automata

Let A := (Loc, Init,Fin,δ ,Σ) be a finite automaton.
G(A) := (V ,E, In,Fin) is the corresponding powerset automaton.

V := 2Loc

In := {v ∈ 2Loc|Init ∈ v}
Fin := {v ∈ 2Loc|v ⊆ Loc \Fin}
(v1,v2) ∈ E iff there exists a σ ∈ Σ such that ⋃q∈v1 δ (q,σ ) = v2.
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Example A := (Loc, Init,Fin,δ ,Σ) to
G(A) := (V ,E, In,Fin)

V := 2Loc
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In := {v ∈ 2Loc|Init ∈ v}
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Reachability problem in G(A) = (V ,E; In,Fin)

Asks if a subset S ⊆ V is reachable from In.
Where Reachable here means there is a path from In to S. This is
v1, · · ·vn such that (vi ,vi+1) ∈ E for all 0< i < n and v1 ∈ In and
vn ∈ S.

Example

S := {{1},{1,2,3}} is reachable from In.
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The predecessors of S ⊆ V in G(A) = (V ,E; In,Fin)

The predecessors of S ⊆ V are

pre(S) := {v1 ∈ V | ∃v2 ∈ S : (v1,v2) ∈ E}

Example

S := {{1},{1,2,3}} then pre(S) = {{1},{2},{1,2,4},{1,4}}.
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Backward reachability fixpoint algorithm in
G(A) = (V ,E; In,Fin)

Solves the reachability problem for S ⊆ V by computing the
monotone growing sequence of sets

B0 = S;Bi = Bi−1∪pre(Bi−1)
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Backward reachability fixpoint algorithm in
G(A) = (V ,E; In,Fin)

Example starting with Fin

B0 = S;Bi = Bi−1∪pre(Bi−1)

B0 = {{},{1}}
B1 = B0∪pre(B0)

= {{},{1}}∪pre({{},{1}})
= {{},{1}}∪{{1},{2}} = {{},{1},{2}}

B2 = B1∪pre(B1)
= {{},{1},{2}}∪pre({{},{1},{2}})
= {{},{1},{2}}∪{{1},{2}}) = {{},{1},{2}}
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Antichain Backward reachability algorithm

Antichains can be used as representations for closed sets.
Where can we introduce antichains in our algorithm?

Lemma 1
Given G = (V ,E; In,Fin) then pre(S) is downward closed for all
downward closed sets S ⊆ V

Lemma 2
Fin is downward closed.
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Antichain Backward reachability algorithm
Proof for Lemma 1

Proof ”pre(S) is downward closed for all
downward closed S.”

Let S ⊆ V be downward closed. We need to show
that

v1 ∈ pre(S) and v2 ⊆ v1⇒ v2 ∈ pre(S)

Let v1 ∈ pre(S) this means there exists v3 ∈ S
where (v1,v3) ∈ E and a σ ∈ Σ s.t. ⋃q∈v1 δ (q,σ ) = v3
Looking at v2 ⊆ v1 we get ⋃q∈v2 δ (q,σ ) = v4 ⊆ v3
Hence v2 ∈ pre(S)
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Antichain Backward reachability algorithm
Proof for Lemma 2

Recap: Definition of Fin

Fin := {v ∈ 2Loc|v ⊆ Loc \Fin}

Proof ”Fin is downward closed.”
If v1 ∈ Fin and v2 ⊆ v1 then v2 ⊆ v1 ⊆ Loc \Fin hence v2 ∈ Fin
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Antichain Backward reachability algorithm

We extend the fixpoint algorithm

B0 = S;Bi = Bi−1∪pre(Bi−1)

to the antichain fixpoint algorithm

B̃0 = Max(⊆,S); B̃i = Max(⊆, B̃i−1∪pre(Down(⊆, B̃i−1)))
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Antichain Backward reachability algorithm. Starting with
S = Fin = {{},{1}};

Example starting with Fin

B̃0 = Max(⊆,S);
B̃i = Max(⊆, B̃i−1∪pre(Down(⊆, B̃i−1)))

B̃0 = Max(⊆,{{},{1}}) = {{1}}
B̃1 = Max(⊆,{1}∪pre(Down(⊆,{1})))

= Max(⊆,{1}∪pre({{},{1}}))
= Max(⊆,{1}∪{{1},{2}}) = {{1},{2}}

B̃2 = Max(⊆,{{1},{2}}∪pre(Down(⊆,{{1},{2}})))
= Max(⊆,{{1},{2}}∪pre({{},{1},{2}}))
= Max(⊆,{{1},{2}}∪{{1},{2}}) = {{1},{2}}
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Conclusion

Antichains can be used as representations of closed sets.

In the powerset construction Fin is a downward closed set.
On the powerset automaton pre(S) for closed S Is downward
closed. Thus we can use antichains in the classic backward
reachability algorithm.
To be efficient, further improvements are possible and will be
shown in antichain talk II.
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