-1-2016-10-18 - main -

-1-2016-10-18 - Scontent -

Software Design, Modelling and Analysis in UML

Content

Lecture 1: Introduction

2016-10-18

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

¢ An Analogy: Construction Engineering

o Floorplans as Formal Specification Language
e The Notion of Model
o “Floorplans” for Software

e Goals, Content and Non-Content of the Course

o The UML Standard Documents
o The Map

o A Brief History of UML

o UML Modes

e Course
o Organisation

o Lectures
o Tutorials
e Exam

2/34

An Analogy: Construction Engineering

-1-2016-10-18 - Smotivation -

e)
- -ﬁ 1 eiseh er
m ‘ Specification: N ~ (S wrln] 1

© The outer walls
will be built

Custorner Developer

5230, Ottoklages)

using AAC, the
Requirements: inner walls of
sand-lime
. ... bricks. 5
« The bathroom must . fStEEl door E“
not have a window. fames. 3
: £
LI £
Check whether design satisfies specification - Build house according to the plan.

before building the house.

A (semi-)formal design description and specification language -
every construction engineer has pretty much the same
understanding of it. (The customer need not understand it: a

construction engineer can “translate’)

3/34

Recall: Model

-1-2016-10-18 - Smotivation -

Definition. [Folk] A model is an abstract, formal, mathematical representation or
description of structure or behaviour of a (software) system.

Definition. (?, 425)
A modelis a concrete or mental image (Abbild) of something
or a concrete or mental archetype (Vorbild) for something.

Three properties are constituent:

(i) the image attribute (Abbildungsmerkmal), i.e. there is an entity
(called original) whose image or archetype the model s,

(i) the reduction attribute (Verkirzungsmerkmal), i.e. only those attributes
of the original that are relevant in the modelling context are represented,

(iii) the pragmatic attribute, i.e. the model is built in a specific context
for a specific purpose.

4/34

Floorplans as Models

-1-2016-10-18 - Smotivation -

|| _seeisekammar %
m Siich’S &
i A Specification: " ST alle E
B S— N S b
Customer Developer 5 H ki)
wilbebult i W z ¥
Requirements: innes wallsof + f 7~ 7 s 4
sand-lime] % 3
. ... bricks. 2 E
» The bathroom must o Steeldoor 5 £
not have a window. Harnes:
Floorplan abstracts from properties, e.g., Floorplan preserves properties, e.g.,
o kind, number, and placement of bricks, o house and room extensions (to scale),
o subsystem details (e.g., window style), o presence/absence of windows and doors,
o water pipes/wiring, o placement of subsystems (like windows),
o wall decoration e etc.

— construction engineers can efficiently work on an appropriate level of abstraction,
and find design errors before building the system (e.g. regarding bathroom windows).

5/34

Floorplans as Models

-1-2016-10-18 - Smotivation -

Document existing house: image.

———
Mtz g |
_ Speisekammer :)
a l Specification: < y T
.

© The outer walls

Customer Developer
will be built

http://wikimedia org (CC nc-sa 3.0, Bobthebuilder82)

using AAC, the

Requirements: inner walls of
sand-lime

. .. bricks.

o The bathroom must o Steel door
frames.

not have a window.
...

http//wikimedia.org (CC nc-sa 3.0, Ottoklages)

~—_/

Build house according to the plan: pre-image

6/34

Can We Have the Same for Software?

-1-2016-10-18 - Smotivation -

Construction Engineering;

7734

One Proposal: The Unified Modelling Language (UML)

-1-2016-10-18 - Smotivation -

Construction Engineering:

Cutomer Develaper

Software Engineering:

i

Class Diagrams State Machine Diagrams
(structure) (behaviour, constructive)

Sequence Diagrams
{behaviour, reflective)

8/34

-1-2016-10-18 - main -

Goals, Content and Non-Content of the Course

934

Goal: A Common, Precise Understanding of UML Models

-1-2016-10-18 - Scontents -

(i) We need to know D
how the words of the language look like: Syntax. e
(UML example: is this a proper UML state machine diagram?)

(i) We need to know
what a word of the language means: Semantics. ~

— Then we can formally analyse the model, e.g,, -
prove that the design satisfies the requirements, e
simulate the model, automatically generate test cases, - - y
automatically generate equivalent code, etc. L IR - e
(UML example: can sending event E and then G kill the object?) i T ‘

&

e UML is sometimes (neutrally, or as offence) called “semi-formal™:
the UML standard 77 is strong on (i), but weak(er) on (ii).
(“the diagram is self-explanatory”, “everybody understands the diagram” - No.)

e In the lecture: study the (!) syntax, define one () semantics.

10/34

-1-2016-10-18 - Scontents -

Date: August 2011

QI \i QIS o

Date: August 2011

e

OMG Unified Modeling Language™ (OMG UML),

OMG Unified Modeling Language™ (OMG UML), Superstructure
Infrastructure
Version 2.4.1

Version 2.4.1

OMG Document Number: formal/2011-08-06

a.
OMG Document Nurmber: formal/2011-08-05
URL: pec/UMLI2.4. Associated Normative Machine-Readable Files
Associated Normative Machine-Readable Files: v, omg.org/spec/UMLI201 10701 infrastucture i
oA omg org/spec/UMLI201 10701 nfastueture e itpwv.omg.org/spec/UMLI201 10701 Superstucture xmi
it . omg org/spec:UML20110701L0.xmi it omg.rg/spociUMLIZ0110701L.0x
i .o org/spec:UMLEZ0T1070' L xti it omg.0rg/speciUMLZ01107011L1 i
o oma org/speciUML0110701PrimitiveTypes. i i omg.org/spec/UML20110701L2 i
it omg.orgispeciML201107011L3. i

s
:
E
g
i
:
§

it mg.org/spec/UML20110701 StandardProfleL2.xmi

Version 2.4.1 supersedes formal/2010.05.04. hitpu.omg.org/spec/UML201 10701 StandardProfleL3.xmi

Version 2.4.1 supersedes formal/2010-05-06.

(230 pages) (748 pages)

1734

UML Diagrams q, 694)

-1-2016-10-18 - Scontents -

OCL

Diagram

t

Structure Behavior
Diagram Diagram
i I [
: Component Object Activity Use Case State Machine
Class Diagram Diagram Diagram Diagram Diagram Diagram
Composite Deployment Package Interaction
Diagram Diagram Diagram Diagram
A
[
Profile Diagram Sequence Interaction
Overview
Diagram Diagram
Communication Timing
Diagram Diagram

12/34

Course Map 13-3

(consg,Sndg)
U

(o1,1) -+

2
Outlook: Concrete vs. Abstract Syntax
D
[z:Int
niC. p:Cos
p:Coa f(Int) : Bool
gel_a(): Int s Int
p:Coa
n D
¢ B
7 get_s() : Int
7o = ({Int, Bool},
{¢, D},
{z: Int,p: Co1,n:Ci},
{C+ {p,n}, D= {p,=}},
{f : Int — Bool, get_z : Int},
’—“lp {C = 0,D — {f, get_z}})
D n)
Tf(h’S; * Bool 0 c
get_a() : Int B
C
wiC.
p:Con
D
2 @ Int
g p:Cos
] T{Int) Bool
7 get_a(): Intx: Int
] p: Cos
e
g

13/34

n ‘ D

0. 0.1 x: Int
I:: c 0 T(Int) - Bool
Moy Leco

D

get_z(): Int

14/34

Visualisation of Implementation

-1-2016-10-18 - Scontents -

o The class diagram syntax can be used to visualise code:
provide rules which map (parts of) the code to class diagram elements.

1| package pac;
; import pac.D;
. public class C {
public D n;
public void print_nx() (

System.out. printf(
"%i\n", n.get_x()): };

13| public C() (};
}

package pac;

import pac.C;

public class D {
private int X;

public int get_x()
{ return x; };

public D() {):
}

pac
C D
n X:int
print_nx(); 0..1 | get_x():int;
; D():

Visualisation of Implementation:

(Useless) Example

-1-2016-10-18 - Scontents -

P

e open favourite IDE,
o open favourite project,
e press “generate class diagram”

e wait...wait... wait...

e ca. 35 classes,
e ca. 5000 LOCC#

15/34

16734

Table of Contents

Scontents

1-2016-10-18

o Introduction
e Semantical Domain

Modelling Structure:

e OCL Syntax & Semantics

o Object Diagrams

o Class Diagrams

o Behavioural Models + VML Style

Modelling Behaviour:

o Constructive:
Core State Machines
Hierarchical State Machines
Model-based Testing

o Reflective:
Live Sequence Charts

The Rest:

e Inheritance
e Meta-Modeling
o Putting it all together: MDA, MDSE

Table of Non-Contents

1-2016-10-18 - Scor

Everything else, including

Development Process

UML is only the language for artefacts. But: we'll discuss exemplarily,

(VL1)
(VL 2)

(VL 3-4)
(VL5)
(VL6-9)
(VL10)

(VL11-14)
(VL15,17)
(VL16)

(VL18-19)

(VL20)
(VL 21)
(VL22)

where in an abstract development process which means could be used.

How to come up with a good design
UML is only the language to write down designs.
But: well have a couple of examples.

Artefact Management
Versioning, Traceability, Propagation of Changes.

Every little bit and piece of UML
Boring. Instead we learn how to read the standard.

Object Oriented Programming
Interestingly, inheritance is one of the last lectures.

17/34

18/34

-1-2016-10-18 - Scontent -

-1-2016-10-18 - main -

Content

e An Analogy: Construction Engineering

(e Floorplans as Formal Specification Language
(e The Notion of Model
(e “Floorplans” for Software

e Goals, Content and Non-Content of the Course

(e The UML Standard Documents
(e The Map

o A Brief History of UML

o UML Modes

e Course
(e Organisation

(o Lectures
(e Tutorials
(e Exam

A Brief History of UML

19/34

2034

A Brief History of the Unified Modelling Language (UML)

~1-2016-10-18 - Shist -

o Boxes/lines and finite automata are used to visualise software for ages.

e 1970’s, Software Crisis™

Idea: learn from engineering disciplines to handle growing complexity.
Modelling languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams

o Mid 1980's: Statecharts (?), StateMate™ (?)

o Early 1990's, advent of Object-Oriented-Analysis/Design/Programming

- Inflation of notations and methods, most prominent:

A Brief History of the Unified Modelling Language (UML)

~1-2016-10-18 - Shist -

o Boxes/lines and finite automata are used to visualise software for ages.

e 1970’s, Software Crisis™

Idea: learn from engineering disciplines to handle growing complexity.
Modelling languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams

o Mid 1980’s: Statecharts (?), StateMate™ (?)

o Early 1990’s, advent of Object-Oriented-Analysis/Desigr
- Inflation of notations and methods, most prominent:

e Object-Modeling Technique (OMT)
?

/N Generalzation / Inheritance
$ Class operation / Class attibute

Association / Link

Mulpicy - one

@ Mutpiciy: many

e
——> naaregation

italic Abstract class / Abstract operation

List

add(Object) - void
insertinl, Object) - voidl
gel(iny : Obiect
getSes() it

—

LinkedList Arrayist

next
E
Entry e

next: Entry header

$MAX_SIZE int = 100

int=0 elements | Array

‘add(Object): void

insert

getfint

add(Object) - void

getSize() - int

insert(int, Object) - void
getlint): Object
getSize() : int

fint, Object) - void
1) Object

$listToArray(List) Array | 3

Object

21/34

21/34

A Brief History of the Unified Modelling Language (UML)

~1-2016-10-18 - Shist -

o Boxes/lines and finite automata are used to visualise software for ages.

e 1970’s, Software Crisis™

Idea: learn from engineering disciplines to handle growing complexity.
Modelling languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams

o Mid 1980's: Statecharts (?), StateMate™ (?)

o Early 1990's, advent of Object-Oriented-Analysis/Design/Programming
- Inflation of notations and methods, mo~ ’

e Object-Modeling Technique (OMT) o B o y Kmse_p N
(7)) KlasseD ! / !
’ - W S
e Booch Method and Notation FF M -4~ e __ -
7) KasseA)= 7~ t . ~ 40 KasseP |

: [\ | L
- W ~ 7) KasseB i_l Klasse G |
! I

= £

i e Lok Abstrakte Kiasse

A\ % —W Assoziation
) Kasse C ,(_\ - Wararbung
RS e Eigentum
e O——— Verwendung

~1-2016-10-18 - Shist -

21734
A Brief History of the Unified Modelling Language (UML)
o Boxes/lines and finite automata are used to visualise software for ages.
e 1970’s, Software Crisis™
Idea: learn from engineering disciplines to handle growing complexity.
Modelling languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams
o Mid 1980’s: Statecharts (?), StateMate™ (?)
o Early 1990’s, advent of Object-Oriented-Analysis/Design/Programming
- Inflation of notations and methods, most prominent:
e Object-Modeling Technique (OMT) "
) use case mode
@)) >
° 3;>och Method and Notation —
e Object-Oriented Software Engineering (OOSE) moybeeessmgriat /T
(7) sv? fed by implem n\ljd by
Each “persuasion’ selling books, tools, seminars... @) . ”’/”f D‘D .
)_@/D\O L)
domainobject analysismodel designmodel implementation testing model

model

21/34

A Brief History of the Unified Modelling Language (UML)

~1-2016-10-18 - Shist -

o Boxes/lines and finite automata are used to visualise software for ages.

e 1970’s, Software Crisis™
Idea: learn from engineering disciplines to handle growing complexity.
Modelling languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams

o Mid 1980's: Statecharts (?), StateMate™ (?)

o Early 1990's, advent of Object-Oriented-Analysis/Design/Programming
- Inflation of notations and methods, most prominent:

e Object-Modeling Technique (OMT)
™

e Booch Method and Notation
O]

e Object-Oriented Software Engineering (OOSE)
™

Each “persuasion” selling books, tools, seminars...

o Late 1990’s: joint effort of “the three amigos” yielded UML 0.x and 1.x

The standards are published by Object Management Group (OMG), “international, open membership,
not-for-profit computer industry consortium”. Much criticised for lack of formality.

o Since 2005: UML 2.x, split into infra- and superstructure documents.

Recall: UML Diagrams (, 694

~1-2016-10-18 - Shist -

OCL

Diagram

t

Structure Behavior
Diagram Diagram

7 §

21/34

7 T 7 [[¥
: Component Object Activity Use Case State Machine
Class Diagram Diagram | Diagram Diagram Diagram Diagram
Composite Deployment Package Interaction
Diagram Diagram Diagram Diagram
2
[
Profile Diagram Sequence Interaction
Overview
Diagram Diagram
Communication Timing
Diagram Diagram
?

22/34

-1-2016-10-18 - main -

UML Modes

23/34

Floorplan and UML Modes!

-1-2016-10-18 - Smodes -

Sketch: Blueprint: Program:
hlil : ‘\ d}[‘jﬁ I - ‘\ Thgengy

I e O e

=g 7 =8

|
E%MM

EN
+ wiringplanll|+ windows |l|
+| - 5

With UML it's the same [http://martinfouler.com/blikil:

“[..] people differ about what should be in the UML because
there are differing fundamental views about what the UML
should be.

So when someone elses view of the UML seems rather different
to yours, it may be because they use a different UmlMode to
you.”

L4/34

Floorplan and UML Modes!

-1-2016-10-18 - Smodes -

With

Sketch: Blueprint:
Lf iy = [
- I
0 CH ™ ol i
[_ =]
14— Tl =
Sketch Blueprint Programming Language

In this UmIMode developers use the UML
to help communicate some aspects of a
system. [..]

Sketches are also useful in documents, in
which case the focus is communication
ra- ther than completeness. [...]

The tools used for sketching are
lightweight drawing tools and often peo-
ple aren't too particular about keeping to
every strict rule of the UML.

Most UML diagrams shown in books, such
as mine, are sketches. Their emphasis is
on selective communication rather than
complete specification.

Hence my sound-bite ‘comprehensive-
ness is the enemy of comprehensibility”

[...] In forward engineering the idea is that
blueprints are developed by a designer
whose job is to build a detailed design for
a programmer to code up.

That design should be sufficiently com-
plete that all design decisions are laid out
and the programming should follow as
a pretty straightforward activity that re-
quires little thought. [...]

Blueprints require much more sophisti-
cated tools than sketches in order to han-
dle the details required for the task. [..]

Forward engineering tools support dia-
gram drawing and back it up with a
repository to hold the information. [...]

If you can detail the UML enough, and
provide semantics for everything you
need in software, you can make the UML
be your programming language.

Tools can take the UML diagrams you
draw and compile them into executable
code.

The promise of this is that UML is a higher
level language and thus more productive
than current programming languages.

The question, of course, is whether this
promise is true.

I don't believe that graphical program-
ming will succeed just because it's graph-

you.

UML-Mode of the Course

~1-2016-10-18 - Smo

So, the “mode” fitting the lecture best is AsBlueprint.

Aim of the Course:

ical. [..]

o show that UML can be precise - to avoid misunderstandings.

o allow formal analysis of models on the design level - to find errors early.

o be consistent with (informal semantics in) ? as far as possible.

Side Effects:
After the course, you should...

o have a good working knowledge of UML,

¢ have a good working knowledge of software modelling,

o be able to

efficiently and effectively work in AsSketch mode,

o be able to define your own UML semantics for your context/purpose,

or define your own Domain Specific Languages as needed.

L4/34

25/34

-1-2016-10-18 - Scontent -

-1-2016-10-18 - main -

Content

e An Analogy: Construction Engineering

(e Floorplans as Formal Specification Language
(e The Notion of Model
(e “Floorplans” for Software

e Goals, Content and Non-Content of the Course

(e The UML Standard Documents
(e The Map

o A Brief History of UML

o UML Modes

e Course
(e Organisation

(o Lectures
(e Tutorials
(e Exam

Formalia

26/34

27/34

Formalia: Lectures

-1-2016-10-18 - Sformal

o Lecturer: Dr. Bernd Westphal

e Support: Claus Schatzle

o Homepage: http://swt.informatik.uni-freiburg.de/teaching/WS2016-17/sdmauml

o Time/Location: Tuesday, Thursday, 8:00 - 10:00 / here (building 51, room 03-026)

o Course language: English (slides/writing, presentation, questions/discussions)

o Presentation: half slides/half on-screen hand-writing — for reasons

o Script/Media:

o slides with annotations on homepage,
typically soon after the lecture

o recording on ILIAS with max. 1 week delay
(links on homepage)

o Break:

o Well have a 10 min. break in the middle of each event from now on,

Formalia: Exercises and Tutorials

~1-2016-10-18 - Sformalia -

e You should work in groups of approx. 3, clearly give names on submission.
o Please submit via ILIAS (cf. homepage); paper submissions are tolerated.

o Schedule:

Week N, Thursday, 8-10 Lecture Al (exercise sheet A online)
Week N + 1, Tuesday 8-10 Lecture A2
Thursday 8-10 Lecture A3
Week N + 2, Monday, 12:00 (exercises A submission)
Tuesday, 8:00 (exercises A submission)
8-10 Tutorial A
Thursday 8-10 Lecture B1 (exercise sheet B online)

¢ Rating system: “most complicated rating system ever”

o Admission points (good-will rating, upper bound)
(“reasonable proposal given student’s knowledge tutorial”)

o Exam-like points (evil rating, lower bound)
(“reasonable proposal given student’s knowledge tutorial”)

10% bonus for early submission.

o Tutorial: Plenary,

o Together develop one good solution based on selection of early submissions (anonymous) - there is

no “Musterldsung” for modelling tasks.

2834

29/34

Formalia: Exam

~1-2016-10-18 - Sforr

o Exam Admission:

Achieving 50% of the regular admission points in total
is sufficient for admission to exam.

Typically, 20 regular admission points per exercise sheet;
some exercise sheets have bonus tasks.

o Exam Form:

o oral for BSc and on special demand (Erasmus),
o written for everybody else (if sufficiently many candidates remain).

Scores from the exercises do not contribute to the final grade.

o Exam Date:
[Please remind me in early December that we need to agree on an exam date.

30/34

User’s Guide

~1-2016-10-18 - Sforr

o Approach:

The lectures is supposed to work as a lecture: spoken word + slides + discussion
Itis not our goal to make any of the three work in isolation.

o Interaction:

Absence often moaned but it takes two: please ask/comment immediately.

o Exercise submissions:

Each task is a tiny little scientific work:

(i) Briefly rephrase the task in your own words.
(i) State your claimed solution.
(iii) Convince your reader that your proposal is a solution (proofs are very convincing).

31/34

User’s Guide

Example:
* App
Task: Given a square with side length @ = 19.1. What is the length of the longest

The straight line fully inside the square?

Itis

Submission A: Submission B:
The length of the longest straight line fully
inside the square with side lengtha = 19.1
is 27.01 (rounded).
¢ Inte 27 The longest straight line inside the square
Abst is the diagonal. By Pythagoras, its length is
va? + a?. Inserting a = 19.1 yields 27.01
(rounded).

o Exercise submissions:

Each task is a tiny little scientific work:
(i) Briefly rephrase the task in your own words.
(i) State your claimed solution.

(iii) Convince your reader that your proposal is a solution (proofs are very convincing).

- 31734

User’s Guide

Example:
* App
Task: Given a square with side length a = 19.1. What is the length of the longest

The straight line fully inside the square?

Itis
Submission A: Submission B:
The length of the longest straight line fully
inside the square with side lafisth @ = 19.1
is 27.01 (rounded).
* Inte The longest inside the square

Abst is the diagon agoras, its length is
Va2 + a2 In g a = 19.1 yields 27.01
(rounded).

o Exercise submissions:

Each task is a tiny little scientific work:
(i) Briefly rephrase the task in your own words.
(i) State your claimed solution.

(iii) Convince your reader that your proposal is a solution (proofs are very convincing).

- 31/34

~1-2016-10-18 - main -

Literature

Literature: Modelling

-1-2016-10-18 - Slit -

¢ !‘ Informatik Spedarum

o W. Hesse, H. C. Mayr: Modellierung in der Softwaretech-
nik: eine Bestandsaufnahme,
Informatik Spektrum, 31(5):377-393,2008.

o O.Pastor, S. Espana, J. |. Panach, N. Aquino: Model-Driven
Development,

. 5 Informatik Spektrum, 31(5):394-407, 2008.
: "' "Hw o M. Glinz: Modellierung in der Lehre an Hochschulen: The-

sen und Erfahrungen,
Informatik Spektrum, 31(5):408-424, 2008.

http://wuw.springerlink.com/content/0170-6012

e U. Kastens, H. Kleine Biining: Modellierung - Grundlagen und Formale Methoden, 2. Auflage,
Hanser-Verlag, 2008.

32/34

33/34

Literature: UML

-1-2016-10-18 - Slit -

e OMG: Unified Modeling Language Specification, Infrastructure, 2.4.1
e OMG: Unified Modeling Language Specification, Superstructure, 2.4.1
o OMG: Object Constraint Language Specification, 2.0

All three: http://www.omg. org (cf. hyperlinks on course homepage)

o A Kleppe,]. Warmer: The Object Constraint Language,
Second Edition, Addison-Wesley, 2003.

o D.Harel, E. Gery: Executable Object Modeling with Statecharts,
IEEE Computer, 30(7):31-42,1997.

e B.P. Douglass: Doing Hard Time, Addison-Wesley, 1999.

o B. P. Douglass: ROPES: Rapid Object-Oriented Process for Embedded Systems, i-Logix Inc.,
Whitepaper, 1999.

o B. Oesterreich: Analyse und Design mit UML 2.1,
8. Auflage, Oldenbourg, 2006.

e H. Stoerrle: UML 2 fiir Studenten, Pearson Studium Verlag, 2005.

3434

