Software Design, Modelling and Analysis in UML

Lecture 1: Introduction
2016-10-18

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Recall: Model

n. [Folk] A model is an abstract, formal, mathematical representation or
description of structure or behaviour of a (software) system.

n. (2, 425)

a concrete or mental image (Abbild) of something
or a concrete or mental archetype (Vorbild) for something.
Three properties are constituent:

(i) the image attribute (Abbildungsmerkmal), i.e. there is an entity

(called original) whose image or archetype the model is,
ion attribute (Verkirzungsmerkm: only those attributes
of the original that are relevant in the modelling context are represented,
the pragmatic attribute, i.e. the model is bui
for a specific purpose.

in a specific context

Content

o An Analogy: Construction Engineering

‘o Floorplans as Formal Specification Language
The Notion of Model

loorplans” for Software

Goals, Content and Non-Content of the Course
« The UML Standard Documents
o The Map

« A Brief History of UML
* UML Modes
« Course

Organisation

U
Floorplans as Models
Recuiements i
e —
fleredion
Floorplan abstracts from properties, e.g.. Floorplan preserves properties, eg..
« kind, number, and placement of bricks, « house and room extensions (to scale),
« subsystem details (e.g. window style), « presence/absence of windows and doors,
« water pipes/wiring, « placement of subsystems (like windows),
« wall decoration . etc.
— construction engineers can efficiently work on an appropriate level of abstraction,
and find design errors before building the system (e.g. regarding bathroom windows).
53

An Analogy: Construction Engineering

[E—

P e—
ity

Check whether design satisfies specification - Build house according to the plan.
before building the house.
A (semi-Jformal design description and specification language -
onstruction engineer has pretty much the same
understanding of it. (The customer need not understand it: a
construction engineer can “translate’)

Floorplans as Models

Document existing house: image.

Build house according to the plan: pre-image

b3

Can We Have the Same for Software?

Construction Engineering:

Goal: A Common, Precise Understanding of UML Models

(i) We need to know
how the words of the language look like: Syntax

(UML example: s this a proper UML state machine diagram?)

(i) We need to know
whata word of the language means: Semantics.

— Then we can formally analyse the model, eg.
prove that the design satisfies the requirements,
simulate the model, automatically generate test cases,
automatically generate equivalent code, etc.

(UML example: can sending event E and then G kill the object?)

the UML standard ?? is strong on (i), but weak(er) on
is self-expl Y. “everybody the diagram” - No.)

(‘the diagr

© e Inthe lecture: study the (!) syntax, define one (!) semantics.

i 10731

One Proposal: The Unified Modelling Language (UML)

Construction Engineering:

Class Diagrams State Machine Diagrams
(structure) (behaviour, constructive)

Sequence Diagrams.
(behaviour, reflective)

G =|

[0}

[QIMIG! =

OMG Unifed Modeiing Languager (OMG UML),
MG Uniid Modelng Language™ (OMG UI Superstuciure
iasiriclure

(230 pages) (748 pages)

e

Goals, Content and Non-Content of the Course

94
UML Diagrams ¢. 694
T
camponent : St achine _
Disgram Diagram Diagram

Sequence
Diagram

Timing
olagram

Communieation

123

Visualisation of Implementation

Course Map

i = (0, conss, Sndy)), e

: (Useless) Example

open favourite IDE,

open favourite project,

press “generate class diagram”

wait....wait.

wait,

|

I

BBl

[

Lo

 ca 35classes,
* ca 5000L0CC#

1374

Outlook: Concrete vs. Abstract Syntax

Bool, get_z
(€ 0.D > {f get_a

Table of Contents

« Introduction
« Semantical Domain

Modelling Structure:
« OCL Syntax & Semantics
« Object Diagrams
« Class Diagrams
« Behavioural Models + UM Shyle
Modelling Behaviour:
« Constructive:
Core State Machines
Hierarchical State Machines
Model-based Testing
« Reflect
Live Sequence Charts
The Rest:

« Inheritance
« Meta-Modeling
« Putting it all together: MDA, MDSE

L
(vVL2)

(VL3-4)
(vL5)
(VL6-9)
(VL10)

(VL11-14)
(VL15,17)
(VL16)

(VL18-19)

(VL20)

1473

Visualisation of Implementation

« The class diagram syntax can be used to visualise code:
provide rules which map (parts of) the code to class diagram elements.

15734

Table of Non-Contents

Everything else, including

« Development Process
UMLis only the language for artefacts. But: well discuss exemplarily,
where in an abstract development process which means could be used.

« How to come up with a good design
UMLis only the language to write down designs.
But: well have a couple of examples.

« Artefact Management
Versioning, Traceability. Propagation of Changes.

« Every little bit and piece of UML
Boring. Instead we learn how to read the standard.

« Object Oriented Programming
Interestingly. inheritance is one of the last lectures.

18734

Content

o An Analogy: Construction Engineering
 Floorplans as Formal Specification Language
= The Notion of Model
 “Floorplans” for Software

o Goals, Content and Non-Content of the Course
W. ‘The UML Standard Documents
 The Map
o ABrief History of UML
« UML Modes
o Course
L« organisation
* Lectures

* Tutorials
* Exam

1954

A Brief History of the Unified Modelling Language (UML)

« Boxes/lines and finite automata are used to visualise software for ages.

 1970's, Software Crisis™
Idea: learn from engineering disciplines to handle growing complexity.
Modelling languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams.

© Mid 19807s: Statecharts (2), StateMate™ (?)

« Early 1990's, advent of Object-Oriented-Analysis/Desigr
~ Inflation of notations and methods, most prominent:

 Object-Modeling Technique (OMT)
@

20

A Brief History of UML

2073

A Brief History of the Unified Modelling Language (UML)

« Boxes/lines and finite automata are used to visualise software for ages.

© 1970, Software Crisis™

Idea: learn from eng g to handle growing
Modelling languag

Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams
 Mid1980’s: Statecharts (?), StateMate™ (2)
« Early 1990's, advent of Object-Oriented-Analysis/Design/Programming

~ Inflation of notations and methods, mo

« Object-Modeling Technique (OMT)
)
« Booch Method and Notation

@

) Kassec T
N -—
e Veraending

2

A Brief History of the Unified Modelling Language (UML)

Boxes/lines and finite automata are used to visualise software for ages.

1970's, Software C
Idea: learn from engineering disciplines to handle growing complexity.
Modelling languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams

™

Mid 19807s: Statecharts (?), StateMate™ (?)

Early 1990's, advent of Object-Oriented-Analysis/Design/Programming
~ Inflation of notations and methods, most prominent:

2

A Brief History of the Unified Modelling Language (UML)

« Boxes/lines and finite automata are used to visualise software for ages.

« 1970's, Software Crisis™
Idea: learn from engineering disciplines to handle growing complexity.
Modelling languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams

* Mid 1980’s: Statecharts (?), StateMate™ (2)

Early 1990's, advent of Object-Oriented-Analysis/Design/Programming
- Inflation of notations and methods, most prominent:

* Object-Modeling Technique (OMT)

0 E:E
@ =

. N:i, Method and Notation =

« Object-Oriented Software Engineering (OOSE) gt /TN N
™ o 3.74:

Each “persuasion” selling books, tools, seminars. o ©
o DD[%

e e i

2

A Brief History of the Unified Modelling Language (UML)

Recall: UML Diagrams .69

« Boxes/lines and finite automata are used to visualise software for ages.
« 1970's, Software Crisis™

Idea: lear from engineering disciplines to handle growing complexity.
Modelling languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams.

© Mid1980’s: Statecharts (?), StateMate™ (7)

« Early 1990's, advent of Object-Oriented-Analysis/Design/Programming
~ Inflation of notations and methods, most prominent:
 Object-Modeling Technique (OMT)

¢
« Booch Method and Notation
@
« Object-Oriented Software Engineering (OOSE)
¢

Each “persuasion” selling books, tools, seminars....

t effort of “the three amigos” yielded UML O.x and 1.x
The standards are published by Object Group (OMG). open

not-for-profit computer industry consortium” Much criticised for lack of formality.

« Since 2005: UML 2.x, split into infra- and superstructure documents.

Floorplan and UML Modes!

Sketch: Blueprint: Program:

XX

oo

With UML it's the same [nttp: //martinfouler. con/blikil:
“[..] people differ about what should be in the UML because

there are differing fundamental views about what the UML
should be.

So when someone elses view of the UML seems rather different
to yours, it may be because they use a different UmiMode to
you."

State Machine
Diagram

_

3.5%_
isgram

Floorplan and UML Modes!

Sketch:

Blueprint:

2234

Program:

With|

Blueprint

0 help communicate some aspects of @
sysem. (]

Sketche arealo useflin documens in
which case the focus is communication

L
biueprints are developed by designer

Programming Language
you can detal the UML enogh. and

vide semantics for everything you
ed)

That design should be suffcietly com-

Tools can take the UML diagrams you
draw and

ra- T

The tools used for sketching are

nd the programming should follow as
a prety straghtforward actiy that -
T

code

ple arent too particular about keeping to
every stict rul o the UML.

Blusprints requie much more sophist
cated toos than sketchesinorer o

h
‘s mine, e sketches. Their emphasis is
on selctive communication rather than
complete specifcation.

Hence my sound-bite “comprehensive-
ness s the enemy of comprehensibily”

Ll

Forward engineerng tools support dia-
gram drawing and back it up with @
L

b
level language and thus more productive
than current programming languages.
The queston, of course. s whether this
promise s te.

1 dont beleve that graphical program-

il]

ou

.

za7

UML Modes

23/

UML-Mode of the Course

So, the “mode” fitting the lecture best is AsBlueprint.

Aim of the Course:

« show that UML can be precise - to avoid misunderstandings.

« allow formal analysis of models on the design level - to find errors early.
? as far as possible.

 be consistent formal semantics

Side Effects:

After the course, you should....

« have a good working knowledge of UML,

« have a good working knowledge of software modelling,

« be able to also efficiently and effectively work in AsSketch mode,

« be able to define your own UML semantics for your context/purpose,
or define your own Domain Specific Languages as needed

254

Content

o An Analogy: Construction Engineering

 Floorplans as Formal Specification Language
= The Notion of Model
« “Floorplans” for Software

« Goals, Content and Non-Content of the Course
 The UML Standard Documents
+ The Map

« ABrief

tory of UML
« UML Modes

o Lectures

* Tutorials
* Exam

26734

Formalia: Exercises and Tutorials

« You should work in groups of approx. 3, clearly give names on submission.
« Please submit via ILIAS (cf. homepage); paper submissions are tolerated.
» Schedule:

Week N, Thursday, 810 Lecture Al (exercise sheet A online)
Week N + 1, Tuesday 8-10 Lecture A2
Thursday 8-10 Lecture A3
Week N +2, Monday, 1200 (exercises A early submi
Tuesday, 8:00 (exercises A late submission)
8-10 Tutorial A
Thursday 8-10 Lecture B1 (exercise sheet 5 online)

‘most complicated rating system ever’

« Admission points (good-will rating, upper bound)
reasonable proposal given student’ knowledge before tutori

« Exam-like points (evil rating, lower bound)
(reasonable proposal given students knowledge aft

tutorial’)

10% bonus for early submission.

« Tutorial: Plenary, not recorded.

« Together develop one good solution based on selection of early submissions anonymous) ~ there is
no “Musterlgsung for modelling tasks.

29534

Formalia

27

Formalia: Exam

« Exam Admission:

Achieving 50% of the regular admission points in total
is suf nt for admission to exam.

Typically, 20 regular admission points per exercise sheet;
some exercise sheets have bonus tasks.

« Exam Form:
« oral for BSc and on special demand (Erasmus),
o written for everybody else (if sufficiently many candidates remain).

Scores from the exercises do not contribute to the final grade.

Exam Date:

Please remind me in early December that we need to agree on an exam date.

Formalia: Lectures

.

.

.

Lecturer: Dr. Bernd Westphal
Support: Claus Schatzle

Bttp://swt. informatik.uni-freiburs.d & - 17/ sdnaunl
Time/Location: Tuesday, Thursday, 8:00 - 10:00 / here (building 51, room 03-026)

Course language: English (slides/writing, presentation, questions/discussions)

Presentation: half slides/half on-screen hand-wri

g - for reasons

Script/Media

« slides with annotations on homepage,
typically soon after the lecture

« recording on ILIAS with max. 1 week delay

inks on homepage)

Break:

« Wellhave a 10 min. break in the middle of each event from now on,
unless a majority objects now.

User’s Guide

Approach:

The lectures is supposed to work as a lecture: spoken word -+ slides + discussion
Itis not our goal to make any of the three work in isolation.

Interaction:

Absence often moaned but it takes two: please ask/comment immediately.

Exercise submissions:

Each task is a tiny little scient
(i) Briefly rephrase the task in your own words,

State your claimed solution.

Convince your reader that your proposal is a solution (proofs are very convincing).

28/

31

User’s Guide User’s Guide

Example: ppp BRI
Task: Given a square with side length « = 19.1. What is the length of the longest Task: Given a square with side length a = 19.1. What is the length of the longest
straight line fully inside the square? straight line fully inside the square?

Submission A: Submission B: Submission A: Submission B:

The length of the longest straight line fully
i ide length o = 1.1

The length of the longest straight line fully
inside the square with i

ide the square vith side [aioth o — 19.1 i
152701 rounded). byt Literature
* Inte 27 The longest straight line inside the square * Intel The longest inside the square
Abst is the diagonal. By Pythagoras, ts length is Abs: is the diagon oras, itslength is
Va? 4 a2 Inserting a. = 19.1 yields 27.01 Va? + a2, nhg a = 19.1 yields 27.01
(rounded). (rounded).
« Exercise submissions: « Exercise submission:
Each task is a tiny little scientific work: Each task is a tiny little scientific work:

(i) Briefly rephrase the task in your own words.

(i) Briefly rephrase the task in your own words.
(i) State your claimed solution.

State your claimed solution.

ii) Convince your reader that your proposal is a solution (proofs are very convincing).

Convince your reader that your proposal is a solution (proofs are very convincing).

3l 313 32

Literature: Modelling Literature: UML

+ OMG: Unified Modeling Language Speci

+ W Hesse, H.C. Mayr. Modelierung in der Softiaretech- + OMG: Unified Modeling Language Specification, Superstructure, 2.4.1

nik: eine Bestandsaufnahme, » OMG: Object Constraint Language Specification, 2.0

Informatik Spektrum, 31(5):377-393, 2008.
 O.Pastor, S. Espana, | |. Panach, N. Aquino: Model-Driven

Development,

Informatik Spektrum, 31(5):394-407, 2008. j A Kleppe,]. Warmer: The Object Constraint Language,
M. Glinz: Modellierung in der Lehre an Hochschulen: The- Second Edition, Addison-Wesley, 2003.
" senund Erfahrungen,
r - Informatik Spektrum, 31(5):408-424, 2008.

ation, Infrastructure, 2.4.1

All three: http://www.omg. org (cf. hyperlinks on course homepage)

« D. Harel, E. Gery: Executable Object Modeling with Statecharts,
IEEE Computer, 30(7)31-42, 1997.

http://uww.springerlink.com/content/0170-6012 + B.P.Douglass: Doing Hard Time, Addison-Wesley, 1999.
[+ B.P.Douglass: ROPES: Rapid Object-Oriented Process for Embedded Systems, i-Logix Inc.,
o U.Kastens, H. Kleine Biining: Modellierung - Grundlagen und Formale Methoden, 2. Auflage, Whitepaper, 1999.

Hanser-Verlag, 2008.

B. Oesterreich: Analyse und Design mit UML 2.,
8. Auflage, Oldenbourg, 2006.

H. Stoerrle: UML 2 fiir Studenten, Pearson Studium Verlag, 2005.

33 343

