-14 - 2016-12-22 - main -

- 14 - 2016-12-22 - Scontent -

Software Design, Modelling and Analysis in UML

Lecture 14: Hierarchical State Machines [

2016-12-22

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Content

o Missing Pieces: Create and Destroy Trans-
formers

o Putting It All Together (Again)

o Initial States
o Consistency wrt. OCL Constraints

o Hierarchical State Machines
<o Overview
e Abstract Syntax: States

® pseudo-states, regions, ...

e (Legal) System Configurations
e Abstract Syntax: Transitions

e Enabledness of Fork/Join Transitions

® scope, priority, maximality, ...

2/42

14 - 2016-12-22 - main

Putting It All Together

3/42

Initial States

- 14 - 2016-12-22 - Stogether -

Recall: a labelled transition systemis (S, A, —, Sp).
We have

e S: system configurations (o, ¢)
(cons,Snd)
%

(o',€).

o —: labelled transition relation (o, &)

u

Wanted: initial states .Sy,

Proposal:
Require a (finite) set of object diagrams &' as part of a UML model

(€D, SM,69). @j
=

So = {(0,e) |0 € GTH(OD), ODe O, eempty}.

And set

Other Approach: (used by Rhapsody tool) multiplicity of classes (plus initialisation code).
We can read that as an abbreviation for an object diagram.

4/12

Semantics of UML Model (So Far)

- 14 - 2016-12-22 - Stogether -

The semantics of the UML model
M= (€D, 94,09)

where

e some classes in ¢’ Z are stereotyped as ‘signal (standard),
some signals and attributes are stereotyped as ‘external (non-standard),

o there is a 1-to-1 relation between classes and state machines,
o U9 is aset of object diagrams over €' 2,

is the transition system (.5, A, —, Sy) constructed on the previous slide(s).

The computations of M are the computations of (S, A, —, Sp).

- 14 - 2016-12-22 - Stogether -

OCL Constraints and Behaviour Sy A
(s
mé)é)‘fx/"vks
o Let M = (¥2, 54 ,0%) be a UML model. condind D> bV §;=54 inply %30

v
o We call M consistent iff, for each OCL constraint expr € Inv(¢92), °
o [= expr for each “reasonable point” (o, €) of computations of M.

(Cf. tutorial for discussion of “reasonable point”)

Note: we could define Inv(.#2#) similar to Inv(% 2).

hg: -
\ ‘j"‘)ol
< E/x=-1; R=0 —/s, B
&, - (s f
G(u)(%):z& / X

del% & oo wot &40) '
lonl ¢ i ok (<=0) w !
Cotd & v i X720 '
Conliee & i o X7 -1

S < \{%g\

5/42

6/42

-14 - 2016-12-22 - main -

Last Missing Piece: Create and Destroy Transformer

702

Transformer: Create

- 14 - 2016-12-22 - Sactlanged -

abstract syntax concrete syntax

create(C, expr,v) oe.v = vew
intuitive semantics

Create an object of class C' and assign it to attribute v of the
object denoted by expression ezpr.
well-typedness
expr : Tp,v € atr(D),
atr(C) = {(vi : Ti, expr?) | 1 <i < n}

semantics

observables

(error) conditions
I[expr] (o, B) not defined.

w= (e d)‘i r v D).?—/

- ke il as
ﬂbv(q Z:WA(»\)C(;

= ven D)

Lty
X= '1’7”?.,.“}%- '{'\"f)?r;

8/s2

Transformer: Create

- 14 - 2016-12-22 - Sactlanged -

abstract syntax concrete syntax
create(C, expr,v)
intuitive semantics
Create an object of class C' and assign it to attribute v of the
object denoted by expression ezpr.
well-typedness
expr : Tp,v € atr(D),
atr(C) = {(vy : Th, expr?) | 1 <i < n}
semantics

observables

(error) conditions
I[expr] (o, B) not defined.

e We use an “and assign’-action for simplicity — it doesn't add or remove expressive power,
but moving creation to the expression language raises all kinds of other problems since
then expressions would need to modify the system state.

o Also for simplicity: no parameters to construction (~ parameters of constructor).
Adding them is straightforward (but somewhat tedious).

How To Choose New Identities?

- 14 - 2016-12-22 - Sactlanged -

¢ Re-use: choose any identity that is not alive now, i.e. not in dom(o).

e Doesn't depend on history.
e May “undangle” dangling references - may happen on some platforms.

o Fresh: choose any identity that has not been alive ever,
i.e. not in dom(o) and any predecessor in current run.

e Depends on history.
o Dangling references remain dangling - could mask “dirty” effects of platform.

8/42

9/42

Transformer: Create

- 14 - 2016-12-22 - Sactlanged -

abstract syntax
create(C, expr,v)
intuitive semantics
Create an object of class C' and assign it to attribute v of the
object denoted by expression expr.
well-typedness

concrete syntax

expr : Tp,v € atr(D),
atr(C) = {(v1 : Th, expr?) | 1 < i < n}
semantics
((Ja 5)7 (OJ’ 5,)) € tcreate(C,e:cpr,v) [ux]

ui to kg ek eod

o' =ofug = o(uo)v = u]] U{urs {v; > di |1 <i < n}h

e =[ul(e); ue 2(C)fresh,ie u ¢ dom(o);

g = Iexpr](o,uy); d; = I[exprd](o,0) if expr? #Kand

arbitrary value from 2(T;) otherwise.
observables et
Obscreate[uz] = {(*7 u)}
(error) conditions o’
I[expr](c, uy) not defined.

10/42

- 14 - 2016-12-22 - Sactlanged -

Create Transformer Example — MC
SM “x y:Int=0
D: = C
s1 /n = new S9 n T 0,1
D

create(C, expr,v)

tcreate(C,ezpnv) [uz] (07 E) = oo

e D)\ E4f
1c: C
< ((£2).0)
d:D " K
n=>0
S

/42

Transformer: Destroy

- 14 - 2016-12-22 - Sactlanged -

abstract syntax concrete syntax
destroy(ezpr)
intuitive semantics
Destroy the object denoted by expression expr.
well-typedness
expr: T, C €€
semantics

observables

Obsdestroy [ux] = {(u;r; 1, (+7 w)v U)}
(error) conditions
I[expr](o, B) not defined.

12/42

What to Do With the Remaining Objects?

- 14 - 2016-12-22 - Sactlanged -

Assume object uq is destroyed...

o object u; may still refer to it via association 7
o allow dangling references?
e or remove ug from o (uq)(r)?

o object ug may have been the last one linking to object us:
o leave u, alone?

e or remove u; also? (garbage collection)

o Plus: (temporal extensions of) OCL may have dangling references.

Our choice: Dangling references and no garbage collection!

This is in line with “expect the worst’, because there are target platforms which don't provide
garbage collection — and models shall (in general) be correct without assumptions on target
platform.

But: the more “dirty” effects we see in the model, the more expensive it often is to analyse.
Valid proposal for simple analysis: monotone frame semantics, no destruction at all.

13/42

Transformer: Destroy

- 14 - 2016-12-22 - Sactlanged -

abstract syntax concrete syntax
destroy(ezpr)

intuitive semantics

Destroy the object denoted by expression expr.
well-typedness

expr: T, C €€

semantics frcton, potoction,

tacstroy ey [Ua)(0,€) = {(0',)} €< E1C)

where 0’ = 7 |gqom(o)\{u} With u = I[eapr](o, uz).
observables
Obsdestroy(expr) [U:E] = {(+7 U)}
(error) conditions
I[expr](o,us) not defined.

Destroy Transformer Example

- 14 - 2016-12-22 - Sactlanged -

SMc:
@ /delete n @

destroy(ezpr)

tdestroy(ezpr) [uz]((f? 6) = coo

g. n
D daC | (gl D
[LDHEC] et s [dB)

ola 74

< O

e:

g
€<
PaS

14/42

/

15/42

14 - 2016-12-22 - main

The Full Story

Hierarchical State-Machines

- 14 - 2016-12-22 - Shiersyn -

UML distinguishes the following kinds of states:

simple state

final state
composite state

OR

AND

16/42

example

example
pseudo-state
entry/act{™ initial
1do .
g;{/aéﬁigm (shallow) history
Ei/actg, g i
eep histo
E,/actg, p "Y
fork/join
junction, choice
entry point
exit point
terminate

submachine state

17/42

Blessing or Curse. .. ?

-14 - 2016-12-22 - Shiersyn -

/|

Blessing or Curse. .. ?

- 14 - 2016-12-22 - Shiersyn -

Plan:
States / Syntax:

o What is the abstract
syntax of a diagram?

States / Semantics:

o what is the type of the
implicit st attribute?

o what are legal system
configurations?
Transitions / Syntax:

o what are legal /
well-formed transitions?

Transitions / Semantics:

o whenis a legal transition
enabled?

o which effects do
transitions have?

/|

&
~

18/42

For example: From s1, s5,

e what may happen on E?

e what may happenon E, F?
e can E, G kill the object?

18/42

Representing All Kinds of States

- 14 - 2016-12-22 - Shiersyn -

e Sofar: ;’;‘é st % gy gl e
/] | /

#

(S,50,—), So€S, — CSx(EU{_}) X Expry x Acty x S

i RETREEG

€,

[i Pl
—— =TT £ e
({ss} Sy, 75?3
o 49,
m ({ St ({63, 860,55) o]
{

{fql—ﬂ(é‘,w,sk‘f)j

I

1‘°
ID‘Z’
I

l

. sef §s3 &3,

— — _ S

foppr§ Fro50s, S%j

Representing All Kinds of States

- 14 - 2016-12-22 - Shiersyn -

e Sofar:

19/42

(S,80,—), So€S, — CSx(EU{_}) X Expry x Acty xS

e From now on: (hierarchical) state machines
(S, kind, region, —, 1, annot)

where

S D {top} is a finite set of states
o kind : S — {st,init, fin, shist, dhist, fork, join, junc, choi, ent, exi, term }
is a function which labels states with their kind,
e region: S — 22% is a function which characterises the regions of a state,
° —>T§a set of transitions,
° 1 (—)) - 2% x 29 is an incidence function, and

e annot : () = (EU{_}) X Ezpry, x Acts
provides an annotation for each transition.

(so is then redundant — replaced by proper state (!) of kind ‘init’)

(new: top),

(new)
(new)
(changed)

(new)

(new)

19/42

Well-Formedness: Regions

- 14 - 2016-12-22 - Shiersyn -

€S | kind region C 25,8, C S child C S
final state s fin]]
pseudo-state s init, ... 0 0
simple state s st 0]
composite state s st {S1,...,8:}n>1] S1U---US,
implicit top state | ¢top st {51} S1

o No region:
e One region:

o Two or more regions:
~ TN T

simple state.
OR-state.
AND-state.

Final and pseudo states must not comprise regions.
States s € S with kind(s) = st may comprise regions.
Naming conventions can be defined based on regions:

Each state (except for top) must lie in exactly one region.

Note: The region function induces a child function.
Note: Diagramming tools (like Rhapsody) can ensure well-formedness.

From UML to Hierarchical State Machine: By Example

- 14 - 2016-12-22 - Shiersyn -

(S, kind, region, —, 1, annot)

example eS| kind region
simple state s sé b
final state i g
®, g | A
composite state
OR s st S i, 5e,s33)
’) '
M
©
AND G | o | | TEss fss,
b | £5.553§
submachine state (later)
pseudo-state . g | wd -
—_———

(s,kind(s)) for short

20/42

21/42

From UML to Hierarchical State Machine: By Example

- 14 - 2016-12-22 - Shiersyn -

s
O o
{ >
- _
... denotes (S, kind, region, —, 1, annot) with
o S ={top,s1,s,82}
o kind = {top > st, sy — init, s — st, s — fin}
o or (8, hind) = {(top, t), (s1, init), (s, st), (s, fin)}
o region = {top — {{s1,8,82}},81 —~ 0 ,s 0 ,S5o 0 }
; e —, 1, annot: in a minute.
= 2242
Recall
Plan:
[)
States / Syntax:

o What is the abstract
syntax of a diagram?/

States / Semantics:

o what is the type of the
implicit st attribute?

T
~

o what are legal system
configurations?

Transitions / Syntax:

o what are legal /

P
lF F le: F
well-formed transitions? or exampie: From si, 55,

?
Transitions / Semantics: o what may happen on £
e what may happenon E, F?
e can E, G kill the object?

o whenis a legal transition
enabled?

o which effects do
transitions have?

23/42

Semantics: State Configuration

- 14 - 2016-12-22 - Shiersyn -

- 14 - 2016-12-22 - Shierstm -

o The type of (implicit attribute) st is from now on a set of states, i.e. 2(Sy.) = 2°

o AsetS; C Sis called (legal) state configuration if and only if

e top € S1,and

o for each region R of a state in S,
exactly one (non pseudo-state) element of Risin 51, i.e.

Vs € S1VR € region(s) |{s € R | kind(s) € {st,fin}} N.S1| = 1.

e Examples:
(: S5 :)
()
| |
| |
- i) X Ss=f5, b} X Se =195, o, 52,55 X

SZ=§\°‘£OfS/ 5@*5511'&’6)/ 53)93)(g?:i‘gﬂ"}aﬁ’z&zs\h Szni v
elobo wo STl s 2] X

Recall

States / Syntax:

o What is the abstract /
syntax of a diagram?

States / Semantics:

o what is the type of the
implicit st attribute?

o what are legal system
configurations?

Transitions / Syntax:

24/42

For example: From s1, s5,

P
o what are legal / lF/
well-formed transitions?
?
Transitions / Semantics: * what may happen on 7
e what may happenon E, F?
e can E, G kill the object?

o whenis a legal transition
enabled?

o which effects do

transitions have?

25/42

Transitions Syntax: Fork/Join

o For simplicity, we consider transitions with (possibly) multiple sources and targets,
i.e.

Yo (=)= (29\0) x 27\ 0)

e Forinstance,

translates to

(Sv klnda region, {tl}a {tl — ({SQa 53}7 {55; 56})}3 {tl = (t’l", gda aCt)})
~~

— P annot

e Naming convention: ¢ (t) = (source(t), target(t)).

- 14 - 2016-12-22 - Shierstm -

Orthogonal States

o Two states s, s2 € S are called orthogonal, denoted s; L sq, if and only if

o they “live” in different regions of one AND-state, i.e.

s, region(s) = {S1,..., 8.}, 1 <i# j <n:sy € child(S;) A sz € child(S;),

- 14 - 2016-12-22 - Shierstm -

26/42

27/42

Legal Transitions

- 14 - 2016-12-22 - Shierstm -

A hierarchical state-machine (.9, kind, region, —, 1, annot)
is called well-formed if and only if for all transitions ¢t €—,

o source (and destination) states are pairwise orthogonal, i.e.

o Vs,s € source(t) (€ target(t)) @ s L &,

o the top state is neither source nor destination, i.e.

o top ¢ source(t) U source(t).

Recall: final states are not sources of transitions.

composite state

Example: i
I .
|
| T
| B
| v
| G/
I / N
“’E ! } / 4©
g [
:: [true]/ |
’ 28/42
Plan example example
—_— pseudo-state
entry/act™" initial .
aci do .
simple state S;{/uﬁ;im (shallow) history ®
Ey/actp,)
ot deep history @
final state fork/join T

Initial pseudostate, final state.

Transitions involving non-pseudo states.

junction, choice ol | e
OR . - b
entry point o)
exit point ®
AND terminate X
submachine state
o
B/
L 56 e /
) ®

Entry/do/exit actions, internal transitions.
History and other pseudostates, the rest.

29/42

Tell Them What You’ve Told Them. . .

14 - 2016-12-22 - Sttwytt

14 - 2016-12-22 - main

For the Create Action, we have two main choices:

e re-use identities (“nasty semantics”),
o use fresh identities (“clean semantics’, depends on history).

Similar for Destroy.

Hierarchical State Machines introduce Regions.

o Thereby, states can lie within states as children.
e The implicit variable st becomes set-valued.

Transitions may now have

o multiple source states, multiple destination states,
o but need to adhere to well-formedness conditions.

Enabledness of a set (!) of transitions
is a bit tricky to define (— scope, priority, maximality).

Steps are a proper generalisation of core state machines.

References

40/42

4152

References

OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report
formal/2011-08-05.

OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report
formal/2011-08-06.

-14 - 2016-12-22 - main -

4242

