Software Design, Modelling and Analysis in UML

Lecture 10: Modelling Behaviour

2016-12-01

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitét Freiburg, Germany

Class Diagram Guidelines Ambler (2005)

» 5.3 Relationships
© 112. Model Relationships Horizontally

« 115. Model a Dependency When the Relationship is Transito

© 117. Always Indicate the Multiplicity
« 118. Avoid Multiplicity “+”
« 119. Replace Relationship Lines with Attribute Types

43

Content

« What makes a class diagram
agood class diagram?
» The Elements of UML 2.0 Style Contd

» Example: Game Architecture
e e e

« Purposes of Behavioural Models
« Constructive Behavioural Models in UML
o UML State Machines

« The Basic Causality Model

Some Example Class Diagrams

3

53

Design Guidelines for (Class) Diagram

(partly following Ambler (2005))

Some Example Class Diagrams

i T
] B
ST LT‘_II%‘M

33

53

Some Example Class Diagrams

T]
L)
G O

i L
"'T‘ i i

i | 0| B

@‘Dl
[

Modelling Structure: Common Architectures

» Many domains have common, canonical architectures.
o For games, for example:

More Example Class Diagrams

532 6/32

Modelling Structure: Common Architectures

* Many domains have common, canonical architectures.
« For games, for example:

External inputs

. »&mmlmm\/\%m .é.cmmm\zza\imﬂn:”rmnoaic:Enz.aﬂ.:m

iFthey know that a model is from a particular domain

- * We can do those readers a favour by grouping/positioning things in the diagram
so that seeing/finding/matchingis easy.

83 o 832

Example: Modelling Games

Example Re-Considered

What Can Be Purposes of Behavioural Models

Stocktaking.

Have: Means to model the structure of the system, Example: Pre-Image
(the UML model is supposed to be the blue-pi

 Class diagrams graphically, concisely describe sets of system states. t for a software system).

» OCL expressions logically state constraints/invariants on system states. A description of behaviour could serve the following purposes:

Modelling Behaviour

Want: Means to model behaviour of the system.

» Means to describe how system states m<o_<mmo<mﬂ zBmv
that is, to describe sets of sequences

09,01, €3¢
of system states.
1073 13 125
What Can Be Purposes of Behavioural Models? What Can Be Purposes of Behavioural Models? What Can Be Purposes of Behavioural Models?

Example: Pre-Image Example: Pre-Image Example: Pre-Image
(the UML model is supposed to be the blue-print for a software system). (the UML model is supposed to be the blue-print for a software system). (the UML model is supposed to be the blue-print for a software system).
A description of behaviour could serve the following purposes: A description of behaviour could serve the following purposes: A description of behaviour could serve the following purposes:
« Require Behaviour. « Require Behaviour. « Require Behaviour.

“This sequence of inserting money and requesting and getting water must be possible.” “This sequence of inserting money and requesting and getting water must be possible.” “This sequence of inserting money and requesting and getting water must be possible.”

(Otherwise the software for the vending machine is completely broken.) (Otherwise the software for the vending machine is completely broken.) (Otherwise the software for the vending machine is completely broken.)

Allow Behaviour. Allow Behaviour.

“After{inserting money and choosing a dfink the drink is dispensed (fin stock)" “After inserting money and choosing a drink, the drink is dispensed if in stock).”
(If the implementation insists on taking the money first, that's a fair choice.) (If the implementation insists on taking the money first, thats a fair choice.)

Forbid Behaviour.

“This sequence of getting both, a water and all money back, must not be possible.” (Otherwise
the software is broken.)

1232 1232 1232

What Can Be Purposes of Behavioural Models?

What Can Be Purposes of Behavioural Models?

Example: Pre-Image
(the UML model is supposed to be the blue-print for a software system).

A description of behaviour could serve the following purposes:

» Require Behaviour.
“This sequence of inserting money and requesting and getting water must be possible.”
(Otherwise the software for the vending machine is completely broken.)

Allow Behaviour.

“After inserting money and choosing a drink, the drink is dispensed (if in stock).”
(If the implementat ists on taking the money first, that's a fair choice.)

« Forbid Behaviour.

“This sequence of getting both, a water and all money back, must not be possible.” (Otherwise
the software is broken.)

Note: the latter two are trivially satisfied by doing nothing...

Course Map

Example: Pre-Image Image
(the UML model is supposed to be the blue-print for a software system).

A description of behaviour could serve the following purposes:

Require Behaviour.
“This sequence of inserting money and requesting and getting water must be possible.”
(Otherwise the software for the vending machine is completely broken.)

Allow Behaviour. “System does subset of this”
“After inserting money and choosing a drink, the drink is dispensed (if in stock).”
(If the implementation insists on taking the money first, that' a fair choice.)

« Forbid Behaviour. “System never does this”

“This sequence of getting both, a water and all money back, must not be possible.” (Otherwise
the software is broken.)

Note: the latter two are trivially satisfied by doing nothing...

123

UML State Machines: Overview

15/32

Constructive Behaviour in UML

ual formalisms for constructive description of behaviours:

UML provides two
© Activity Diagrams

© State-Machine Diagrams

We (exemplary) focus on State-Machines because

« somehow “practice proven” (in different flavours),

prevalent in embedded systems community,
« indicated useful by Dobing and Parsons (2006) survey, and

« Activity Diagrams intuition changed (between UML 1.x and 2.x)
from transition-system-like to petri-net-like...

Example state machines: "
(4T

Flz:=0 /n=0
133
UML State Machines
E[n#0)/e:=x+Ln!F
Flz:=0 Jni=10
Brief History:
16/32

UML State Machines UML State Machines

» E[n#0]/x =2+ 1in!F

UML State Machines

E[n #0]/e =2+ 1;n!F

/ni=0 Fjz:=0

Brief History:
2Ry « Rooted in Moore/Mealy machines, Transition Systems, etc.
P Harel (1987): Statecharts as a concise notation,
ﬂmﬁu

o Harel (1987): Statecharts as a concise :cszo:.{\\
introduces in particular hierarchical states. troduces in particular hierarchical states.

Brief History:

Brief History:
« Rooted in Moore/Mealy machines, Transition Systems, etc.

= Rooted in Moore/Mealy machines, Transition Systems, etc.

* Manifest in tool Statemate Harel et al. (1990) (simulation, code-generation);
nowadays also in Matlab/Simulink, etc.

16/32 : 16/32 : 16/32
UML State Machines UML State Machines UML State Machines
/H Eln#0)/z:=2+ Lin!F ° Eln#0)/z:=z+ L;n! F
.,|‘,
Fjz:=0 Ini=0 Flz:=0
_ - . Al
Brief History: Brief History: Brief History: m
« Rooted in Moore/Mealy machines, Transition Systems, etc. « Rooted in Moore/Mealy machines, Transition Systems, etc. * Rooted in Moore/Mealy machines, Transition Systems, etc. o’
© Harel (1987): Statecharts as a concise notation, o Harel (1987): Statecharts as a concise notation, © Harel (1987): Statecharts as a concise notation,
troduces in particular hierarchical states. introduces in particular hierarchical states. troduces in particular hierarchical states.
« Manifest in tool Statemate Harel et al. (1990) (simulation, code-generation); » Manifest in tool Statemate Harel et al. (1990) (simulation, code-generation); * Manifest in tool Statemate Harel et al. (1990) n, code-generation);
nowadays also in Matlab/Simulink, etc. nowadays also in Matlab/Simulink, etc. nowadays also in Matlab/Simulink, etc.
« From UML 1.x on: State Machines » From UML 1.x on: State Machines « From UML 1.x on: State Machines
(not the official name, but understood: UML-Statecharts) (not the official name, but understood: UML-Statecharts) (not the official name, but understood: UML-Statecharts)
) » Late 1990': tool Rhapsody with code-generation for state machines. » Late 1990': tool Rhapsody with code-generation for state machines.
. - - Note: there is a common core, but each dialect interprets some constructs subtly
: - different Crane and Dingel (2007). (Would be too easy otherwise....)
: 16/32 “ 16/32

16/32

Roadmap: Chronologically

Syntax:

UML State Machine Diagrams.
Def: Signature with signals.
Def: Core state machine.

Map UML State Machine Diagrams
to core state machines.

Qe Fate Machnes,

Semantics:

The Basic Causality Model

Def.: Ether (aka. event pool)

Def.: System configuration.
iy

Def.: Event.
Def: Transformer, =% >

Def: Transition system, computation.

=

) Transition relation induced by core state ma-
chine.

(xi) Def:: step, run-to-completion step.

Later: Hierarchical state machines.

17

Signature With Signals

Definition. A tuple
S =(Z,%,V,atr,&), & asetofsignals,
is called signature (with signals) if and only if
(Z,€U&,V,atr)
is a signature (as before).
Note: Thus conceptually, a signal is a class and can have attributes of plain type, and
pai _n_ﬂwnm in associations.
1952

UML State Machines: Syntax

Signature with Signals: Example

boo \Q Spliey \

0.1

{(signal))
F

% &
E Mﬂ,/b

a: Int

(signal)

G

(T8, €85, fule e Gl
Scpyp, Enp) G i, B M»ww\
Wm_jiv

1832

20/

Signature With Signals

Definition. A tuple
S =(T,6,V, atr, &), & aset of signals,

is called signature (with signal

and only if
(7,6 UE,V,atr)

is a signature (as before).

1932

Core State Machine

Definition.
A core state machine over signature .’ = (.7, 6, V, atr, &) is a tuple

M = (S, 50,—)
where

« Sisanon-empty, finite set of (basic) states,
Souce. st dfretine

» sp € Sisan initial state, g
- and . /

— C8x(6U{_})x Eapry x Acty xS
trigger guard

is a labelled transition relation.

We assume a set Eupr, of boolean expressions over . (for instance
OCL, may be something else) and a set Act .~ of actions.

2n

From UML to Core State Machines: By Example

UML state machine diagram SM: 1L
inddizates shhe
e o /

& L]/t

annot ::= [(event)[. (event)]* | [[(guard)1] [/ [{action)]]

with
o event € &,
(default: true, assumed to be in Ezpr)

o guard € Expry,
(default: skip, assumed to be in Act)

o action € Acty

maps to

—_—

=s, -5

M) = (L3 B f(o, e o)1)
=s

Abbreviations and Defaults in the Standard

Reconsider the syntax of transition annotations:

annot ::= [(event)[. (event)]* | [[{guard)]] [/ [{action)]]
where event € &, guard € Eapr ,, action € Act ». = mﬂ\swﬂ
3
What if things are missing? Sty
o
- Tt

E/ act

In the standard, the syntax is even more elaborate:
* E(v) - when consuming E in object u,
attribute v of u is assigned the corresponding attribute of £.
o E(v:T)-similar, but v is a local variable, scope is the transition

23/n

Abbreviations and Defaults in the Standard

Reconsider the syntax of transition annotations:
annot ::= [(event)[. (event)]" | [[{guard)1] [/ [{action)]]

where event € &, guard € Expr ,, action € Act .

State-Machines belong to Classes

In the following, we assume that

« aUML model consists of a set ' of class diagrams and
aset ./ of state chart diagrams (each comprising one state machine SM).

» each state machine SM € .%# is associated with a class Csy € €(.7).

233

243

Abbreviations and Defaults in the Standard

Reconsider the syntax of transition annotations:
annot ::= [(event)[. (event)]"] [[(guard)1] [/ [(action)]]

guard € Expr g, action € Act y.

where event €

What if things are mis:

o _ [He] / skip
/ - _ [hneT/ ep
E/ s E Lkl shp
Jact ~ _ [/ et
E/act ~ E [teu]/ack

23/

State-Machines belong to Classes

In the following, we assume that

« aUML model consists of a set "% of class diagrams and
aset ./ of state chart diagrams (each comprising one state machine SM).

associated with a class Csy € €(.7).

« each state machine SM € .

« For simplicity, we even assume a bijection, i.e. we assume that each class
C € ¢(.) has a state machine SM and that its class Csay,. is C.

If not explicitly given, then this one:

SMo = ({s0}. s0,

We will see later that this choice does no harm semantically.

24/32

State-Machines belong to Classes

In the following, we assume that
» aUML model consists of a set 4’7 of class diagrams and

aset . of state chart diagrams (each comprising one state machine SM).
» each state machine SM € .%# is associated with a class Cs € €(.7).

« For simplicity, we even assume a bijection, i.e. we assume that each class
C € 6(7) has a state machine SM¢ and that its class C's 1. is C.
one:

If not explicitly given, then
SMy := ({0}, s0. (50, _, true, skip, sp)).
We will see later that this choice does no harm semantically.

Intuition 1: SM ¢ describes the behaviour of the instances of class C'.
Intuition 2: Each instance of class C' executes SMc.

24/n

Towards UML State Machines Semantics:
The Basic Causality Model

2 26/3

State-Machines belong to Classes

In the following, we assume that

* aUML model consists of a set % of class diagrams and
aset .7/ of state chart diagrams (each comprising one state machine SM).

each state machine SM € .4 is associated with a class Csy € €(.7).

For simplicity, we even assume a bijection, i.e. we assume that each class
C € €(.) has a state machine SM¢ and that its class Cs v, is C.

If not explicitly given, then this one:

SMo := ({s0}. 50, (s0, _, true, skip, s¢)).

We will see later that this choice does no harm semantically.

Intuition 1: SM describes the behaviour of the instances of class C.
Intuition 2: Each instance of class C' executes SMc.

Note: we donit consider multiple state machines per class. We will see later that this case can
e with as many AND-states.

be viewed as a single state mac

24/3

6.2.3 The Basic Causality Model (0MG, 20110, 11)

“Causality model’is a specification of how things happen at run time [...].
The causality model is quite MQEWES:_\EN.

« Objects respond to messages that are generated by objects executing
communication actions.

« When these messages arrive, the receiving objects eventually respond by executing

the behavior that is matched to that message.
Hrekehavier

o The dispatching method by which a particular behavior is associated with a given
message depends on the higher-level formalism used and is not defined in the UML
specification
(i.e., it is a semantic variation point).

F/

IpiF

Rhapsody Demo 11

25/

6.2.3 The Basic Causality Model (omG, 2011b, 11)

“Causality model’is a specification of how things happen at run time
The causality model is quite straightforward:

« Objects respond to messages that are generated by objects executing
communication actions.

When these messages arrive, the receiving objects eventually respond by executing
the behavior that is matched to that message.

The dispatching method by which a particular behavior is associated with a given
message depends on the higher-level formalism used and is not defined in the UML
specification

(i.e., it is a semantic variation point).

The causality model also subsumes behaviors invoking each other and passing
information to each other through arguments to parameters of the invoked behavior,

L]

This purely procedural or process' model can be used by itself or in conjunction with
the object-oriented model of the previous example.”

27

15.3.12 StateMachine (oMG, 20115, 574) 15.3.12 StateMachine (omG, 2011b, 574) 15.3.12 StateMachine (oma, 20115, 574)

 Event occurrences are detected, dis- « Event occurrences are detected, dis-
patched, and then processed by the state patched, and then processed by the state
machine, one at a time. machine, one at a time.

The semantics of event occurrence pro-
cessing is based on the run-to- comple-
tion assumption, interpreted as run-to-
completion processing.

2 2832 28/ 283

15.3.12 StateMachine (oma, 2011b, 574) 15.3.12 StateMachine (oma, 20115, 574) 15.3.12 StateMachine (omG, 2011b, 574)

Event occurrences are detected, dis-
patched, and then processed by the state
machine, one at a time.

 The semantics of event occurrence pro-

cessing is based on the run-to- comple-
ion assumption, interpreted as run-to-
completion processing.

Run-to-completion processing means
that an event[..] can only be taken from
the pool and dispatched if the processing
of the previous [.] is fully completed.

 Event occurrences are detected, dis-
patched, and then processed by the state
machine, one at a time.

« The semantics of event occurrence pro-
cessing is based on the run-to- comple-
tion assumption, interpreted as run-to-
completion processing.

» Run-to-completion processing means
that an event [..] can only be taken from
the pool and dispatched if the processing
of the previous [..] is fully completed.

The processing of a single event occur-
rence by a state machine is known as a
run-to-completion step.

Event occurrences are detected, dis-
patched, and then processed by the state
machine, one at a time.

The semantics of event occurrence pro-
cessing is based on the run-to- comple-
tion assumption, interpreted as run-to-
completion processing.

Run-to-completion processing means
that an event [..] can only be taken from
the pool and dispatched if the processing
of the previous [.] is fully completed.

« The processing of a single event occur-
rence by a state machine is known as a
run-to-completion step.

Before commencing on a run-to-
completion step, a state machine is
a stable state configuration with all
entry/exit/internal-activities (but not
necessarily do-activities) completed.

15.3.12 StateMachine (oMG, 20115, 574)

 Event occurrences are detected, dis-
patched, and then processed by the state
machine, one at a time.

.

The semantics of event occurrence pro-
cessing is based on the run-to- comple-
tion assumption, interpreted as run-to-
completion processing.

« Run-to-completion processing means
that an event [..] can only be taken from
the pool and dispatched f the processing
of the previous [] is fully completed

« The processing of a single event occur-
rence by a state machine is known as a
run-to-completion step.

Before commencing on a run-to-
completion step, a state machine is
in a stable state configuration with all
entry/exit/internal-activities (but not
necessarily do-activities) completed.

« The same conditions apply after the run-
to-completion step is completed.

2832

15.3.12 StateMachine (oma, 2011b, 574)

Event occurrences are detected, dis-
patched, and then processed by the state
machine, one at a time.

 The semantics of event occurrence pro-

cessing iis based on the run-to- comple-
ion assumption, interpreted as run-to-
completion processing.

Run-to-completion processing means
that an event[..] can only be taken from
the pool and dispatched if the processing
of the previous [.] is fully completed.

« The processing of a single event occur-
rence by a state machine is known as a
run-to-completion step.

Before commencing on a run-to-
completion step, a state machine is
in a stable state configuration with all
entry/exit/internal-activities (but not
necessarily do-activities) completed.

The same conditions apply after the run-
to-completion step is completed.

 Thus, an event occurrence will never be
processed[..] in some intermediate and in-
consistent situation.

[IOW,] The run-to-completion step is the
passage between two state configurations
of the state machine.

The run-to-completion assumption sim-
plifies the transition function of the StM,
since concurrency conflicts are avoided
during the processing of event, allowing
the StM to safely complete its run-to-
completion step.

28/

15.3.12 StateMachine (0MG, 20115, 574)

Event occurrences are detected, dis-
patched, and then processed by the state
machine, one at a time.

The semantics of event occurrence pro-
cessing is based on the run-to- comple-
tion assumption, interpreted as run-to-
completion processing.

Run-to-completion processing means
that an event [..] can only be taken from
the pool and dispatched f the processing
o the previous [is fully completed.

The processing of a single event occur-
rence by a state machine is known as a
run-to-completion step.

Before commencing on a run-to-
completion step, a state machine is
in a stable state configuration with all
entry/exit/internal-activities (but not
necessarily do-activities) completed.

« The same conditions apply after the run-
to-completion step is completed.

o Thus, an event occurrence will never be
processed[..] insomeintermediate andin-
consistent situation.

28/32

15.3.12 StateMachine (omG, 20115, 574)

Event occurrences are detected, dis-
patched, and then processed by the state
machine, one at a time.

The semantics of event occurrence pro-
cessing is based on the run-to- comple-
tion assumption, interpreted as run-to-
completion processing.

Run-to-completion processing means
that an event [..] can only be taken from
the pool and dispatched if the processing
of the previous [..] is fully completed.

The processing of a single event occur-
rence by a state machine is known as a
run-to-completion step.

Before commencing on a run-to-
completion step, a state machine is
in a stable state configuration with all
entry/exit/internal-acti (but not

« The same conditions apply after the run-
to-completion step is completed.

© Thus, an event occurrence will never be
processed[..] insome intermediate and in-
consistent situation.

[IOW.] The run-to-completion step is the
passage between two state configurations
of the state machine.

« The run-to-completion assumption sim-

plifies the transition function of the StM,
ince concurrency conflicts are avoided
during the processing of event, allowing
the StM to safely complete its run-to-
completion step.

o The order of dequeuing is not defined,
leaving open the possibility of modeling
ferent priority-based schemes.

15.3.12 StateMachine (oma, 20115, 574)

Event occurrences are detected, dis-
patched, and then processed by the state
machine, one at a time.

« The same conditions apply after the run-
to-completion step is completed

 Thus, an event occurrence will never be

Ti

The semantics of event pro-
cessing is based on the run-to- comple-
tion assumption, interpreted as run-to-
completion processing.

Run-to-completion processing means
that an event [...] can only be taken from
the pool and dispatched f the processing
of the previous [..] is fully completed

The processing of a single event occur-
rence by a state machine is known as a
run-to-completion step.

Before commencing on a run-to-
completion step, a state machine is
in a stable state configuration with all
entry/exit/internal-activities (but not
necessarily do-activities) completed.

consistent situation.

« [IOW,] The run-to-completion step is the
passage between two wwmno_.sw:_‘m,_o:m
of the state machine. *

283

15.3.12 StateMachine (oma, 2011, 574)

Event occurrences are detected, dis-
patched, and then processed by the state
machine, one at a time.

The semantics of event occurrence pro-
cessing is based on the run-to- comple-
tion assumption, interpreted as run-to-
completion processing.

Run-to-completion processing means
that an event [..] can only be taken from
the pool and dispatched if the processing
of the previous [.] is fully completed.

The processing of a single event occur-
rence by a state machine is known as a
run-to-completion step.

Before commencing on a run-to-
completion step, a state machine is
a stable state configuration with all
entry/exit/internal-activities (but not
necessarily do-activities) completed.

« The same conditions apply after the run-
to-completion step is completed

© Thus, an event occurrence wi
insomei i
consistent situation.

never be
din-

[IOW,] The run-to-completion step is the
passage between two state configurations
of the state machine.

« The run-to-completion assumption sim-

plifies the transition function of the StM,
ince concurrency conflicts are avoided
during the processing of event, allowing
the StM to safely complete its run-to-
completion step.

« The order of dequeuing is not defined,
leaving open the possibility of modeling
different priority-based schemes.

= Run-to-completion may be implemented
n various ways. [..]

28/32

)
Example S Example £
It _ oty
¥
SMe: Eln # 0]/ =2+ Lnl P SMe: Efn #0)/c:=2+L;nlF
e Gy AW et bl C: SMp
Flz:=0 E‘ /ni=0
a1 T
' '
I I
H H
[29/ 29752 29732
. n
Example Example _ﬂn\i. o Example
%0 E—
SMe: Eln#0)/z:=a+ Lin!F Efn#0)/z:=z+1Lin! F
Flei=0 g5 /n=0
{BLAFY (0,0)
(o1,61) —— (02,89) ————
w “
1 1
1 1
1 \
1
1
'
¢ 29/ $

293 s 2932

signal)
B

Example ¢ =

x:Int
eignal)
F

SMp

SMe: =

{F}y0

uz

(04,€4) — G5

=L

293

References

Ambler, S. W. (2005). The Elements of UML 2.0 Style. Cambridge University Press.

Crane, M. L. and Dingel.). 2007). UML vs. classical vs. thapsody statecharts: not all models are
created equal. Software and Systems Modeling, 6(4):415-435,

Dobing, B. and Parsons,). 2006). How UML s used. Communications of the ACM, 49(51109-114,
Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of Computer
Programming, 8(3)231-274.

Harel, ., Lachover, H. et al. (1990). A working envi for the pment of
complex reactive systems. IEEE Transactions on Software Engineering, 16(4):403-414.

OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report
formal/2011-08-05.

OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report
formal/2011-08-06

3un

Tell Them What You've Told Them. ..

.

Ambler (2005): The Elements of UML 2.0 Style.

One rule-of-thumb:
if there is a standard architecture, make it easy to recognise how
the standard architecture is concretised.

Behaviour can be modelled using UML State Machines.

UML State Machines are inspired by Harel’s Statecharts.

State Machines belong to Classes.

State machine behaviour follows

the Basic Causality Model of UML,

in particular

= Obiects process events.

» Objects can be stable or not.

o Events are processed in a run-to-completion step,
processing only starts when g stable,

303

References

315

