Software Design, Modelling and Analysis in UML

Lecture 13: Core State Machines III

2016-12-15

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

From Core State Machines to LTS

```
We say, the state machines induce the following labelled transition relation on states S:=(\Sigma_S^{\omega}\times Elh) \cup \{\#\} \text{ with labels }A:=2^{g(\mathscr{E})}\times 2^{(\mathscr{E})(\mathscr{E})\cup \{++\})\times g(\mathscr{E})}\times g(\mathscr{E}):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Definition. Let \mathcal{S}_0=(\mathcal{S}_0,\mathcal{S}_0,V_0,atr_0,\mathcal{E}) be a signature with signals (all classes in \mathcal{S}_0 active), \mathcal{S}_0 a structure of \mathcal{S}_0, and (Bh,rady,\oplus,\{\cdot\}) an ether over \mathcal{S}_0 and \mathcal{S}_0. Assume there is one core state machine M_C per class C\in\mathcal{C}.
                                                                                                                                                                                                         • s (cons,0) #
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              • (\sigma, \varepsilon) \xrightarrow{(cons, Snd)} (\sigma', \varepsilon')
                                                                                                                                      if and only if
                                                                                                                                                                                                                                                                                                                                                                            (ii) an event with destination us of secanded.
(iii) an event is dispatched to u.i. e stable object processes an event or
(iii) univ-to-completion processing by u continues,
i.e. object u is not stable and continues to process an event.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  if and only if
                                                                                                                                                                                                                                                                                                                                (iv) the environment interacts with object u,
(v) an error condition occurs during consumption of cons, or s=\# and cons=\emptyset.
```

and

4/39

Content

discard event, Recall: Transitions of UML State Machines

- dispatch event,
- ⊣ e continue RTC,

- Example Revisited
- → environment interaction,

- error condition.
- Initial States

(i) Discarding An Event $\sigma'=\sigma(u.stable\mapsto b)\setminus\{u_E\mapsto\sigma(u_E)\}$ where b=0 if and only if there is a transition with trigger '_ enabled for u in (σ',ε') . \bullet the event u_E is removed from the ether, i.e. * u is stable and in state machine state s, i.e. $\sigma(u)(stable) = 1$ and $\sigma(u)(st) = s$. * but there is no corresponding transition enabled (all transitions incident with current state of u either have other triggers or the guard is not satisfied) ullet consumption of u_E is observed, i.e. $\bullet \;$ an E-event (instance of signal E) is ready in ε for object u of a class $\mathscr C$, i.e. if ullet in the system configuration, stability may change, u_E goes away, i.e. $\forall \, (s,F,expr,\,act,s') \in \rightarrow (\mathcal{SM}_C) : F \neq E \vee I[\![expr]\!](\sigma,u) = 0$ $u\in\mathrm{dom}(\sigma)\cap\mathscr{D}(C)\wedge\exists\,u_E\in\mathscr{D}(E):u_E\in\mathit{ready}(\varepsilon,u)$ Rhapsody Demo III: Model Animation Create and Destroy Transformers $(\sigma, \varepsilon) \xrightarrow{(cons, Snd)} (\sigma', \varepsilon')$ $cons = \{u_E\}, Snd = \emptyset.$ $\varepsilon' = \varepsilon \ominus u_E$, 2/39

3/39

Recall: Transition Relation

Example: Discard $SMC: \qquad \qquad \begin{array}{c} C[x>0]/x:=x-1;n!J \\ \hline SMC: \qquad \qquad \\ G[x>0]/x:=y \\ \hline \\ H/: ----/- \\ \end{array}$

6/39

 $\begin{array}{ll} & u\in\operatorname{com}(\Omega\cap\Omega^{\circ}(G)) & = u_{1}(u_{1}(\operatorname{coh} h) = 1.\sigma(u_{1}(u)) = u_{2} \\ & u_{2}\in \mathcal{G}(E), u_{3}\in \operatorname{cond}(c,u) & = \sigma'=\sigma(u_{1}\operatorname{coh} h) \sim 1.0 \\ & \forall (u_{1},F,\operatorname{copp},\operatorname{cot},e') \in \rightarrow (SMc): & = e'=c \cap u_{2} \\ & F\neq E \vee I\{\operatorname{copp}\{(\sigma,u) = 0 \\ & = \operatorname{cons} = \{u_{2}\}, \quad Snd = \emptyset \end{array}$

(ii) Dispatch

 $(\sigma,\varepsilon)\xrightarrow[u]{(cons,Snd)}(\sigma',\varepsilon')$

(iii) Continue Run-to-Completion

 $(\sigma,\varepsilon)\xrightarrow[u]{(cons,Snd)}(\sigma',\varepsilon')$

and

- there is a transition without trigger enabled from the current state $s=\sigma(u)(st)$, i.e.

 $\exists \, (s,_\,,expr,act,s') \in \rightarrow (\mathcal{SM}_C) : I[\![expr]\!](\sigma,u) = 1$

• there is an unstable object u of a class $\mathscr C,$ i.e $u\in\mathrm{dom}(\sigma)\cap\mathscr D(C)\wedge\sigma(u)(slable)=0$

- a transition is enabled, i.e. $\begin{array}{ll} \bullet \ u \in \mathrm{dom}(\sigma) \cap \mathscr{D}(C) \wedge \exists \ u_E \in \mathscr{D}(E) : u_E \in ready(\varepsilon, u) \\ \bullet \ u \ \text{is stable and in state machine state} \ s, \ \text{i.e.} \ \sigma(u)(stble) = 1 \ \text{and} \ \sigma(u)(st) = s, \end{array}$

where $\tilde{\sigma} = \sigma[u.params_E \mapsto u_E]$. $\exists \, (s, F, expr, \, act, s') \in \rightarrow (\mathcal{SM}_{C}) : F = E \wedge I[\![expr]\!](\bar{\sigma}, u) = 1$

• (σ',ε') results from applying t_{act} to (σ,ε) and removing u_E from the ether, i.e.

 $(\sigma'',\varepsilon') \in t_{act}[u](\tilde{\sigma},\varepsilon \ominus u_E),$ $\sigma' = (\sigma''[u.st \mapsto s',u.stable \mapsto b,u.params_E \mapsto \emptyset])] \mathscr{D}(\mathscr{C}) \backslash \{u_E\}$

where b depends (see (i))

 \bullet Consumption of u_E and the side effects of the action are observed, i.e. $cons = \{u_E\}, Snd = Obs_{t_{sct}}[u](\tilde{\sigma}, \varepsilon \ominus u_E).$

7/39

Example: Continue $\begin{array}{ll} \bullet & u \in \mathrm{dom}(\sigma) \cap \mathscr{D}(C), \sigma(u)(stable) = 0 \\ \bullet & \exists (s_{1-n}, cxpr, act, s') \in \to (\mathcal{SM}_C) : \\ & I(cxpr[(\sigma, u) = 1 \\ \bullet & \sigma(u)(st) = s, \end{array}$ $SM_{C}: \underbrace{SM_{C}: x = y}_{H \mid x = -x^{-1}} \underbrace{ \begin{bmatrix} x > 0 \\ x \end{bmatrix}_{x = x} = 1; n! J}_{n} \underbrace{ \begin{bmatrix} cond & co \\ c & J \\ c & J \end{bmatrix}}_{n}$ $\begin{aligned} & \quad \bullet \quad (\sigma'', \varepsilon') = t_{act}(\sigma, \varepsilon), \\ & \quad \bullet \quad \sigma' = \sigma'' [u.st \mapsto s', u.stake \mapsto b] \\ & \quad \bullet \quad cons = \emptyset, \quad Snd = Obs_{bat}(\sigma, \varepsilon) \end{aligned}$

 $\bullet \ \ \sigma' = \sigma[u. stable \mapsto 1], \varepsilon' = \varepsilon, \infty ns = \emptyset, Snd = \emptyset, \text{ otherwise}.$

9/39

where b depends as before. • Only the side effects of the action are observed, i.e. $cons = \emptyset$, $Snd = Obs_{test}[u](\alpha, \varepsilon)$.

 $(\sigma'',\varepsilon') \in t_{act}[u](\sigma,\varepsilon), \quad \sigma' = \sigma''[u.st \mapsto s', u.stable \mapsto b]$

(σ', ε') results from applying t_{act} to (σ, ε), i.e.

(iv) Environment Interaction

Assume that a set $\mathcal{E}_{env}\subseteq\mathcal{E}$ is designated as environment events and a set of attributes $V_{env}\subseteq V$ is designated as input attributes.

Then

 $(\sigma, \varepsilon) \xrightarrow[env]{(cons, Snd)} (\sigma', \varepsilon')$

• an environment event $E \in \mathscr{E}_{env}$ is spontaneously sent to an alive object $u \in \mathrm{dom}(\sigma)$, i.e. if either (!)

 $\sigma' = \sigma \mathrel{\dot{\cup}} \{u_E \mapsto \{v_i \mapsto d_i \mid 1 \leq i \leq n\}, \quad \varepsilon' = \varepsilon \oplus (u, u_E)$

 $\label{eq:where } \text{ where } u_E \not\in \text{dom}(\sigma) \text{ and } atr(E) = \{v_1,\dots,v_n\}.$ $\bullet \text{ Sending of the event is observed, i.e. } cons = \emptyset. Snd = \{u_{E_1}\}\}.$

Values of input attributes change freely in alive objects, i.e.

 $\forall v \in V \ \forall u \in \mathrm{dom}(\sigma) : \sigma'(u)(v) \neq \sigma(u)(v) \implies v \in V_{env}.$

and no objects appear or disappear, i.e. $dom(\sigma') = dom(\sigma)$.

11/39

Example: Environment $SM_{G}: \xrightarrow{\{\mathbf{a}, \mathbf{b}, \mathbf{c}\} \in \mathcal{A}} G[x > \emptyset/x := y \\ G[x > \emptyset/x := y \\ \mathbf{a}]$

 $\begin{array}{ll} *\ \sigma' = \sigma\ \cup \{u_E \mapsto \{u_i \mapsto d_i \mid 1 \leq i \leq n\} & *\ u \in \operatorname{dom}(\sigma) \\ *\ \varepsilon' = \varepsilon \oplus u_E \text{ where } u_E \notin \operatorname{dom}(\sigma) & *\ cons = \emptyset. Snd = \{(anv.E(\vec{d})\}\}. \\ \text{and } and \ dr(E) = \{v_1, \dots, v_n\}. \end{array}$

 $\bullet \ I[\exp r] \ \text{not defined for } \sigma \ \text{and } u, \text{or} \qquad \bullet \ cons = \emptyset, \\ \bullet \ t_{act}[u] \ \text{is not defined for } (\sigma, \varepsilon) \qquad \bullet \ Snd = \emptyset.$

Example: Error Condition

(44.52)

(#1tc)

Example Revisited \(\sum_{\text{c.in}} \frac{\text{c.in}}{\text{c.in}} \)

Step and Run-to-Completion

Transition Relation, Computation

Definition. Let A be a set of labels and S a (not necessarily finite) set of of states. We call

 $\rightarrow \subseteq S \times A \times S$

 $\underbrace{ \text{ o initiation: } s_0 \in S_0] }_{\bullet \text{ consecution: } (s_i, a_i, s_{i+1}) \in \rightarrow \text{ for } i \in \mathbb{N}_0.$

16/39

Let $S_0 \subseteq S$ be a set of initial states. A (finite or infinite) sequence

(labelled) transition relation.

17/39

That is: We're going for an interleaving semantics without true parallelism. Thus in our setting, a step often directly corresponds to 1: In case of dispatch and continue with enabled transition. $(We \ \textit{will} \ extend \ the \ concept \ of "single \ transition" \ for \ hierarchical \ state \ machines.)$ one object (namely \boldsymbol{u}) taking a single transition between regular states. $(\sigma, \varepsilon) \xrightarrow[u]{(cons, Snd)} (\sigma', \varepsilon')$

Notions of Steps: The Step Note: we call one evolution

Notions of Steps: The Run-to-Completion Step

What is a run-to-completion step...?

Intuition: a maximal sequence of steps of one object, where the first step is a dispatch step, all later steps are continue steps, and the last step establishes stability (or object disappears).

Note: while one step corresponds to one transition in the state machine, a run-to-completion step is in general not syntacically definable:

one transition may be taken multiple times during an RTC-step.

19/39

Notions of Steps: The Run-to-Completion Step Cont'd

Proposal: Let

$$(\sigma_0,\varepsilon_0)\xrightarrow[u_0]{(\cos ns_0,Snd_0)\atop u_0}\dots\xrightarrow[u_{n-1}]{(\cos ns_{n-1},Snd_{n-1})\atop u_{n-1}}(\sigma_n,\varepsilon_n),\quad n>0,$$

be a finite (!), non-empty, maximal, consecutive sequence such that

* $(cons_0, Snd_0)$ indicates dispatching to $u := u_0$ (by Rule (ii)). i.e. $cons = \{u_E\}$. $u_E \in dom(\sigma_0) \cap \mathcal{D}(\mathcal{E})$.

ullet if u becomes stable or disappears, then in the last step, i.e. $\forall i>0 \bullet (\sigma_i(u)(stable)=1 \lor u \not\in \mathrm{dom}(\sigma_i)) \implies i=n$

Let $0=k_1< k_2<\cdots< k_N< n$ be the maximal sequence of indices such that $u_{k_1}=u$ for $1\le i\le N$. Then we call the sequence

 $(\sigma_0(u) =) \quad \sigma_{k_1}(u), \sigma_{k_2}(u), \dots, \sigma_{k_N}(u), \sigma_n(u)$

a (!) run-to-completion step of u (from (local) configuration $\sigma_0(u)$ to $\sigma_n(u)$).

21/39

Run-to-Completion Step: Discussion.

Run-to-Completion Step: Discussion.

In the projection onto a single object we still see the effect of interaction with other objects.

Adding classes (or even objects) may change the divergence behaviour of existing ones.

the behaviour of a set of objects is determined by the behaviour of each object "in isolation".

Our semantics and notion of RTC-step doesn't have this (often desired) property.

Compositional would be:

Our definition of RTC-step takes a global and non-compositional view, that is:

Our definition of RTC-step takes a global and non-compositional view, that is:

- In the projection onto a single object we still see the effect of interaction with other objects
- Adding classes (or even objects) may change the divergence behaviour of existing ones.
- Compositional would be:
- the behaviour of a set of objects is determined by the behaviour of each object "in isolation".

 Our semantics and notion of RTC-step doesn't have this (often desired) property.

Can we give (syntactical) criteria such that any (global) run-to-completion step is an interleaving of local ones?

22/39

22/39

Divergence

We say, object u can diverge on reception $cons_0$ from (local) configuration $\sigma_0(u)$ if and only if there is an infinite, consecutive sequence

$$(\sigma_0, \varepsilon_0) \xrightarrow[u_0]{(cons_0, Snd_0)} (\sigma_1, \varepsilon_1) \xrightarrow[u_1]{(cons_1, Snd_1)} \dots$$

where $u_i=u$ for infinitely many $i\in {\bf N}_0$ and $\sigma_i(u)(stable)=0, i>0$, i.e. u does not become stable again.

Run-to-Completion Step: Discussion.

Our definition of RTC-step takes a global and non-compositional view, that is:

- In the projection onto a single object we still see the effect of interaction with other objects.
- Compositional would be: Adding classes (or even objects) may change the divergence behaviour of existing ones.
- Our semantics and notion of RTC-step doesn't have this (often desired) property. the behaviour of a set of objects is determined by the behaviour of each object "in isolation".

Can we give (syntactical) criteria such that any (global) run-to-completion step is an interleaving of local ones?

Maybe: Strict interfaces.

(Proof left as exercise...)

- (A): Refer to private features only via "self":
 (Recall that other objects of the same class can modify private attributes.)
- (B): Let objects only communicate by events, i.e. don't let them modify each other's local state via links at all.

Putting It All Together

23/39

Initial States

We have Recall: a labelled transition system is (S,A, \rightarrow, S_0) .

- S: system configurations (σ, ε)
- \rightarrow : labelled transition relation $(\sigma, \varepsilon) \xrightarrow[u]{\text{(cons. Snd)}} (\sigma', \varepsilon')$.
- Wanted: initial states S_0 .

Require a (finite) set of object diagrams $\mathscr{O}\mathscr{D}$ as part of a UML model (C2, SM, 62).

 $S_0 = \{(\sigma,\varepsilon) \mid \sigma \in G^{-1}(\mathcal{OD}), \quad \mathcal{OD} \in \mathscr{OD}, \quad \varepsilon \text{ empty}\}.$

Other Approach: (used by Rhapsody tool) multiplicity of classes (plus initialisation code). We can read that as an abbreviation for an object diagram.

24/39

The semantics of the UML model $\mathcal{M} = (\mathscr{CD}, \mathscr{SM}, \mathscr{OD})$

Semantics of UML Model (So Far)

• some classes in \mathscr{CD} are stereotyped as 'signal' (standard), some signals and attributes are stereotyped as 'external' (non-standard),

there is a 1-to-1 relation between classes and state machines,

• $\mathscr{O}\mathscr{D}$ is a set of object diagrams over $\mathscr{C}\mathscr{D}$,

is the transition system (S,A,\rightarrow,S_0) constructed on the previous slide(s).

The computations of \mathcal{M} are the computations of (S,A,\rightarrow,S_0) .

Initial States

Recall: a labelled transition system is (S,A, \rightarrow, S_0) . We have

• S: system configurations (σ, ε)

Wanted: initial states S_0 . • \rightarrow : labelled transition relation $(\sigma, \varepsilon) \xrightarrow[u]{\text{cons. Snd.}} (\sigma', \varepsilon')$.

24/39

Recall: a labelled transition system is (S,A,\rightarrow,S_0) . We have

Initial States

• \rightarrow : labelled transition relation $(\sigma, \varepsilon) \xrightarrow[u]{(cons, Snd)} (\sigma', \varepsilon')$. $\bullet \;\; S \text{: system configurations} \; (\sigma, \varepsilon)$

Wanted: initial states S_0 .

(C2, SM, O2).

Require a (finite) set of object diagrams $\mathscr{O}\mathscr{D}$ as part of a UML model

 $S_0 = \{(\sigma,\varepsilon) \mid \sigma \in G^{-1}(\mathcal{OD}), \quad \mathcal{OD} \in \mathscr{OD}, \quad \varepsilon \, \mathsf{empty}\}.$

OCL Constraints and Behaviour

 $\bullet \ \mbox{Let} \ \mathcal{M} = (\mathscr{CD}, \mathscr{SM}, \mathscr{OD}) \ \mbox{be a UML model}.$

 $\bullet \ \ \text{We call \mathcal{M} consistent iff, for each OCL constraint $expr \in Inv(\mathscr{CP})$.}$

(Cf. tutorial for discussion of "reasonable point".) $\sigma \models expr$ for each "reasonable point" (σ, ε) of computations of \mathcal{M} .

Note: we could define $Inv(\mathscr{SM})$ similar to $Inv(\mathscr{CD})$.

25/39

OCL Constraints and Behaviour

- $\bullet \ \mbox{Let} \ \mathcal{M} = (\mathscr{CD}, \mathscr{SM}, \mathscr{OD}) \ \mbox{be a UML model.}$
- We call $\mathcal M$ consistent iff, for each OCL constraint $expr \in Inv(\mathscr {SP})$,
- (Cf. tutorial for discussion of "reasonable point".) $\sigma \models expr$ for each "reasonable point" (σ, ε) of computations of \mathcal{M} .

Note: we could define $Inv(\mathscr{SM})$ similar to $Inv(\mathscr{CD})$.

- in UML-as-blueprint mode if S/d doesn't exist, yet, then providing M=(S,g,G/g) is typically asking the developer to provide state machines S/d such that $M'=(S^g,S/d,G)$ is consistent. If the developer makes a mistake, then M' is inconsistent.

• Not so common (but existing): If \mathcal{N}_{θ} is given, then constraints are also considered when choosing transitions in the RTC-algorithm. In other words, even, in presence of "instalkes", the state machines in \mathcal{N}_{θ} never move to inconsistent configurations.

26/39

Rhapsody Demo III: Model Animation

27/39

References

OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report formal/2011-08-05.

OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report formal/2011-08-06.

References

39/39

38/39

Tell Them What You've Told Them...

- State Machines induce a labelled transition system.
 There are five kinds of transitions in the LTS:

- discard, dispatch, continue, environment, error.
- For now, we assume that all classes are active, thus steps of objects may interleave.
 We distinguish steps and run-to-completion step.
 Initial states can be characterised using object diagrams.
- Missing transformers: