Available online at www.sciencedirect.com

Science of
SCIENCE DIRECT®
@ Computer
A Programming
ELSEVIER Science of Computer Programming 55 (2005) 81-115

www.elsever.com/locate/scico

A discrete-time UML semantics for concurrency and
communication in safety-critical applications

WernerDamn#*, Bemhard Josk& Amir Pnuel?,
Angelika Votintseva

80FFIS, Oldenburg, Germany
bThe Weizmann Institute of Science, Rehovot, Israel

Received 31 August 2003; received in revised form 15 April 2004; accepted 30 May 2004

Abstract

We defire a subsekrtUML of UML which is rich enough to xpress such modlng entities
of UML, used in real-time applications, as active objects, dynamic object creation and destruction,
dynamically changing communication topologiesmbinations of synchronous and asynchronous
communication, and shared memory usage through object attributes. We define a formal interleaving
semantics for this kernel language by associating with each migdet krtUML a synbdlic
transition systenSTIM). We kriefly outline how to compile mode of industrial systems making
use of generalisation hierarchies, weak and strong aggregation, and hierarchical state-machines into
krtUML. The main aim oftie paper is to provide an executable semantic&kifit/ML suitable for
the formal verification of temporal model properties with existing model-checking tools.
© 2004 Published by Elsevier B.V.

U This research was partially supported by the Infatiora Society DG of the European Commission within
the project IST-2001-33522 OMEGA.
* Corresponding author.
E-mail addressesdamm@offis.de (W. Damm), josko@offis.de (B. Josko), amir@wisdom.weizmann.ac.il
(A. Pnueli), vdintseva@offis.de (A. \Votintseva).

0167-6423/$ - see front matter © 2004 Published by Elsevier B.V.
doi:10.1016/j.scico.2004.05.012

http://www.elsevier.com/locate/scico

82 W.Damm et al. / Science of Cauter Programming 55 (2005) 81-115

1. Introduction

The establishment of &al-time profile for UML P9, the proposal for a UML action
language 24], and the installation of a special interest group shared between INCOSE
and OMG to develop a profile for UML addressing specification of real-time systems at
the g/stem level all reflect the pressure put on standardisation bodies to give a rigorous
foundation to the increasing level of usage of UML to develop hard real-time systems.

Its increased use also for safety-critical applications mandates the need to complement
these modelling oriented activities with an agreement on the formal semantics of the
modelling constructs employed, as a preraggiifor rigorous formal analysis methods,
suchas formal verification of compliance toqeirements. This need has been perceived
by the research community, leading to a substantial body of formalisation of various
subsets of UML. The precise UML group has in a series of paped] been proposing a
meta-modelling-based approach, which hegvdéacks the capability to address dynamics
aspects at the level of detail required flarmal verification. Approaches based on
translation into existing formalisms, e.g. thecalculus R7,28], ASMs [23], CASL [32],
Object-Z [L7], fall short of covering the rich range of behavioural modelling constructs
covered in this paper. Other approaches ® thML sematics are discussed in detail in
Section 50f this paper. Closest to our work addsing the intricaeis of understanding
active objects are3[1,32).

Our approach takes into account functional aspects of real-time systems, considering a
discrete-time model allowing us to define different levels of step granularity. In this paper,
we focus our investigation on the semantafdation of such critical features of real-time
applications as concurrency and two tgméinter-object communication — synchronous
and asynchronous — including the specification of the time points for interferences. The
proposed semantics, being executable and abstract enough to cover different choices for
the final implementatio anddeployment (such as different execution times, scheduling
strat@y), is intended for the formal verification at earlier stages of the development
process, such as preliminary and detailegign. Such “early” verification would allow
us to find errors of possible further implementations already at the model level.

The approach described benefits from numerous discussions with industrial users
employing UML tools for the development of real-time systems, e.g. the partners of the
IST projects Omedaand AlT-Woodde&. The IST project Omega has developed an agreed
specificationrtUML of those modelling concepts from UML required to support industrial
users in their application developmerd],[subsuming such concepts as inheritance,
polymorphism, weak and strong aggregatioreraichical state-achines, rich action
language, active, passive, and reactive oBjesit., taking into account detailed issues
such as navigability, visibility, changeability, and ordering of association end-points, and
allowing unbounded nitiplicity of these. This project alsprovides a real-time extension
of the proposed semantickd).

1 IST-2001-33522http://www-omega.imag.fr/index.php
2 IST-1999-10069http://wooddes.intranet.gr

http://www-omega.imag.fr/index.php
http://wooddes.intranet.gr

W.Damm et al. / Science of Cauter Programming 55 (2005) 81-115 83

We propose a two-stage approach to give a formal semantitg/kdL :

A pre-compilaion step translatesUML models into a sufficiently compact sublanguage
krtUML, eiminating the need at the kernel level to address the various facets of
associations, generalisation, and hienégral state-machines. We then give a formal
semantics okrtUML, using the formalism of symbolic transition systen®][In this
semantic framework, the state space of the transition system is given by valuations of a
set of typed system variables, and initial states and the transition relation are defined using
firstorder predicate logic. We show how to capture a complete snapshot of the dynamic
execution state of a UML model, using unbounded arrays of object configurations to
maintain the current status of all objects, and a pending request table modelling the status of
all submitted, but not yet served operation calls. Object configurations include information
on the valuation of the object’s attributes, thtate onfiguration of its state-machine, as

well as the pending events collected in an event queue.

In this paper, we focus on the definition and formal semantickritfML, andonly
sketch some ideas of the pre-compilation phdmeause most of the translation steps use
standard compiler techniques. We refer the reade8}édr a full description of these steps,
as well as for the full specification ofUML.

The paper is organised as followSection 2outlines the aims for the semantics
proposed in the paper and gives a fotrdafinition of the constituents of &rtUML
model.Section 3 the heart of this paper, develops th& $based semantics, motivating
and introducing in consecutive sections the system variables spanning the state space of the
transition systems, and the transition relation its&#fction 4highlights aspects of the pre-
compilation step, addressing class reasi and the hierarchical state-machi8ection 5
discusses related work.

2. The krtUML language

Our kernel language caters for the difference between active and passive objects. We
generalise this concept8ection 4y proposing to group one active object and a collection
of passive server objects into what we @mponentsAnother class dichotomy, orthog-
onal to the “active—passive” hierarchy, considered in the paper is the difference between
reactive and simple classes. All objects assumed to have state-machines; that is, their
behaviour can be made dependent on the current state of the system. Some state-machines
can specify event receptions, which automalyamplies a reactive behaviour of the cor-
responding class, i.e. its objects can reactl@external stimuli. We do not require any
restrictions on the combinatis between active/passive and rasgsimple class notions.
Pre-compilation will have flattened theerarchical state-machines dbUML into the
flat state-machines considered in our kernel language. It will also have split compound
transition annotations; hencéthin the kernel language, onlyamic actions and triggering
guards (signal/operation names possibly with conditions) are allowed as labels of
transitions.

2.1. Basic notions

We first explain some UML related notions considered in the paper, as well as imposed
problems, when resolving ambiguity of sertianvariation points deliberately left in

84 W.Damm et al. / Science of Cqmater Programming 55 (2005) 81-115

the UML specifications. We use the notioof active class/object, thread (of control),
concurrency, multiplicity, state-machine, association, composition, generalisation, multiple
inheritance, dynamic classification, stimulggnal, event, sender and receiver, method,
parameter as they are defined in the UML 2.0 propdall [

In developingkrtUML, we strivedto maintain in purified form those ingredients of UML
relding to the interaction of active objects.

Active classesire intended to be used to model threads — sequential executions —
where all threads can run concurrently. Active classes provide means to sequentialise (in-
dependent) executions. Intuitively, ative object— an instace of an agte class —
is like an event-driven task, which proces#s incoming requestsiia first-n—first-out
fashon. It comes equipped with a dispatcher, which picks the top-level event for the event
queue, and dispatches it for processing toegitts own state-machine, or to one of the pas-
sive objects associated with this active object, inducing a so-called run-to-completion step.

Passive classeare those containing no scheduling (or sequentialisation) mechanisms.
Their instances —passive objects— use such nechanisms from the assigned active
objects. In other words, passive objects perform their servimesbehalf of the
corresponding active ones.

Components.n this paper, we use the notion of a component which is a restriction of
the more general concept from the standdhL. We will call a set of objects executing

their services sequentially a component.slimeans that each component contains exactly
one active object and possibly several passines associated with the active one.
Within a component, all passive objects delegate event-handling to the one active object;
pre-compilation will capture this delegation relation by allowing reference thrauglac

to the active object responsible for event-handling of passive objects. We require static
assignment of passive objects to active ones, such that an object can belong only to one
componentin its life-cycle.

A Run-To-Completion (RTC) stép a sejuence of fired transitions in an object state-
machine corresponding to the processing of a single event or operation call. An RTC step
cannot be interrupted. Only RTC steps from different components can run concurrently (in
our semantics, meaning all possible interleavings).

Semantic challenge. A problem for the semantic definition for concurrent executions,
solved in the paper:

e 0n one hand, to take into account the different execution speeds within different
components (executing concurrently and asynchronously),

e on the other hand, to find an abstraction from the actual execution durations (which can
be different on different platforms),

e providing a semantics allowing telling about batate and run (or temporal) properties
of complex systems.

Signalsare specifications of asynchronous stimahose reception is handled by state-
machines. There can be several signal instances (called signal events) in a system at one
point of time. Signals can be generalised, which means that if a state-machine can handle
a reception of a generalised signal event, then it can also handle a more specialised event,
butnot vice versa.

W.Damm et al. / Science of Cauter Programming 55 (2005) 81-115 85

Operaions.We support so-calledriggered operationsi.e. operation calls, whose return
value depends on the current state of the system, as distinguished from what we call
primitive operationsthe body of which is defined by a program in the supported action
language. Since primitive operations only involve services of an object within the same
component, pre-compilation can eliminate all calls to primitive operations by inlining
their methods into state-machine transitiqassuming that the call-depth of primitive
operations is bounded). In contra&tr triggered operations¢éhwillingness of the object to
accept a particular operation call in a givertstia expressed withithe state-machine, by
labelling transitions emerging from the state with the operation name as a triggering guard,
in the same way as the willingness of the object to react to a given signal event is specified
by using this signal as a triggering guard. Reflecting the wish to make the return value
of triggered operations depéent on the object state, its “body” is “spread out” over the
state-machine itself: the accemce of a call will induce a run-to-completion step; hence
the transition labels passed during this ruretonpletion step determine the response for
this particular invocation of the triggered operation.

A general characteristic of reactive classe$JML is that they contain state-machines
specifying reactions on the stimuli by changing their states. This reaction can also
depend on the current state in the state-machine. In this article we propose a semantics,
where executions are defined with respect &msitions of state-machines, where object
creation and destruction are also explaineemnis of (implicit) state-machine transitions.
Therefore, inkrtUML all classes have state-machines. We will define a slightly different
notion of a reactive class tapture the proper reactive behaviour as follows.

A readive classin krtUML is a class whose state-machine specifies event receptions
or opaation acceptance also after the initialisation phase, i.e. when the state-machine
execution triggered by the creation operation is completed. Otherwise it is cadietpte
class

We consider two types of the intra- and inter-object communication:

e Asynchronous — via signal event emission. The caller does not need any reply;
therefore it proceeds further after the emission of a signal event. All emitted events
need to be stored in additional repositories to be accepted later by callees.

e Synchronous — via operation calls. kntUML we consider only triggered operations,
which trigger state-machine transitions. A caller sends a request that it wants to
synchronise with its calleeppssibly to get a result of an operation) and becomes
swspended. The callee may accept the call, if it enters the corresponding state.

Semantic challenge. A problem for the semantic definition of models with the
combination of different kinds of communications, solved in the paper:

e on one hand, to distinguish semantically synchronous and asynchronous communica-
tions by treating them differently,

e on the other hand, to give a uniform state-machine-based semantics (also taking into
account communication structure from class diagrams),

e providing a suitable granularity for the interference of object executions to capture
properties of both synchronous and asynchronous communication schemes in complex
systems.

86 W.Damm et al. / Science of Cqmater Programming 55 (2005) 81-115

While the £mantical model is rich enough to support communication through shared
attributes, operation calls, and signals, we restrict our communication model so that all
inter-component communications are purely asynchronous, i.e. via signal events.

In the following (sub)sections we will give formal definitions of the above-mentioned
notions withrespect tokrtUML. The notion of components will be also considered in
Section 4.2t a higher level of modelling formalism, calletUML.

2.2. krtUML structure

We now elaborate on the formal definition ¢ftUML models. Note that the different
ingredients are mutually gendent; hence we collect them in one formal definition. Es-
sentially a kernel modeontains a set of classes and signals; signals can be ordered by the
generalisation relation, with each class comitay a state-machine, typed attributes, and
operations implemented via the class state-machine. Some classes are distinguished as be-
ing active. We only consider here flat state-machines extended with object initialisation and
object destruction phases. A designated root class serves later for the system initialisation.

Definition 1 (krtUML Mode). A krtUML model
M = (Tv Fa Slg <, Ca CI'OOta A)
consists of the following elements:

e T D {void, B, N}: A set of basic typescomprising at least booleans and natural
numbers.

e F: A set of typedpredefined primitive functions

e Sig A finite set ofsignals Every instane of a signal is calledignal eventor eventfor
brevity.

e < C Sigx Sig A generdisation relationon signals, i.e. the transitive closuke" is
irreflexive, wheresv; < evo denotes thatv; is a generalisation afv1. In the fdlowing,
we use< to denote the reflexive transitive closure af

e C: A finite, non-empty set oflassesA class

¢ = (c.isActive c.attr, c.ops c.sm)

consists of:

— c.isActive A predcate. Clasge € C is calledactiveiff c.isActive= true.

— c.attr: A finite set of typedattributes which maynot be of typevoid.

— c.ops A finite set of typedriggeredoperations

— c.sm A c-state-machines explained inW) below in terms of c-actions overc-
expressions.

Each class contains two specifioplicit attributes(introduced by the pre-processing):

self e c.attr keeping the reference to the object itself, amg acfrom c.attr specifying

the event-handling object associated with class

Croot € C: The chss of theoot object(serving to specify system initialisation as defined

in Definition 7).

e A C C: Asubset of active classes calladtorsand used to denote external objects (part
of the eavironment).

W.Damm et al. / Science of Cauter Programming 55 (2005) 81-115 87

krtUML allows for some set of base typ@s as well & a setF of functions operating
on them, including, in particular, booleans and natural numbers together with all logical
and arithmetical operators. Signals as well as operations may have parameters of well-
defined types. Note that we support explicitlyngealisation hierarchies on signals (while
generalisation hierarchies on objects @liminated during pre-compilation).

We now eldorate on the elements kit UML model defined so far, and start by defining
the supported types. Here we clearly distinguisétween base types and reference types
(visible on the UML level), as well as a third category of types catering for implicit
attributes representing association end-points, which typically hold a number of references
depending on their multiplicity. By choosing type these uniformly with functions from
the naturals to classes, water for unbounded witiplicity. Operationally, we hence view
suweh implicit attributes asinbounded arrays, with each indpginting to an associated
object of a given class, or containing a nil-pointer.

Definition 1 (Continued.

(i) Typing. A krtUML modelM defines the set of types
TM) £ TUTC U Tas

whereTc el {Tc | c € C} is the set ofeference typeand

Tas el {N - T¢ | ¢ € C} the set ofassociation typeswhich will be used to

represent all kinds of associations described]rife., composition, aggregation, and
neighbour).

For each typer € T(M), we asume the existence afdesgnated elemenmiil, € t as
adefault value

We use typée to denote the type of attributes, functions, etc. as follows:

e For each class € C and each attributa € c.attr, typga) € T(M) denotes the type
of a € c.attr,
wheretype(self) = T; € T¢ andtypgc.my_ao € Tc.

e For each classt € C and each triggered operati@p € C.0pS typ&,,(0p)
= T1 x --- x Ty denotes the parameter type whdie e T(M) is the ype of
the i-th parameter andypg(op) € T(M) denotes the type of theeply value
(type (op) = void if opdoes not yield a return value). The typeagfis defined as
type(op) = typ&,r(0p) — typg (op).

e Foreachf € F, typg,(f) = T1 x --- x Ty denotes the parameter type where
Ti € T(M) is the type of the-th parameter antype () denotes the value type of
f. The ype of f istype(f) = typgy,(f) — typg(f).

e For eachev € Sig typg,(ev) = Ty x --- x Ty denotes the parameter typeeaf
whereT; € T(M) is the type of the-th parameter.

We next introduce the expression language, supporting navigation expressions, accessing
objects through association end-points, and closing this under application of base-type
functions (incuding equality and boolean operationBxpressions are terms defined in

the scope of a class that can be used in transition guards or primitive actions of this class.

88 W.Damm et al. / Science of Cqmater Programming 55 (2005) 81-115

Definition 1 (Continued.

(ii) Expressions. Forachssc € C, ac-expession‘ expr is defined inductively as follows:
o Navigatian expression:expr::=r.a,

wherer e c.attr with typer) = T, € Tc anda e cp.attr. We settypeexpn d
type(@). Note hat we only consider “flat” navigation expression&itiJML, where
r can also refer to the object itself (if= self).

e Association access: expr= expr[expk],
whereexpr, and expr, are c-expressionstypgexprn) = (N — Ty) € Tas and

type(expr,) € N. We settypgexpr d Te.

¢ Function application: expt:= f (expn, ..., eXpy),
whereexpr, ..., expr, arec-expessions f € F, andtypeexpr) matches the type
of thei-th parameter of , 0 < i < n. We definetypgexpn = typg (f).

In the following definition ofc-guards,c-actions, anct-stae-machines,expr, ‘ expr’,
and ‘expr,’ denotec-expressions.

Guards can be just boolean expressions, or express the willingness to accept a signal event
or an operation call, possiblyajoined with a boolean condition.

Definition 1 (Continued.

(iif) Guards. Forachssc € C, atriggeing guardto be used in the state-machine of class
¢ € C, c-guardfor short, is one of the following:
e Signal trigger ev[expr], whereev € Sigandtypgexpn = B.
e Call trigger: oplexpr], whereop € c.opsandtypeexpn = B.
e Condition [expr, wheretypgexprn = B.

We support a rich action language, allowing for ebj creation and destruction, operation
calls, event emission, and assignments of attributes and association end-points. The
expression passed in an object creation is intended to pass the identity of the active object
responsible for event-handling. Reply actions serve to define the return values of triggered
operations.

Definition 1 (Continued.

(iv) Actions. A (primitive) actionto be used in the state-machine of class C, c-adion
for short, is one of the following:
e Object creation: ra := create (expn,
with r e c.attr, typer) = Te, € Tc, @ € Cp.attr andtypga) = Ty € Tc, and
type(expn = type(c’.my_ao.
¢ Object creation (into association place)afexpr] := creatg (expn),
withr € c.attr, type(r) = Tg, € Tc, a € cp.attr,
typg@) = (N — To) € Tas, typeexpn) = N, and
type(expr) = type(c’.my_ao.
e Attribute assignment.a := expr,
withr e c.attr, type(r) = Tg, € Tc, a € cp.attr, andtypg@) = typeexpr.

W.Damm et al. / Science of Cauter Programming 55 (2005) 81-115 89

e Association place assignmentafexpr] := expbp,
withr e c.attr, type(r) = Tg, € Tc, a € cp.attr, typgexpr) =N,
typga) = (N — T € Tas), andtypeexpn) = Ty .

e Event emission:.sendev, expr, ..., expr),
withr € c.attr andtyper) € Tc, ev € Sig
and (X {_otypeexpr)) = typg,a(ev).

e Operation call (ignoring reply value):.call(op, expry, . . ., expr,),
withr € c.attr, typdr) € Tc, op € typdr).ops

n
and(X _otype(expr)) = typ&,s,(0p).

e Operation @ll (assigning value): 1a := r’.call(op, expr, . .., expr,),
with r e c.attr, typar) = Tg, € Tc, a € cp.attr, andr’ € c.attr,
type(r’) € Tc, op € type(r’).ops and(X{_otype(expr)) = type,a (op),
andtypea) = typg (op).

e Operation call (assignng value into assdation place):
r.a[expp] = r’.call(op, expr, ..., expr,),
with r e c.attr, typar) = Tg, € Tc, a € cp.attr, andr’ € c.attr,
type(r’) € Tc, op € type(r’).ops and(X{_otype(expr)) = type,a (op),
andtypga) = (N —) € Tas, typeexpip) = N, andtype (op) = C'.

o Sdting reply value: reply(expn, with T € TU Tc andtype(expn = .

e Object destruton: destroyexpn, with typaexpn € Tc.

Triggering guards and actions appear as labels of transitions in the class state-machines. We
assume a designated destruction state. Pre-compilation will extend the user-defined state-
machine by pre-fixing the initial state with a sequence of transitions modelling constructor
actions, while the destruction state, having no incoming transitions, is the unique point of
entry into a section added by pre-compilation modelling destructor code. Pre-compilation

also transfers hierarchical statgachines ito flat state-machines.

Definition 1 (Continued.

(v) State-machines. A c-stae-machine for a clagse C is a uple
c.sm= (c.Q, c.qop, C.gx, C.tr), where:

e C.Q s a finite set oktates

e C.(o € c.Q is theinitial state

e C.0x € €.Q is thedestuction state which isused to mark the beginning of the
destructor’s actions.

e Ctr € ¢.Q x ({y | yisac-guard orc-adion}) x c.Q is thetransition relation
We require that there is the initial transitioric.qo, ¥, q) € c.tr with c-action
y = “create”.

e Classc ¢ C is calledreadive if there is a transition(q, y,q’) € c.tr such
thatq # c.qo andy is in the formev[expr] or oplexpr] for someev € Sigor
op € c.ops)\ {create}. [

We will use krtUML to denote the set of akrtUML models.
An abstract example of ertUML model with four classes is shown &ig. 1

90 W.Damm et al. / Science of Cqmater Programming 55 (2005) 81-115
Croot
IsActive co C2
C1 my_ac IsActive -
N — IsActive
IsActive false self my_ac pos
my_ac itsC1[n] z@? © C2.aftr
seif itsCO[m] X
createci e createco
createc2
sm sm an_op C2.0ps
sm sm

.an op

x}/ destrov[V(Ga0)

Fig. 1. Class examples. Classggot andCO areactive, wherea€1 andC2 are pasive, i.e. perfom their ®rvices
within the sequences @)oot and CO executions, respectively. Class€® andC2 are reactive, since they can
react to stimuli after the initialisation phase. Clas€asot andC1 do not accept any stimuli other than creation.

Note that on th&rtUML level, there is intentionally no inheritance relation on classes,
since for each classe C, inheritance is explained by the introduction of implicit attributes
parent type, andtype tablefor each superclass of ¢ in the preprocessg step described
in Section 4.1 Association attributeparent type, are used to keep the structure of the
inheritance hiearchy, whereasype table reflects the actualype of each object, which
is available at each level of the dynamic classification (useful, e.g., for calls of abstract
operations with a defeed implematétion [22)).

Further note that association access is igsil to accessing a single index; i.e. on the
krtUML level, there are no operations like iteration over associations or adding references.
We assume that such opdians are alsolained in terms of primitive actions by the
preprocessing.

The identification of actors is not considered necessary from a semantical point of view,
since actors should be treated as every other active classes. But the information on whether
an object is an actor instance can be exploitefdimal verification: these objects need not
necessarily be encoded like ordinary objects but can be interpreted as an assumption about
environment behaviour, i.e. the expected sequences of input stimuli.

In the following, we assume that the preprocessing step as outlin&gdtion 4.1
establishes the following set of requirements regarding the sets of attributes and the
stake-machines of &rtUML model, whch we rel on in Section 3when explaning the
semantics.

(i) All attribute and triggered operation names of all classes are pairwise different, for
examplequalifiedby a classnamelike c::a, and all stées of all state-machines are
pairwise different.

(i) For each clasg € C, c.attr contains the attribute::my_acto store he reference to
the responsible active object such tltatmy _acis of type To andc’.isActive= true.

W.Damm et al. / Science of Cauter Programming 55 (2005) 81-115 91

(iii) Values of the implicit attributesc::self and c::my_ac (as well astype table and
parent type.) are assigned once at the initialisation of the corresponding object and
do not change during the lifetime of the object.

(iv) For each triggered operatiap € c.ops ¢ € C, there are #ributesc::op,, € c.attr,

1 < i < nfor holding local copies of the parameters,
typed s.t(C::0py,, ..., Ci0Py,) = tyP&a(0P).

(v) For eachev € Sigwhich ¢ € C is willing to receive i.e. there is a transition
(9. ev(expi, q’) e c.r, there are #ributesc::ievy € cattr, 1 < i < n, for
holding local copies of the signal parameters, typed(s:tevp,, ..., C::evp,) =
tyP&ar(€v).

3. krtUML semantics

We will give the semantics dfrtUML in terms of symbolic transition systems, proposed
in [21] under the name Synchronous Transition SysteSeparate subsections derive from
types ofkrtUML modds the type structure of related symbolic transition systems, and
introduce the system variables required to represent a snapshot in the dynamic execution
of a krtUML model. We then elaborate the way in which snapshots can evolve, defining
for each of the possible cases a transition predicate. Finally, we define the predicate
characterising initial snapshots, and collect all pieces of the transition relation into a full
predicative definition of the transition relation, leading to a definition of the symbolic
transition system associated wkitUML model.

3.1. Symbolic transition systems

Wefirst introduce the semantic model of syntibdransition systems, which allows for
apurely syntactical description of a transition system by first-order logic predicates over a
set of yped system variables.

Definition 2 (STS. A symbolic transition systeSTS) S = (V, 6, p) consists ofV,

a finite set of typedsystem variables®, a first-ader predicate over variables M
characterising the initial states, apdatransition predicatethat is a first-oder predicate
overV, V’, referring to both primed and unprimed versions of the system variables (their
current and next states)]

An STSinducesa transtion system on the set of interpretations of its variables as
follows.

Definition 3 (Runs of an ST)SLet S = (V, 0, p) be anSTSand 7 the set oftypes of
variables inV. Let D; be a semantic domain for eaeche 7.

(i) A snapshots V — | J,.7D; of Sis a type-consistent interpretation\éf assigning
to each variable € V a values(v) over itsdomain.X' denotes the set of snapshots
of S.

(ii) A snapshots € Y inductively defines the valugexpdl(s) for first-order predicates
‘expr overV and the valuglexpr(s, s') for first-order predicatesxpr over V, V’,

92 W.Damm et al. / Science of Cauter Programming 55 (2005) 81-115

| status

self
Cruiser [[[[T T[] _[speed ac ’x%
: itsCruiser =

car (TTTTILIL

sC

eq

[ds

\ J \ J
'l A4

system configuration object configuration

Fig. 2. System configuration. A variable of tyfg:qnf contains one object configuratidor evel object identifier
in Oc. The exarple of an object configuratioaconffor the object(Car, 5) is shown enlarged.

wheres provides the interpretation of unprimed asicthe interpretation of primed
variables in expr.

(iif) A snapshots € X' is calledinitial, iff [©](s) = true.

(iv) Lets, s’ € X be snapshots &. Sngshots’ is calledS-siccessonf s, iff [p]l(s, ') =
true.

(v) A computationorrun, of Sis an infinite sequace of snapshots
r=%s1%... sdisfying the following requirements:
e |nitiation: sg is initial.
e ConsecutivenesSnashots;j 1 is anS-successor ofj, for eachj € No.

(vi) The set of all computations @is denoted agungS). We user (i) to denote thei-th
shapshobf a runr € rungS) and

r/i a riyr@+Lri +2)...

to denote the infinite suffix startingati),i € No. O

3.2. System variables for the krtUML semantics

We motivde our choice of types and system variables using snapshots related to the
Automated Rail Car System described 1], a model of autonomous rail-bound cars
which tranport passengers between terminals and which adhere to a simple arrive and
departure protocol to allocate and de-allocdtgfprms inside the terminal. We refer the
reader to 14] for detals.

Fig. 2 depicts the way in which an object configuration is captured. It shows enlarged
the entryof an object of classCar, curently executing. The current state-machine
configurationis illustrated by a state-machine, where in fact only the current state is stored.

An object configuration not only gives the current valuation of all its attributes as well
as its current state configuration, but also maintains the current object status (elaborated
below), the event queue (for active objects only), and a dispatcher status (for active objects
only) used to enforce a single thread of control within the objects grouped into one
component. The semantic entity repre#®ma single class ia (potentidly unbounded)

W.Damm et al. / Science of Cauter Programming 55 (2005) 81-115 93

4 alive)
queue empty
and no pen- take event or) become
ding calls accept trig. op,/ Stable destruction

createl : destro ; completed
locally éexecutmg . : dead

enabled initiate trig. pick up
transition op. call result
suspended
N\ w4

Fig. 3. The obgct life-cycle.

array of object configurations, with each entgri@sponding to a singlinstance of this
class.

The object status reflects the gledn the object life-cycle (sdgg. 3). Prior to aeation,
objects are perceived as being dormant. Creation of a new object instance will pick
a dormant index of the corresnding class, and awake the object to realities of life.
During life, objects become suspended when waiting for completion of an operation call,
and idle (except for the special case discdsBelow) when bBcoming stable, i.e. when
a run-to-completion step terminates. THimppens when reaching a state, where all
outgoing transitions are either guarded by signal triggers (of the tafexpr) or call
triggers (of the formop[expr]), or conditions (of the fornjexpr) which are evaluated
to false. In the particular case of acceptingtdsdion, the object status will switch to
dying, remaining in this statuuntil its last run-to-completion step induced from the
objects’ destructor is finally completed. From then on, the object status will remain
dead.

Note that destruction of an aggregate object (w.r.t. the composition association, defined
in rtUML) induces destruction of all its parts; hence dying may be a long and painful
process. Our semantics thus allows us to observe nastiness such as sending events to dying
objects, as well as detecting dangling references.

For the resbf this section, letM = (T, F, Sig, <, C, Croot, A) be akrtUML model. We
now define for the semantic types employed in the definition of the associated symbolic
transition system, as well as the semantic domain of all semantic types. The type-system
of semantic types subsumes all types ofkhi&/ML model.

Definition 4 (Object Reference Types and Domairfsor each basic typer € T, we
assume the existence of a corresponding semanticZypéth domainD; .
For each typel; € Tc, we denote by O or 77, the morresponding semantic type and

df df

chooseDo, = {c} x N as its domain. We calDc with domainDo. = (Jicc Po., the
object reference type or domaiRor each object typ®., we assume the existence of a
designated elemenitl; € Do, to serve as a dault value.

For each association type= (N — T¢) € Tas, D¢ a (N — Dg,) is the domain of
T.. O

We now define the semantic type of system configurations and its associated domain,
by first defining the semantic type of object configurations.

94 W.Damm et al. / Science of Cqmater Programming 55 (2005) 81-115

Definition 5 (Object and System Configuratipn (i) An object configuration ocont=
(staus ac, sc eq ds) consists of the following elements:

e An object statusstaus of type ZopjstatusWith associated semantic domain
D gpistatus a {dormant idle, executing suspendedlying dead.
e An object attribute configuratiohac of type 7ac d U(c.attr — TT(m))-

ceC
e An object state-machine configuratiosc of type 7sc with associated semantic
domainDz, & Jco

ceC
df

e Theevent queue eqftypeZeq = 7gye i.€. a squence of entries
df .
(dest ev, par) of typeZege = Oc x Sigx U Typeyar(en)-
eveSig
For an evat queue entry, dest denotes thedesthation, ‘ev’ the event type

(i.e. signal name), angbar the event parametersiVe will use ¢ to denote empty
eventqueue.

: f . :
o A dispatch reference dsf type 7gs el Oc, i.e. a réerence to some object of any
class which is used to denote the object currently processing an event.

Thus the type of apbject configuratiorof M is
df
Tocon(M) = Tobjstatusx Tac x Tsc ¥ Teq x Tds.

(i) The type of asystem configuratiofis Zscon{ M) el Oc — ToconfM).
(iii) We will call a setCm(o) = {0’|0’.my_ac = o} of objects assigned to the same event
dispatcheo acomponent

(iv) We will call objecto € O of classc an active objectiff c.isActive = true (i.e.,
c is an active class). Otherwise we calla passive objectWe also vill write
o.isActive = true to specify thato is an active object and.isActive = false for
passive ones.

(v) We will call objecto € O of classc a readive objectiff ¢ is a reactive class.
Otherwise we cald asimpleobject [

The symbolic transition system uses the variaguenf : 7sconfto maintain the object
configuration of all objects oM. Note hat, in general, the assignment of an event
dispatcher to a reactive object can be user definedd]|ra[default assignment is given
derived from the composition association.

We collect the status of all pending operation calls within a pending request table. An
example inFig. 4 shows enlaged the entry for calls from an object of cleGar. Curently
the call of triggeed operationengage for a Cruiser is pending. Here we exploit the
fact that all objects become suspended on calling an operation. We can thus maintain the
status of all operation calls in a table inddxay sender objects or actors. Each entry in
the pending request table maintains the identity of the receiver, the name of the requested
operation, the list of parameters, a result field, and status information.

W.Damm et al. / Science of Cauter Programming 55 (2005) 81-115 95

Cruiser 1T T T T T T T 1

| dest
: | op
Car (TTTTTTIT --- status
R _| result
“--.__| params
|\ J |- J
h'd Y
pending request table pending request table entry

Fig. 4. The pending requestbia. The pending request table is a system variable of e It contains one
entry for every object identifier iOc.

caller calls callee accepts callee becomes

g. op. 11
caller
picks up result

Fig. 5. The life-cycle of driggered operation call.

The life-cycle of an entry in the pending request table is depictddgn5. Whenever
the object owning the entry emits a new operation call, the status of the entry switches to
pending. It will remain in this status until the receiving object is willing to serve the call,
which causes the status to switch to busy. Once the run-to-completion step induced from
accepting the call is terminated, the resultlod tall is entered into the result field of the
entry, and its status changes to completed. This will allow the calling object to pick up the
result and resume computation, causing the status of the entry to become unused.

Definition 6 (Pending Request Tabje (i) A pending request table entry opreg=
(dest op, staus result paramg mairtains:
e The receiver of a triggered operation calbdest of type 7gest With associated

. . df
semantidomainDr,,, = Oc.
e The triggered operation identifierop’ of type 75, with associated semantic

. f
domainDy,, d | c.ops
ceC
¢ Thetriggered operation statusstatus of type Topstatuswith semantic domain

Dypstatus a {unusedpending busy completegl

e Theresult(or reply) ‘result of typeZres with associated semantic domain
df
D1 = | J type(op).
ceC
opec.ops
e Theparametersparams of typeZpar With associated semantic domain

df
Do = | typgarop.
ceC
opec.ops

96 W.Damm et al. / Science of Cqmater Programming 55 (2005) 81-115
Thus the type of a pending request table entry is
df
Topreq(M) = Tdest X Top X Topstatusx Tres % Tpar-

(if) The type of thepending request tablis Zp (M) o Oc — TopreqM). O

The symbolic transition system uses the varigife: 7px to maintain the operation
requests of all objects d¥l.

For each typer considered, we assume the existence of a designated eleitpentD,
to save as a default, or undefined, value. Moreover, we assume that expresgioase
evaluated tal in such situations as, for example, trgito read an attribute via a reference
with valuenil, or trying to execute division by 0 and other arithmetic exception situations.
In other words[[expr= LJ(s) = trueiff [expr(s) = nil, for T = typeexp.

Furthermore, we need a boolean flagsfail which is used to indicate an undefined
state of the system, e.g., if it tries to read an attribute of object referénmeif the type of
the reply action does not mditc¢he ype of the currently processed triggered operation.
Performing some arithmetic computations can also raise this flag in failure situations
(e.g., division by 0). Initially,sysfailis set tofalseand it remains set, once it has changed
to true.

For brevty, we will use the following abbreviations fav € Oc in the rest of this
section:

df
e O.stalus = soonf(o).statusand analogously fosg ds eq

df . .
e 0.a = soonf(o)(a), i.e. the vale of dtributea.

o.a.b g sonf(sonf(o)(a))(b), for atributesb of reference type.

For an evenbr operation parameter tupéewe useo.eq/p := eto denote simultaneous
assignment of the-th components o to their corresponding attributes ,, in o.

A primed abreviation indicatethat the primed system variable is to be used, for example
o.2' = sonf'(0).a.
For an evet queuey = €1 ... &, € Dz, weintroduce the following elements:

e headq) o e denotes the first entry of the queue it ¢.

o tail(q) el € ... e, (with n > 2) denoteg with the first entry removed, artdil(q) = ¢
ifn<?2.

e enqueues, q) a g edenotes the result of appending erdryZeqeto q.

We will use logical XOR-operator for the following abbreviatioa® b o (avbya
—(aAb).

3.3. The transition predicate

Intuitively, there is a transition between two snapst® if there exists exactly one
objecto € O¢c whose configuration changes for one of the following reasons:

W.Damm et al. / Science of Cauter Programming 55 (2005) 81-115 97

e Objecto is idle and an event is dispatched to it by its active object or an event
with destinationo is discarded since it is not enabledais stae-machine. (Coarse-
granularity flow of control is kept by elemends of active objects’ configurations.)

e Objectois idle and accepts a triggered operatoafi. (Fine-granularity flow of control
is kept by elementdestof the pending request table.)

e Objecto is executing or dying, unstable, and takes a transition of its state-machine and
thereby executing an action, which can be either simple (taking only one fine step with
no changes in the flow of control) or delayed, waiting for the results from other objects.

e Objecto is suspendedral picks up the result of a triggered operation call which has
been completed by the callee. (Figeanularity flow of control kept byestin prt.)

The system may remain in snapslsaf no object isexecutingand all event queues are
empty. In the following, we formalise each oftlabove conditions separately as first-order
logic predicates which are then used to construct the transition predicate of the semantics
STM).

Note that in the following incremental definition of the transition predicate, we use an
assignment symbol=" which has to be processed as explicatedgfinition 7 to yield
the final transition predicate. Informally, this symbol indicates that there is no difference
beween the current and next states of the system variables other than specified explicitly
in the sequece of the =" expressions (or their constituents).

We first define for each objea € O the predicatestable(o) in the current system
configuration as follows:

stable(o) gy (d,ys,9) ectr:q=o0.sc =
((ys = “ev[expr]” A sysfail := (sysfailv expr, = 1))
V (ys = “oplexph]” A sysfail := (sysfailv expr, = 1))
V (ys = “[expr]” A —expl; A sysfail := (sysfailvexpi =1))).

We will define the individual steps that an object can perform, thus defining the
transitions locally to objects. Later, iBefinition 7, the globd trandtion predicate is
combined out of these steps with additional conditions specifying a kind of “scheduling”.
Each such “partial” predicate, defined bsléor each kind of step, contains the following
specifications:

(a) the state when the step can be performed: conditions on the current, i.e. unprimed,
values ofthe system variables;

(b) changes in the values of object attributes or the pending request table induced by the
transition;

(c) raising the failure flag if some values referred to are undefined.

3 Here and dter on:y = “ev[expr]” (y = “op[expr]” or y = “[expr]”) means that the label of the current
transition(q, y, ') is of the formev[expr] (op[expr or [expr], resgectively), i.e. a signal trigger (a call trigger or
a mndition, respectively; cDefinition 1 (jii)).

98 W.Damm et al. / Science of Cqmater Programming 55 (2005) 81-115

sconf”

(c2,i) (c2,i)

d _ pget_ event (O) : _
O=(c1.m) — — /0=(in C—T
sltotus idle ds nil (c1.n]
my ac__ (C2,] [;’q‘] my ac__ [c2] eqi
&0l 7 .,ev,eVpl,esz, o : " i
ep? ? Qo . failleq) 3 ; fdeq)
S.C q ev[expr]/

evlexpr]/
S|

Fig. 6. The transition relationoget event

3.3.1. Getting an event
Intuitively, an eventev; with destinationo can be dispatched to from the head of
the event queue of its active object if no other object in the same component is currently
processing an event reception (specifiecobyy acds = nil) and if there is a transition
(g, ¥, q') guarded by a superclass of ev; is enabled in the current statg(cf. Fig. 6):

Pget event(0) a y = "ev[exp” A o.my_acds= nil
A expr= true A sysfail := (sysfailv expr= 1)
A 0.my aceq# ¢ A heado.my aceg).dest=o0
A 0.my aced := tail(0.my aceo)
A (Jevs € Sig:
A heado.my aceg).ev = ev1 A evy < ev
A (—stable(o)’
= (0.my _acds := 0 A o.stalls := executing)
A 0.ev), == heado.my_aceq.pan).

Elemento.my acds whennot equal tonil, locks its component for processing a signal
event. It can be released (and the component can start to process the following event,
i.e. a new run-to-completion step) only when all computations within the component are
completed.

Note that we exploit the fact that the syntactic category of boolean expression used in
the definition ofkrtUML models is subsumed in the expression language of the first-order
logic used to define transition predicates. In particular, the above-defined abbreviations
apply to expressions of transition predicates thus providing the intended relatiaonto

3.3.2. Accepting a triggered operation

Objecto can accept a triggered operation agllif a transition(q, y, q’) guarded byop
is enabled in the current stagigand some other objeot has cded opfrom o (there is an
entry point in the pending request table with this operation):

W.Damm et al. / Science of Cauter Programming 55 (2005) 81-115 99

Pacceptop(0) Sl y = “oplexpi” A expr= true A sysfail := (sysfailv expr= 1)
A (301 € Oc : prt(o1).dest= 0 A prt(o1).0p= op
A prt(op).staus = pending
A (—stable(o)
= prt(o1).staus := busya o.staus := executing

A (stable(o)’ = prt(0y).status := completed

A prt(og).resulf := nil A o.opfp ‘= prt(01).0pp).
Note that an object can call a trigger operation only from an object of the same component
because of the restrictions on theeirtomponent communication. Thusmy acds =
o0.my_acds = o1 during the execution of operations within one RTC step (the change of

the control between objects at this éwf communication is captured lprt(o).destand
prt(o).staus).

3.3.3. Skipping guards
Objecto can take a transition guarded with a boolean expression only, if the expression
evaluates tdrue:

Pskip guard(0) el y = “[expn]” A expr= true A sysfail := (sysfailv expr= 1).

3.3.4. Discarding events

If there is an event for objeat in the queue ofo’s active object bub is not willing to
accept it, i.e. if no transition with a matching signal (or its generalisation) is enabled, then
the event is simply remodgrom the top of the queue:

Pdiscard event(0) £ o.my_acds= nil
A 0.Mmy_aceq# ¢ A heado.my_aceg).dest= o0
A 0.my aced := tail(0.my aceq)
A (Y (q, evi[expd, g') € c.tr :
(expr= falsev ev1 £ heado.my _aceq).ev)
A sysfail := (sysfailv expr= 1))
A (—stableo)
— (0.my_acds := 0 A o.staus = executing).

Note that a discarded signal event can nevertheless trigger a transition, if the object is no
longer in its stable state (the value of a gliag condition on a transition without signal

or call trigger became true). Note also that tripggeoperation calls are not discarded, but
remain until the callee accepts the call.

3.3.5. Executing simple actions

Objecto can execute an action if the current transiti@n y, q') is enabled and an-
notated with the action. We distinguish two types of action — simple (or non-operation)
actions and operation calls (or synchronisatietagls) — treating them in different ways.

100 W.Damm et al. / Science of Cauter Programming 55 (2005) 81-115

These subformulas will be combined with different contexts — conditions on their perfor-
mance — in the final transition predicate.érk are four kinds of non-operation action:

df
Pnon op_action(0) = Passigl0) @ Psend even0) D Preply(0) D PdestroyO)-

e An assignment action simply assigns a value to the destination attribute:

Passigr{0) el y =“ra:=expl’ A (expr£ L = o.r.a = expp
A sysfail := (sysfailv o.r = nil v expr= 1).

e An event-sending action causes a neverd to be appended to the queue of the
destination’s active object:

df “ ”
Psendevent0) =y = “r.sendev, expr, ..., expr,)

n
A sysfail == (sysfailv or =nilv \/ exps = L)
i=0

Ao.r.my aced :=
enqueugo.r.my_aceg (o.r, ev, (expr, ..., €xXpr))).
e A reply action causes the parameter value to be written into the reply field of the pen-

ding request table at if o processes the call from another objegtotherwse system
failure is indicated:

Preply(0) g y = “reply, (expn”
A[(F01 € Oc :
prt(o1).dest= 0 A prt(o1).status= busy
= prt(oy).result := expr
A sysfail := (sysfailv T # type (01) v expr= 1))
@ sysfail := true].
o A destroyaction causes the destination’s state-machine configuration to be changed, so

Ox is the current state and the status is fayi. Then the subsequent steps will execute
the actions of the destructor. Killing a dying or dead object causes a system failure:

Pdestroyf0) g y = “destroyexpn”
A[(expr# L A3 01 € Oc : 01 = expr# nil

A 01.MYy ac= 0.my ac

A (01.staus ¢ {dormant dying dead

= [01.8¢ = O«
A (—stableo;)’ = o;.staus := dying
A (stableg(o;)) = oy.staus = dead]))

@ sysfail := true].

W.Damm et al. / Science of Cauter Programming 55 (2005) 81-115 101

3.3.6. Synchronisations via operation calls

Operation call actions differ from the judefined simple actions, because they are not
treated atomically. An opation call suspends objectand configure®’s entry of the
pending request table, so that it denotes tHeeathe called trigged operation, and the
parameters. Initially the status of a called operationhding. Besides this, an additional
check is performed to guarantee operation calls only from the same component (otherwise
a run-time falure is observed).

df 13 ”
Pinit_opcall(0) = (y = “r.call(op, expn, ..., expr,)
vy ="“ri.a:=r.call(op, expr, ..., expr)”)
A 0.r.my_ac= o.my_ac

n
A sysfail := (sysfailv or =nilv \/ expf = L
i=1

vo.r.my ac# o.my_ac)

A o.staus := suspended prt(o).dest := o.r
A prt(o).op’ := op A prt(o).staus := pending
A prt(o).result := nil A prt(0).op;, := (expy, . .., EXpK,).

3.3.7. Creating a new object

A creation action is handled like a triggered operation since the caller should be
blocked until an object of the desired classgadily created with all inherited parts and
all aggregated parts (possibly with attribute initialisation). This is modelled by implicit
operationgreate attended at the pre-compilation step to the initial transitions of all state-
machines. A creation action looks for a dormant object, wakes it up, assigns it to an
appropriate component (or creates it as a new component, if the created object is active),
and then calls operatiaeate from the new object:

Pcall_createO) ﬁ y = “r.a = creatg, (expn” A 0.my_ac= expr
A sysfail := (sysfailv expr= L v o.my ac# expr
Vv (expr= 01 € Oc
A 01.staus e {dormant dying dead))
A (@301 € O \({nilg,}:
01.Staus = dormanta o;.staus = idle
A (—Cy.isActive => 01.my_ac = expp
A (Cy.isActive = 01.my acd := 01)
Ao0.r.a =01 A o.staug := suspended
A prt(o).dest := o1 A prt(o).op := create,
A prt(o).staus = pending
A prt(o).result := nil A prt(o).params := nil).

102 W.Damm et al. / Science of Cauter Programming 55 (2005) 81-115

O1:c1 02:c2 "\ O:c

P
status=dormant a r

{c1.isActive=false} \03—03,/ my_ac = expr
/ r.a:=createc (expr) p

sconf
I p call_create
sconf”
prt(0)
O1:c1 02:c2 O:c iest _ O7
- k\ op __ crealecs
status=idle [~ a status=suspended| [Stafus_pending
my_ac —

createct/ :

a0

Fig. 7. The call of an ofgict creation. Changing status of the callercalleeO1, and inserting the called operation
creatg into the pending request table: the values of selected elementséomfandprt.

An example of some essential changes in the system configuration corresponding to a
creation action is shown iRig. 7. Here, only the creation of a passive object is shown. Note
that newly created passive objects can be assigned only to the current component (defined
in the corresponding attributeny_ad), within which the creation action has been called.

When a gnchronisation took place and the callee completed the required operation,
additional bookkeeping was needed at the end of the operation execution to raise the flag
“the result is ready”, formalised in the following subsection.

3.3.8. Becoming stable

If object o becomes stable, some bookkeeping takes place.whs procssing an
event,the dispatch reference of its active object is reset Was excuting a triggered
operation, the pending request table status is setdmpletedto let the caller know that
the operation has been completed. In both casdmcomes idle. I is executing the
run-to-completia step farting atgx, then t becomes dead:

Pbecomingstable(0) il (sablelo) — [0.my acds=0 —>
(o.my acds = nil A o.staus :=idle)]
A[Vor e Oc:
prt(oy).dest= 0 A prt(o1).staus = busy
= (prt(oy).staus := completed
A o.staug = idle)])
A (0.stais= dying = o.staus := dead.

W.Damm et al. / Science of Cauter Programming 55 (2005) 81-115 103

m:Cruiser

itsCrs

disengaged
disengage/ l

/itsCruiser.call
m itsCruiser.call(engage

c.status c.sc m.status m.sc dest op status ret par
sconf’: | suspended [dep | idle [disengaged | prtlc]: [m |engage | pending [nil] nil |
sconf’’:| suspended [dep | executing [disengaged | prtfc]”:| m [engage | busy [mil] nil |
sconf”’:[suspended [dep | idle | engaged | prtlc]’:[m [engage [completed | O [nil |
sconf”’”’:[executing | crs [idle [engaged | prtfe):[nil] il | nil [nil] nil |

Fig. 8. The triggered operationltaChanging status of the caller calleem, and thecalled operatiorengagein
the pending request table betweea kegnning (unprimed variables, not dieted here) and the end (at tirti¢’)
of the operation call: the values of selected elemensmif andprt.

3.3.9. Picking up a result

Objecto can pick up the result of a previous operation call if the callee has set the status
of 0's pending request table entry teémpleted. Picking up a result means not only the
change of the corresponding attribute, bubalsanges of caller’s status and removing the
corresponding entry in the pending request table:

Ppick_up_result(0) il (prt(o).status= completed==prt’(0) := nil)
A (—stable(o) = o.staus := executing
A ((y ="“r1.a:=rp.call(op, expr, ..., expr)”
A —0.r1 =nil) = o.ry.a’ = prt(o).resuly
A sysfail := (sysfailv 0.r{ = nil).

The complete execution of an example of a triggered operatgage)) is illustrated
in Fig. 8 The first row of he tables show the relevant part of the system configuration at
timet’, just afterc has entered the call into the pending request table. Note thas not
yet taken the transition; it remains in its previous state. The second row shows’time
just after theCruiser m has accepted the call. At tini€, m has just completed its run-to-
completion step, i.e. written the result, changed the operation’s status to “completed”, and
become idle. This is an indicator farto pick up the result at timg””’, i.e. reacthe reply
valuefrom the table, clear the table teyy and now take the transition.is executing and
continues its run-to-completion step, assuming thées not become stable.

3.4. The STS semantics of a krtUML model

Putting all specifications of different kinds of transitions together we define the
semantics okrtUML as a symbolic transition system over the three system variables

104 W.Damm et al. / Science of Cauter Programming 55 (2005) 81-115

(from Section 3.2 with the initial condition andcombined transitionalation specified in
the following definition.

Definition 7 (krtUML Semantics Let M = (T, F, Sig <, C, Groot, A) be a krtUML
model. Thesemantics of Ms the STS

STSM) = (V, O, p), where

System Variables. V a {sonf: Tscon(M), prt : Tpre(M), sysfail: B}.

Initial condition. Initially a single object of class;got €xids and has statusXecuting.
All other objects arelormant, all attributes have default values, there is no system failure,
and there are no entries in the pending request table:

6 L 305 € Ogpy \ (Nl :
(0p.status = executingA 0p.ds= 0g
A 00.SC= Croot.0o A 0p.€0= & A Op.my_ac= Op
AY 01 = (C1,n1) € Oc \ {00} :
(01.status = dormanta 01.SC= C1.0p
A 01.ds= nil A 01.€q= ¢))
AY 0= (c,n) e Oc : (o.c::self = o0 A prt(0) = nil
AY a e c.attr : 0.a = Nilypga))
A sysfail= false
The unique single object of clasgot Which is alive at tle beghning of a rurr is called
theroot objectof r.
Transition relation. The intermediate predicatgp composes the above-introduced
subpredicates and additional conditions on tlapplication within objects’ life-cycles as
follows:
00 ¥ vo € Oc : o.stalus## executingn o.eq= ¢
v (—sysfailn3o=(c,n) € Oc 3(q,y.q) €c.tr:
0.sc=q A (0.5€ =g A(
[0.stats = idle A (pget even{0) D pacceptop(0))]
V [(o.status = executingv o.status= dying

A (pskip guard(0) @ Pnon op action(0))]
V [o.status = suspended ppick up result(0)])

A Pbecomingstable(o))
Vv (0.s¢ := 0.scA ([o.staus= idle A pgiscard even{O)]
Vv [o.status= executingA (pinit_opcall(0) & Pcall_create(o))])))-

The final transition relatiorp is obtained frompp by adding aframe aiom which
requires that only those places ®fare allowed to change in the transitiongo which

W.Damm et al. / Science of Cauter Programming 55 (2005) 81-115 105

get new values by an assignment" in pg, and clanging the assignments te=".
The semantics of RrtUML modelM is given & the setungSTEM)) of all computations
in M (stating at®). O

It is easy to see that effectively restricts activity to at most one object, resulting in
an interleaving of actions from different objects. The definition of transitioriSTIGM)
uses a very refined notion of step. The following definition formalises two coarser levels
of steps in a complex system.

Definition 8 (Run-to-Completion Stg¢plLetVy, ...,V € X be snapshots @TEM).

(i) A run-to-completion — RTC — step in an objecisoa sibsequencetc(o) =
Mi...Vigk) (k > 0)ofarunr = (Mp...Vi...Vijk...) € rungSTIM)) such
that all the followhg conditions hold:

e sonf (0) # swonf,(0) (changes required in the objews configuration during
the step);

e sonf (0).sc= gy Vv soonf(0).staus= idle (objecto was stable);

e sonf,(0).stause {idle, dead (objecto became stable after the step);

e V0 < | < k : soonf;(0).staus € {executingsuspendedlying (objecto is
unstable during the step execution).

(i) An RTC step in a component Ca) is a sibsequenc®TCGCM(0)) = (Vi ... Viik)

(k > 0) of a run such that all the following conditions hold:

¢ sonf (0).ds = nil = swnf_(0).ds(no object is scheduled for an event reception
at the beginning and at the end of the step);

e sonf (0') # swnf_, (0') for someo’ € Cm(0) (changes required in the component
during the step);

e sonf (0).staus= idle (the active object of the component was stable)

¢ sont_, (0).staus e {idle, dead (the active object of themmponent became stable
after the step)

eVO< j <k: (soonfiﬂ- (0).staus € {executingdying} v sa)nfi+j (0).ds # nil)
(the active object of the component either was performing its own computation or
scheduled a reception of an event to its passive servant).

(iii) For an object/component RTC stdp; ... Vi1k), Vi is called the bginning of the
RTC step, and; ; is called the end of the RTC step.

The relation between the notion of an object RTC step and a component RTC step in
the proposed semantics can be formalised as the following proposition.

Proposition. Let seq = (V1...Vnh) be an RTC step in a component @n and
soonf (0”).staus # dying for all1 < i < nand for dl 0” € Cm(0). Then exatly one
of the following holds:

e seqisan RTC sp in objecto or
e seq is an RTC step in some objectaCm(o) such hat sconj(0).ds= 0'.

The following consequence froDefinitions 3 7 and8 formalisesthe main properties
of thekrtUML semantics dscribed.

106 W.Damm et al. / Science of Cauter Programming 55 (2005) 81-115

Consequence 1. Let M be akrtUML modelr € rungSTEM)), wherer = (Vp...Vy...)
with V; = (swnf, prt;, sysfai|]) (0 < i). Leto # 0 € Oc. Then he followinginvariants
hold:

(i) (Level of the computation concurrency)

soonf (0).staus = soonf (0).staus = executing = 0 € Cm(01), 0 € CmM(02) A
01 # 02 — only objects from different components can be executing at the same time.

(i) (Asynchronous interference points)
(Vi, Vit1) € pget even0) = V; is the beginmg of a RTC steggV; ... Vi k) of the
componenCm(o1), whereo; = snf (0).my_ac

(iii) (Synchronous inteference points)
(Vi, Vi1) € pacceptop(0) = V; is the beginmig of a RTC stegV; ... Viym) of
objecto. An objecto can accept operation calls only on the borders of its own RTC
steps. O

Thus, the semantics STS(M) encodes all system executions as interleavings of
component RTC steps, allowing event retb@ps by its objects only at the borders of
component RTC steps (when other objects from the component are not currently executing
or suspended by an uncompleted operatialis). On the other hand, each component RTC
step is a chain of invocations of objects’ RT@&ps, each of these started by suspending
the prevbus one with an operation call.

Since he semantics is given from the local point of view of objects, the sequentialisation
mechanism within a component is implemented via the shared variabhayg: acds
0.my_aceq, andprt(o).

The following consequence summariségede means of the sequentialisation in the
proposed semantics.

Consequence 2 (Sequentialisation of Component Computatjorir each component
Cm(o) (with o.isActive = true), the shared variablesds o.eq andprt play the main

roles for the scheduling between several computations available in the component objects.
For all objectso’ € Cm(o):

eq: 0.isActive= false = Vr = (MpV1...) € rungSTEM)) Vi > 0: sonf (0').eq=
¢ (only one event queue is used in a component to store asynchronous stimuli
sequentially).

ds: (Vi, Vit1) € pget event(0')) = soonf (0').my_acds = nil (an object can receive an
event only if no other object is @cuting its event reception).

prt: prt(0’).staus = busy =— 0'.staus = suspendedbeginning of a synchronisation:
an operation can be executed only if the calling object is suspendedand.1)
Ppick up result(0) == (prt; (0').dest= 0" = swonf (0”).staus = idle) (end of a
synchronisation: an object can proceed witk thsult of an operation call only if the
callee became stable) [

It is easy to see that at each transitipn= (Vj, Vi41) in each system rum =
(Mo...Vnh...) at most one state-machine transition can be taken, and transitions enabled
in different component are chosen non-deterministically. By considering all possible

W.Damm et al. / Science of Cauter Programming 55 (2005) 81-115 107

runs, we provide semantics covering different execution speeds and scheduling between
components.

4. Assessing the expressiveness of krtUML

In this section we indicate how todece richer UML models fromtUML as supported
in the IST project Omega8] to the krtUML subset defined irBection 2 Besides this, we
explain the choice of the design decision behind the formal semantics. The subset of UML
chosen to be translated kwtUML and calledrtUML contains the following additional
features (not presented kntUML):

e Primitive operations in classes’ definition, i.e. those implemented by methods (with
actions defined irDefinition 1(iv) extended with richer navigation expressions and
constructs for branching and loops).

e Three kinds of operation concurrensisequentiaguarded, concurrent.

e Two ecific kinds of primitive operations for eactass: constructor and destructor.

e Three kinds of associationstheen classes (semanticatlistinguished): composition,
aggregation, neighbour.

e Three kinds of visibilities of atibutes, operations, and association ends: public, private,
protected.

e A generalisation relation (inheritance) between classes: (a) multiple inheritance
under the assumption of no naming conflicts; (b) attributes and operations as
redefinable elements; (c) dynamic classification (sometimes called casting). This
implies polymorphism, in particular for abstract operations (corresponding to virtual
in C++ or deferred in Eiffel 2)).

e Hierarchical statenachines containing:

— Hierarchical states (in addition to simple states): both AND-states (concurrent
regions) and OR-states.

— Pseudo-states: initial, deep history, shallow history.

— Instead of using join- and fork-vertices we consider transitions with multiple sources
and targets.

— Entry- and exit-actions in states.

— Transitions can be complex, i.e. containbwh guards and (non-primitive) actions.

4.1. Translating tUML to krtUML

The translation fronrtUML to krtUML comes in several steps. Most of them are
technical and beyond the scope of this papethe following subsection we only outline
same more interesting steps. The extended explanations can be fou8jd in [

UML defines associationsand association end-pointto capture relations between
classes. Semantically, association endifsimaintain pointer to objects accessible
through this association end-point (subjectéstrictions on visibility and navigability).
Our pre-compilation intsduces these as what we cafiplicit attributes(e.g. the #ribute
self of type ¢ within each clasg), and translates code invoked when creating compound

108 W.Damm et al. / Science of Cauter Programming 55 (2005) 81-115

objects for establishing links employing a setimiplicit operationssuchas ‘add_to_as-
scciation_end, ‘initialise_association_end ‘ delete_from_association_endNote the
introduction of the special typ&ss provided for such tributes in thekrtUML model.

In particular, pre-compilation will create implicit attributes for maintaining knowledge
about all (possibly dynamically created) component obfeofsa strong aggregation
(also called composition); it will include calls for creation of component objects with
bounded multiplicity in the constructor code oktlggregate object; it will contain calls

for destroying every existing component object within the destructor code of the aggregate
object. Thus, for each clagswith direct successors under the aggregate or composite
relation to classes;, . . ., ¢y We require that preprossingdefines operationsreate; (p;)

and destroy p/j) with type(pj) = cj.my_acandtypgp}) = cj. We preclude any user
defined constructor and destructor bodies (invokecj foeate (ref) and destroyref)
respectively) by the sequential composition of the action catering for the recursive creation
and deletion of the component parts.

As a trivial pre-processing step, we eliminate complex navigation expressions by
introducing auxiliary attributes, reducing the level of de-referencing to at most one (as used
in Definition 1). In the scope of one thread, we alstinie recursively primitive operation
bodies directly into transitions of seatnachines containing their calls.

Regarding class generalisation, we creat@gid instances for each@ment descriptor
(of the class itself and of all its predecessin the generalisation hierarchy) much as
the aeation of a compound objects induces creation of its components. Implicit “offset”
attributesparent type. serve to navigate from the current (segment) object to the definition
of inherited attributes and operations (notwidden in the current class). Such hierarchical
structure of object allocation allows us teép access to all operation implementation and
stake-machines overridden in the specialised objects, e.g., for easy casting (assignment of a
specialised object to an attribute of the generalised class with “forgetting” the specialised
attributes and operations). Attributearent type., defined within each object and for each
immediate ancestar in the generalisation class hiechy, are also used for a sanity check
of qualified operation dks: if an operatiorC; :: op; is called from an objeat of type Cy,
thenC; must be a generalisation 6k (opj must be defined i€y but maybe overridden).
Attributesparent type. are used for “static” polymorphism, where the “current” type of
each object at each operation invocation is defiee the type of the attribute referring
to it, which is statically deteable within class definitions.Fe “actual” type of reference
attributes (or descriptor pointer), which is the type of the object at its creation time, is kept
in another implicit association attribute which we dgjpe table

The semantics proposed in this paper is defined from the objects’ local point of view
with statically inlined methods (which is nessay for the formal verification). “Current”
type of an object is a specification from the point of view of a calling object aimed at hiding
non-necessary details or unacceptable behayiwhereas “actual” type is used to find
the correct implementation of abstract operations, that is having deferred implementation.

4 Note the difference between a component object, specified by the composition association as a “part” of an
aggregate object and used at tHeéML level, and the notion of component as a group of one active and several
passive objects, used at tkeUML level.

W.Damm et al. / Science of Cauter Programming 55 (2005) 81-115 109

inlined
destructor: kill

inlined
constructor: initialize

(inherited) parts /7 flattened
----- ol o et ()
-~
Fig. 9. Inlining object initialisation and destruction.

We also preclude any constructor and destructor bodies by the action sequences catering
for the recursive creation and deletion of the segments in the hierarchical descriptors.

We do not require any restrictions on the tamachine inheritance: a subclass
might have state-machine overwrittendependently from that of the corresponding
superclass. All private copies maintatheir own objectconfigurations; hence e.g.
accepting a triggered operation will only chantpe state-configuration of that state-
machine corresponding to the object offering tiperation in the generalisation hierarchy.

Another pre-compilation step transfers hierarchical UML state-machines from
rtUML to flat state-machines ¢&rtUML without changing the behaviour. The states in a
flattened state-machine correspond to state configurations from the original state-machine
(sets of states which can be active at #@ne time) extended with a function called
the history configuration (keeping information for the history connectors). A transition
in a flattened state-machine relates two state configurations iff one configuration can be
reached from another by triggering a transitiathvthe corresponding guard in the original
state-machine. The effect of such a transition in the flattened state-machine is constructed
as a sequential composition of exit-actiortge effect of the corresponding transition in
the aiginal (hierarchical) state-machine, and entry-actions (which may comprise non-
deterministic sequentialisation of concurrent exit/entry-actions from different concurrent
substates). Besides this, fordttate-machine of each classwve add the flowing kinds
of auxiliary states:

e One or several ¢reatior’ statesqp,...,dn (N > 0), whereqo has the outgoing
transition guarded by triggered operat@aate and followed by the constructor code,
ending with the initial state of the original (hierarchical) state-machine. Only the state-
machine of the root class does not contain any triggered operation at its “creation”
transitions.

e A*“destuction” state gy with outgoing transitions containing the destructor code. Then
ewvery state in the flattened state-machine containing termination vertices (from the
original state-machine) has an outgoingnsition to some auxiliary state without a
triggering guard and with actiatestroyself) (theresult of the inlining of initialisation
and destruction codes to a flattened state-machine is shown schemati€adjy 3

e Several internal’ states necessary to split complex transitions, e.g. transitions con-
taining a sequence of actions or construction actions. An example of splitting a tran-
sition with sequential composition of actions and a branching construct is shown in
Fig. 10.

110 W.Damm et al. / Science of Cauter Programming 55 (2005) 81-115

mode_enum Car::getmode()

arrivAck/itsCruiser.slow(); if (nextStop == itsTerminal)

"‘ wait mode := getmode(); enter return STOP;
else

l return PASS;
}

[self.nextStop ==
self.itsTerminal]/

/self.mode :=
STOP

ArrivAck/(\/itsCruiser.call(slow)
qi 92

[self.nextStop =
self.itsTerminal]/

Fig. 10. Splitting a complex transition.

To preserve the original execution granularity and avoid some other transition being
enabled when inside the execution of a split transition (containing an action block),
we have to introduce some kind of semaphowhich blocks other transitions to be
executed. To do this, every transition will obtain an additional guast{inside_trans)
Splitting a complex action into simple parts will first set this Boolean variabteum At

the end that variable will be resetfalse This will avoid another transition being started
while being in the nddle of another one.

4.2. The choice of tUML communication scheme

Certain transformations in the pre-compilation steps are based on modelling
assumptions. In this paper we only elaborate on the conceptaponentas introduced in
Definition Kiii). When targeting distributed system implementations of real-time systems,
synchronous operation calls clearly cannot be used for component communication. Indeed,
any estimation of worst-case execution time would have to cater for a waiting delay
until the receiving component is able to actepcall, which itself may be blocked
while awaiting serving of an operation tdly yet a third component. We thus assume
a modelling style where inter-component commeation is restricted to signal-based
communication. To exploit this, we allow the grouping of objects admponentswvithin a
component, no restrictions are placed as reégater-object communication. On the basis
of the pragmatics of active objects in UMiwve mandate that each such component-group
contains exactly one active object, and allow it to include (also dynamically in run-time)
an arbitrary number of passive objects in tgreup. Reactive passivabjects are required
to delegate their event-handling to the one active object within the group.

Figs. 11 and 12 illustrate the concepts of cgmnents and inter-component
communication using the Automat&dhil Cars Systenexampé from [14]. The graphical
representation of a snapshot of a modelFan 11 showsobjects on th&rtUML level. Each
reactive object has a link to an active object wigg_ac which is assumgto be onstant
for the object’s lifetime. Objects referring to the same active object form a component.
Fig. 11 shows two components with a single link across a component-boundary. All event-
handling is delegated to the component’s active object, which keeps all events in its event
queue. When the event has reached the tagh®fjueue, the active object may decide to

W.Damm et al. / Science of Cqmter Programming 55 (2005) 81-115 111

‘ megr:PlatformMgr

Comp.2

Fig. 11. Component structure. A snaps of a model part shows active objeatar and term (with their

event queues) and passive objeatss, hnd, and mgr. Reactive objectscar, crs, and hnd are denoted by
associated schematic state-machines. Active objegtsand term designate their componen@ompl and

Comp2, respectively.

DepartReq

itsCruiser - i itsFjfd ‘
hnd:CarHandler

‘ w ‘ mgr:PlatformMgr
‘ Comp.1 Comp.2

Fig. 12. Event communication between components. Sending an evElgpairtReq from car to hnd in fact
enters the event into the event queugeasfn, which isthe active object associated witind.

take the event from thgueue and dispatch it to the destination. This is indicatédgnl2
by light grey arrows. The semantics $ection 3is explained from the perspective of the
degination.

The semantics enforces that at most egke thread of control is active within one
component. We feel that deviating from thiedelling paradigm, and in particular allowing
multiple threads to execute within one object, could easily cause modelling errors not
acceptable for hard real-time applications.

112 W.Damm et al. / Science of Cauter Programming 55 (2005) 81-115

5. Related works

All attempts to define UML semantics can be classified into different orthogonal
dimensions.

One direction in the semantics classification is the level of UML coverage. Many people
have been trying to build the semantics of individual diagrams of the UML19:3]
etc. on state-machinesl(] on cdlaboration diagrams,12,15] etc. on d¢ass diagrams,

[29] on usecases, 2] on activity diagrams — or just to give formal foundations for
action language (e.g.24,1]). In our approach a symbolic transition system represents
both static and dynamic aspects. The combination of statics and dynamics is also given
in [31] which considers the problem of defining a@iclasses with associedl state-ma-
chines. At variance with our approach, the authors do not give precise semantics for event
gueue handling, consider a limited inheritance, and they treat only flat UML state-machines
without action semantics.

Another coverage level relates to the problem of an adequate formalisation for
concurrency as well as for aspects ohwaunication between objects, which have been
uncovered in31] and not addressed in the original UML documents. Open problems are
typical for so-calledoose semantiasitroduced in [L5], where the aspects of concurrency
and object communication are not fixed to some design decision, but cover different
variaion points. Such loose semantics is not suitable for formal verification. Our paper
tries to overcome thisrpblem by providing an executable semantics as an example of the
feasibility of UML precise formalisation, in particular for verification purposes. On the
other hand, there are a number of UML modelling and/or verification tools implementing
precise semantics by translating UML models to programming languages or model checker
internal formats [L6,30,34,20]. These tools have different limitations on the supported
UML features and do not provide a formal déption of the implemented semantics. So,
such translations can be used only at the later stages of system design, not at the modelling
levels.

H. HuBmann15] proposes the third dimension for the classification of attempts towards
the UML formal semantics, dividing approaches into the following groups:

(1) Naive st-theoretic approachM. Richters and M. Gogolla33] have siggested
using a simfe set-theoretic interpretation for UML class diagrams. In this approach, the
semantics of a class diagram is described as a set of hypergraphs, corresponding to a
configuration of objects. This kind of semantics is mostly used for the formal definition
of OCL constraints within UML models. We do not consider OCL in our approach.

(2) Meta-modelling semantic$his group of approaches is based on the application of
a “bootstrapping” principlef], where the semantics of UML is described using a small
subset of UML as a core based on static semantics only. The approach of the pUML
group to the UML senmatics is given in p,4,1]. Essentially, an algebraic specification is
used to describe legal (local) snapshots of the system without treating actions. The biggest
isste, not covered by these approaches, is how to deal with complex aspects of dynamic
behaviour concerned with concurrency anter-object communideon. The study of A.
Kleppe and J. Warmerlp] is based on the pUML OO meta-modelling approach. In
addition, it takes into account that static and dynamic viewpoints on the system cannot
be separated. But the formal semantics for state-machines is not really defined, the set

W.Damm et al. / Science of Cauter Programming 55 (2005) 81-115 113

of primitive actions is very restrictive (object creation, attribute manipulation), and the
transporting mechanism faignal inter-object communication is not specified. In our
approach, we give a formal semantics for actual state-machines (not their unfolding
into actions) with a larger set of primitive actions. We also resolved open issues with
concurrency.

(3) Translaion semanticsAn approach which tries to kedhe right abstraction level
defines translation from UML class diagrams to traditional specification languages (Z
[11], Object-Z [17], CASL [32], etc.). For example, G. Reggio et aB proposed a
general scheme of the UML semantics by using an extension of the algebraic language
CASL for degribing individual diagrams (class djeams and state-machines) and then
their semantics are composed to get the sgios of the overall model. Also other UML
diagram types have been translated to formahtions, e.g., using Abstract State Machines
[3,2,237]. E. Borger et al. 3] defined the dynamic semantics of UML in terms of ASM
extended by new construct to cover UML state-machine features. The model covers
the event-handling and the run-to-completion step, and formalises object interaction by
combining control and data flow features. However, the authors did not give a complete
solution for solving transition conflicts and it is not clear how firable transitions are
sekcted. Unlike these approaches, our study provides one formalism (STS) for both static
and dynamic semantics, which also contains a (restricted) action language.

Indeed, different approaches memtéed above can be combined as shown2g.[In
this research, static semantics is defined using the meta-modelling mechanism of UML;
the execution semantics is expressed as A3bhrams. The study covers all features
contained in the class diagrams, and in the body of the operations. The aspects of inter-
object communications were not really covgend the sermntics of UML state-machines
was not addressed, although it can be accompanied by the complementary [pers [
and B]. But these articles consider state-machines separated from the rest of UML,
whereas our approach providese semantics for model structure (class diagrams) and
behaviour (state-machines). We also allow more flexibility for the combination of different
orthogonal aspects: concuney and reactivity, synchronous and asynchronous inter-object
communication.

6. Conclusion

As regards the investigation results sketdlabove, the main novelty of our approach is
that it resolves the ambiguity of the formal UML specification w.r.t. concurrency and object
communication by giving a formal semantics for a chosen concrete decision. W. Damm and
B. Wesphal [9] have shown thathis semantics can be used for formal verificatton.

In our approach we allow both active and passibjects to be reactive, thus considering
event commnication between all objects. Wesal capture the combination of two

5The proposed semantics choice was evaluated with a fyje¢oof a discrete-timeaerification environment
under the UML modelling tool Rhapsodyt§] as well & with a more abstract, XMI-based, representation of
UML models.

114 W.Damm et al. / Science of Cauter Programming 55 (2005) 81-115

different kinds of inter-object communication — synchronous (via operation calls) and
asynchronous (via signal events).

Thus, we have provided the semantical foundation for a sublanguage of UML which is
expressive enough to deal with industrial UML models for real-time applications. Our
partners from Verimag have proposed extensions of the semantical model focused on
real time, in particular taking into account the need to support annotations for real-time
scheduling. Ongoing work within Omega builds on the semantical foundation laid down in
this paper to develop a verification environment for real-time UML.

Acknowledgement

We graefully acknowledge the contribution of our Omega partners in fine-tuning the
semantics.

References

[1] J.M. Alvarez, T. Clark, A. Evans, P. Sammut, An action semantics for MML, in: Proc. UML 2001, 2001.
http://iwww.cs.york.ac.uk/puml/mmf/AlvarezUML2001.pdf
[2] E. Borger, A. Cavarra, E. Riccobe, An ASM semantics for UML activity diagrams, in: T. Rus (Ed.), Proc.
AMAST 2000, LNCS, vol. 1816, Springer-Verlag, 2000, pp. 293-308.
[3] E. Borger, A. Cavarra, E. Riobene, Modeling the dynamics of UML state machines, in: Y. Gurevich,
Ph.W. Kuter, M. Odersky, L. Thiele (Eds.), Abstracdtate Machines, Theory and Applications,
International Workshop, ASM 2000, Proceeding8ICS, vol. 1912, Springer-Verlag, 2000, pp. 223-241.
DBLP http://dblp.uni-trier.de
T. Clark, A. Evans, S. Kent, The metamodellingd¢mage calculus: foundation semantics for UML, in: Proc.
FASE 2001, 2001, pp. 17-3tww.dcs.kcl.ac.uk/staff/tony/docs/MMLCalculus.ps
T. Clark, A. Evans, S. Kent, S. Brodsky, S. Codk feasibility study in rearchitecting UML as a family
of languages using a precise OO meta-modelling aagroversion 1.0, September, 2000. Available from
http://www.puml.org
T. Clark, A. Evans S. Kent, P. Sammut, The MMRpproach to engineering object-oriented design
languages, in: Proc. Workshop on Language Dptionis, Tools and Applications, LDTA2001, 2001.
Available viahttp://www.puml.org
K. Compton, J. Huggins, W. Shen, A semantic model for the state machine in the UML,
in: G. Reggio, A. Knapp, B. Rumpe, B. SelicR. Wieringa (Eds.), Dynamic Behaviour in
UML Models: Semantic Questions, Workshop Proceedings, UML 2000 Workshop, Bericht 0006,
October 2000, Ludwig-Maximilians-Universitat &hchen, Institut far Informatik, 2000, pp. 25-31.
http://www.kettering.edd’jhuggins/papers/umi2000.ps
[8] W. Damm, B. Josko, A. Pnueli, A. Votintseva, A formal semantics for a UML kernel language, Omega
Technical Report, part 1 of the deliverable D2, Project IST-2001-33522 OMEGA, January, 2003.
Available from http://www-omega.imag.fr/doc/d1000009_6/D112_KL.pdf
[9] W. Damm, B. Westphal, Live andét Die: LSC-based Verification of UML-Models, in: F.S.d. Boer et al.
(Eds.), Proceedings of the First International $psium on Formal Methods for Components and Objects,
FMCO, October, LNCS, voR852, Springer-Verlag, 2003.
[10] G. Engels, J.H. Hausmann, Rleckel, S. Sauer, Dynamic meta modeling: a graphical approach to the
operational semantics of behavioral diagrams in UML, in: Proceed. of the 3rd International Conference on
the UML 2000, October 2000.
[11] A.S. Evans, A.N. Clark, Foundations of ethunified modeling languge, in: 2nd Northern
Formal Methods Workshop, llkley, Electronic &tkshops in Computing, Springer-Verlag, 1998.
http://www.cs.york.ac.uk/puml/papers/nfmw97..ps

[4

5

[6

[7

http://www.cs.york.ac.uk/puml/mmf/AlvarezUML2001.pdf
http://dblp.uni-trier.de
http://www.dcs.kcl.ac.uk/staff/tony/docs/MMLCalculus.ps
http://www.puml.org
http://www.puml.org
http://www.kettering.edu/~jhuggins/papers/uml2000.ps
http://www-omega.imag.fr/doc/d1000009_6/D112_KL.pdf
http://www.cs.york.ac.uk/puml/papers/nfmw97.ps

W.Damm et al. / Science of Cauter Programming 55 (2005) 81-115 115

[12] A.Evans, RFrarce, K. Lano, B. Rumpe, The UML as a formal modeling notation, in: The Unified Modeling
Language: the First Intertianal Workshop, June 1998, Springer-Verlag, 1999.

[13] S. Graf, I. Ober, Semantics of time extemss, Omega Technical Report, Deliverable D1.1.4,
Project IST-2001-33522 OMEGA, December, 2003.
Available fromhttp://www-omega.imag.fr/doc/d1000199_2/D1.1.4-time-extensions-v2.pdf

[14] D. Harel, E. Gery, Executable object modeliwith statecharts, IEEE Computer 30 (7) (1997) 31-42.

[15] H. HuBmann, Loose semantics for UML, OCL, in: Proceedings 6th World Conference on Integrated Design
and Process Technology, IDPT 2002, June, Society for Design and Process Science, 2002.

[16] I-Logix Inc. Rhapsody, 200ttp://www.ilogix.com/products/rhapsody/index.cfm

[17] S.-K. Kim, D. Carrington, Formalizing the UML cfa diagramsising object-Z, in: France, Rumpe (Eds.),
Proc. UML'99, LNCS, vol. 1723, Springer-Verlag, 1999, pp. 83-98.

[18] A. Kleppe, J. Warmer, Unificationfatatic and dynamic semantics of UML, 2001.
http://www.klasse.nl/english/uml/unification-report.pdf

[19] G. Kwon, Rewrite rules and operational semantics for model checking UML statcharts, in: Proceed. of the
3rd International Conference on the UNDO0O, October, University of York, 2000.

[20] J. Lilius, I.P. Paltor, vUML: a tool for verifying UML models. Turku Centre for Computer Science, Abo
Akademi University, Finland, 1999. Technical Report.

[21] z. Manna, A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems: Specification, Springer-
Verlag, New York, 1991.

[22] B. Meyer, Eiffel: TheLanguage, Prentice-Hall, 1998.

[23] I. Ober, Harmonizing designt@guages with object-oriented extensions and an executable semantics, Ph.D.
Thesis. Institut National Polytechnique de Toulouse, France, April 2001.

[24] Object Management Group. UML 1.4 with Actiore®antics, Final Adopted $pification, ptc/02-01-09,
January, 2002. Available fromttp://www.kc.com/as_site/home.html

[25] Object Management Group. UML Profile for Sch#ability, Performance, and Time Specification,
September 2003, V.1.0, foatl03-09-01. Available atttp://www.omg.org/docs/formal/03-09-01.pdf

[26] Object Management Group. Unifiddiodeling Language: Superstructure?.9, Final Adopted Specification
ptc/03-08-02, August, 2003. Available fronttp://www.omg.org/cgi-bin/doc?ptc/03-08-02

[27] G. Overgaard, Formal specification of object-oriented meta-modelling, in: T. Maibaum (Ed.), Proceedings
Fundamental Approaches to Software EngimegrFASE, LNCS, vol. 1783, Springer-Verlag, 2000.

[28] G. Overgaard, Using the BOOM framework for formal specification of the UML, in: Proceedings of
Defining Precise Semantics for UML, 2000.

[29] G. Overgaard, K. Palmkvist, A formal approaichuse cases and their relationships, in: UML 1998, 1998.

[30] Rational Software Corpotian. Rational Rose Family, 2003.
http://www.rational.com/products/rose/index.jsp

[31] G. Reggio, E. Astesiano, C. Choppy, H. HuBmaanalyzing UML active classes and associated state
machines—a lightweight formal approach, in: FEAS 2000, 2000.
ftp://ftp.disi.unige.it/pub/person/ReggioG/Reggio99a.ps

[32] G. Reggio, M. Cerioli, E. Astesiano, Towarda rigorous semantics of UML supporting its multiview
approach, in: FASE 2001, 200ftp://ftp.disi.unige.it/pub/person/CerioliM/FASE2001.pdf

[33] M. Richters, M. Gogolla, On formalizing the UMabject constraint language OCL, in: T.-W. Ling, S. Ram,
M.L. Lee (Eds.), Proc. 17th International Cordace Conceptual Modelling, ER’98, LNCS, vol. 1507,
Springer-Verlag, 1998, pp. 449-464.

[34] Telelogic AB. Telelogic Tau, 2003ttp://www.telelogic.com/products/tau/index.cfm

http://www-omega.imag.fr/doc/d1000199_2/D1.1.4-time-extensions-v2.pdf
http://www.ilogix.com/products/rhapsody/index.cfm
http://www.klasse.nl/english/uml/unification-report.pdf
http://www.kc.com/as_site/home.html
http://www.omg.org/docs/formal/03-09-01.pdf
http://www.omg.org/cgi-bin/doc?ptc/03-08-02
http://www.rational.com/products/rose/index.jsp
ftp://ftp.disi.unige.it/pub/person/ReggioG/Reggio99a.ps
ftp://ftp.disi.unige.it/pub/person/CerioliM/FASE2001.pdf
http://www.telelogic.com/products/tau/index.cfm

	A discrete-time UML semantics for concurrency and communication in safety-critical applications
	Introduction
	The krtUML language
	Basic notions
	krtUML structure

	krtUML semantics
	Symbolic transition systems
	System variables for the krtUML semantics
	The transition predicate
	Getting an event
	Accepting a triggered operation
	Skipping guards
	Discarding events
	Executing simple actions
	Synchronisations via operation calls
	Creating a new object
	Becoming stable
	Picking up a result

	The STS semantics of a krtUML model

	Assessing the expressiveness of krtUML
	Translating rtUML to krtUML
	The choice of rtUML communication scheme

	Related works
	Conclusion
	References

