
–
8

–
2

0
16

-1
1-

2
4

–
m

ai
n

–

Software Design, Modelling and Analysis in UML

Lecture 8: Class Diagrams III

2016-11-24

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Course Map

–
8

–
2

0
16

-1
1-

2
4

–
m

ai
n

–

2/34

UML

M
o

d
el

In
st

a
n

ce
s

N

S

W E

CD, SM

S = (T,C, V, atr ), SM

M = (ΣD
S
, AS ,→SM )

ϕ ∈ OCL

expr

CD, SD

S , SD

B = (QSD , q0, AS ,→SD , FSD)

π = (σ0, ε0)
(cons0,Snd0)
−−−−−−−−→

u0

(σ1, ε1)· · · wπ = ((σi, cons i, Snd i))i∈N

G = (N,E, f) Mathematics

OD UML

!

✔

✔

✔

✔

✔

✔



Content

–
8

–
2

0
16

-1
1-

2
4

–
S

co
n

te
n

t
–

3/34

• Recall: Associations

• Overview & Plan

• (Temporarily) Extend Signature

• From Class Diagrams to Signatures

• What if Things are Missing?

• Association Semantics

• Links in System States

• Associations and OCL

• The Rest

• Visibility, Navigability

• Multiplicity, Properties,

• Ownership, “Diamonds”

• Back to the Main Track

Recall: Plan & Extended Signature

–
8

–
2

0
16

-1
1-

2
4

–
m

ai
n

–

4/34



–
8

–
2

0
16

-1
1-

2
4

–
S

as
so

cr
e

ca
ll

–

5/34

Overview

–
7

–
2

0
16

-1
1-

17
–

S
as

so
cp

la
n

–

15/30

• Class diagram:

C

v : Int
d : D�

D

c : C0,1

Alternative presentation:

C

v : Int D

•×
d

�

• ×c

0, 1

• Class diagram (with ternary association):

A

w : Int B

Z

a

�

b

0, 1
z 1..5

r

• Signature:

S = ({Int}, {C,D}, {v : Int, d : D�, c : C0,1},

{C �� {v, d}, D �� {c}})

• Signature: extend again to represent

• association r with

• association ends a, b, and z

(each with multiplicity, visibility, etc.)

• Example system state:

� = {1C �� {v �� 27, d �� {5D, 7D}},

5D �� {c �� {1C}}, 7D �� {c �� {1C}}}

• Object diagram:

: C

v = 27

: D

: D

d

d

cc

• Example system state:

� = {1A �� {w �� 13}, 1B �� �, 1Z �� �}

� = { r �� {(1A, 1B , 1Z), (1A, 1B , 2Z)} }

• Object diagram: No. . .

–
8

–
2

0
16

-1
1-

2
4

–
S

as
so

cr
e

ca
ll

–

6/34

So, What Do We (Have to) Cover?

–
7

–
2

0
16

-1
1-

17
–

S
as

so
cs

y
n

–

20/30

An association has

Klasse1 Klasse2
Assoziation

Klasse1 Klasse2

qualifizierte Assoziation

Qualifizierer

Klasse1 Klasse2
gerichtete Assoziation

Klasse1

rolle

1

Sichtbarkeit rolle

* {ordered}
«Stereotyp»
Beziehungsname

Multiplizität
Leserichtung

Klasse2

Ganzes
Teil

Aggregation

Existenz-
abhängiges

Teil

Komposition

Assoziations-
klasse

Klasse1 Klasse2
Attributierte Assoziation

Klasse1 Klasse2

Mehrgliedrige
Assoziation

Klasse3

• a name,

• a reading direction, and

• at least two ends.

Each end has

• a role name,

• a multiplicity,

• a set of properties,
such as unique, ordered, etc.

• a qualifier,

• a visibility,

• a navigability,

• an ownership,

• and possibly a diamond.

Wanted: places in the signature
to represent the information from the picture.



–
8

–
2

0
16

-1
1-

2
4

–
S

as
so

cr
e

ca
ll

–

7/34

Temporarily (Lecture 7 – 9) Extended Signature

–
7

–
2

0
16

-1
1-

17
–

S
as

so
cs

y
n

–

22/30

Definition. An (Extended) Object System Signature (with Associations)
is a quadruple S = (T,C, V, atr ) where

• . . .

• each element of V is

• either a basic type attribute �v : T, �, expr0, Pv� with T � T

• or an association of the form

�r : �role1 : C1, µ1, P1, �1, �1, o1�,
.
..
�rolen : Cn, µn, Pn, �n, �n, on��

(ends with multiplicity µi , properties Pi , visibility �i , navigability �i , ownership oi , 1 � i � n)

• . . .

• atr : C � 2{v�V | v:T, T�T } maps classes to basic type (!) attributes.

In other words:

• only basic type attributes “belong” to a class (may appear in atr(C)),

• associations are not “owned” by a class (not in any atr(C)), but “live on their own”.

Associations in Class Diagrams

–
8

–
2

0
16

-1
1-

2
4

–
m

ai
n

–

8/34



From Association Lines to Extended Signatures

–
8

–
2

0
16

-1
1-

2
4

–
S

as
so

cc
d

–

9/34

C1 C2

...

Cn

⋄
r

Ci

Pi

ξi rolei

µi

maps to

〈r : 〈role1 : C1, µ1, P1, ξ1, ν1, o1〉

...

〈rolen : Cn, µn, Pn, ξn, νn, on〉〉

oi =







1 , if Ci

0 , if Ci

νi =























× , if Ci×

− , if Ci

> , if Ci

Association Example

–
8

–
2

0
16

-1
1-

2
4

–
S

as
so

cc
d

–

10/34

C

D
x : Int•

r
×

0..∗

+n

0..∗

−c

Signature:

S = ({Int}, {C,D},{x : Int ,

〈r : 〈c : D, 0..∗, {unique},−,×, 0〉,

〈n : C, 0..∗, {unique},+, >, 1〉〉},

{C 7→ ∅, D 7→ {x}})



What If Things Are Missing?

–
8

–
2

0
16

-1
1-

2
4

–
S

as
so

cc
d

–

11/34

Most components of associations or association end may be omitted.
For instance (OMG, 2011b, 17), Section 6.4.2, proposes the following rules:

• Name: Use
A_〈C1〉_ · · · _〈Cn〉

if the name is missing.

Example:

C D

A_C_D
for C D

• Reading Direction: no default.

• Role Name: use the class name at that end in lower-case letters

Example:

C D
c d for C D

Other convention: (used e.g. by modelling tool Rhapsody)

C D
itsC itsD for C D

What If Things Are Missing?

–
8

–
2

0
16

-1
1-

2
4

–
S

as
so

cc
d

–

12/34

• Multiplicity: 1

In my opinion, it’s safer to assume 0..1 or ∗ (for 0..∗)
if there are no fixed, written, agreed conventions (“expect the worst”).

• Properties: ∅

• Visibility: public

• Navigability and Ownership: not so easy. (OMG, 2011b, 43)

“Various options may be chosen for showing navigation arrows on a diagram.

In practice, it is often convenient to suppress some of the arrows and crosses
and just show exceptional situations:

• Show all arrows and ×’s: Navigation and its absence are made completely explicit.

• Suppress all arrows and ×’s: No inference can be drawn about navigation.

This is similar to any situation in which information is suppressed from a view.

• Suppress arrows for associations with navigability in both directions,
and show arrows only for associations with one-way navigability.

In this case, the two-way navigability cannot be distinguished from situations
where there is no navigation at all; however, the latter case occurs rarely in practice.”



Wait, If Omitting Things...

–
8

–
2

0
16

-1
1-

2
4

–
S

as
so

cc
d

–

13/34

• ...is causing so much trouble (e.g. leading to misunderstanding),
why does the standard say “In practice, it is often convenient. . . ”?

Is it a good idea to trade convenience for precision/unambiguity?

It depends.

• Convenience as such is a legitimate goal.

• In UML-As-Sketch mode, precision “doesn’t matter”,
so convenience (for writer) can even be a primary goal.

• In UML-As-Blueprint mode, precision is the primary goal.
And misunderstandings are in most cases annoying.

But: (even in UML-As-Blueprint mode)

If all associations in your model have multiplicity ∗,
then it’s probably a good idea not to write all these ∗’s.

So: tell the reader about your convention and leave out the ∗’s.

Associations: Semantics

–
8

–
2

0
16

-1
1-

2
4

–
m

ai
n

–

14/34



Associations in General

–
8

–
2

0
16

-1
1-

2
4

–
S

as
so

cs
e

m
–

15/34

Recall: We consider associations of the following form:

〈r : 〈role1 : C1, µ1, P1, ξ1, ν1, o1〉, . . . , 〈rolen : Cn, µn, Pn, ξn, νn, on〉〉

Only these parts are relevant for extended system states:

〈r : 〈role1 : C1, _, P1, _, _, _〉, . . . , 〈rolen : Cn, _, Pn, _, _, _〉

(recall: we assume P1 = Pn = {unique}).

The UML standard thinks of associations as n-ary relations
which “live on their own” in a system state.

That is, links (= association instances)

• do not belong (in general) to certain objects (in contrast to pointers, e.g.)

• are “first-class citizens” next to objects,

• are (in general) not directed (in contrast to pointers).

Links in System States

–
8

–
2

0
16

-1
1-

2
4

–
S

as
so

cs
e

m
–

16/34

〈r : 〈role1 : C1, _, P1, _, _, _〉, . . . , 〈rolen : Cn, _, Pn, _, _, _〉

Only for the course of lectures 8 / 9 we change the definition of system states:

Definition. Let D be a structure of the (extended) signature with associations
S = (T,C, V, atr ).

A system state of S wrt. D is a pair (σ, λ) consisting of

• a type-consistent mapping (as before)

σ : D(C ) 9 (atr(C ) 9 D(T )),

• a mapping λ which maps each association
〈r : 〈role1 : C1〉, . . . , 〈rolen : Cn〉〉 ∈ V to a relation

λ(r) ⊆ D(C1)× · · · × D(Cn)

(i.e. a set of type-consistent n-tuples of identities).



Association / Link Example

–
8

–
2

0
16

-1
1-

2
4

–
S

as
so

cs
e

m
–

17/34

A
w : Int B

Z

+a

∗
×

b

0, 1

<

−z 1..5

r

Signature:

S = ({Int}, {A,B,Z},{w : Int,

〈r : 〈a : A, 0..∗,+, {unique},×, 1〉,

〈b : B, 0..0, 1..1,+, {unique}, >, 0〉

〈z : Z, 1..5,+, {unique}, >, 0〉〉},

{A 7→ {w}, B 7→ ∅, Z 7→ ∅})

System state:

Associations and OCL

–
8

–
2

0
16

-1
1-

2
4

–
m

ai
n

–

18/34



OCL and Associations: Syntax

–
8

–
2

0
16

-1
1-

2
4

–
S

as
so

co
cl

–

19/34

Recall: OCL syntax as introduced in Lecture 3, interesting part:

expr ::= . . . | r1(expr1) : τC → τD r1 : D0,1 ∈ atr(C)
| r2(expr1) : τC → Set(τD) r2 : D∗ ∈ atr(C)

Now becomes

expr ::= . . . | role(expr1) : τC → τD µ = 0..1 or µ = 1..1
| role(expr1) : τC → Set(τD) otherwise

if there is
〈r : . . . , 〈role : D,µ, _, _, _, _〉, . . . , 〈role ′ : C, _, _, _, _, _〉, . . . 〉 ∈ V or

〈r : . . . , 〈role ′ : C, _, _, _, _, _〉, . . . , 〈role : D,µ, _, _, _, _〉, . . . 〉 ∈ V, role 6= role
′

.

Note:

• Association name as such does not occur in OCL syntax, role names do.

• expr1 has to denote an object of a class which “participates” in the association.

OCL and Associations: Semantics

–
8

–
2

0
16

-1
1-

2
4

–
S

as
so

co
cl

–

20/34

Recall:
Assume expr1 : τC for some C ∈ C . Set u1 := IJexpr1K(σ, β) ∈ D(TC).

• IJr1(expr1)K(σ, β) :=

{

u , if u1 ∈ dom(σ) and σ(u1)(r1) = {u}

⊥ , otherwise

• IJr2(expr1)K(σ, β) :=

{

σ(u1)(r2) , if u1 ∈ dom(σ)

⊥ , otherwise

Now needed:
IJrole(expr1)K((σ, λ), β)

• We cannot simply write σ(u)(role).

Recall: role is (for the moment) not an attribute of object u (not in atr(C)).

• What we have is λ(r) (with association name r, not with role name role !).

〈r : . . . , 〈role : D,µ, _, _, _, _〉, . . . , 〈role′ : C, _, _, _, _, _〉, . . . 〉

But it yields a set of n-tuples, of which some relate u and some instances of D.

• role denotes the position of the D’s in the tuples constituting the value of r.



OCL and Associations: Semantics Cont’d

–
8

–
2

0
16

-1
1-

2
4

–
S

as
so

co
cl

–

21/34

Assume expr1 : τC for some C ∈ C . Set u1 := IJexpr1K((σ, λ), β) ∈ D(TC).

• IJrole(expr1)K((σ, λ), β) :=

{

u , if u1 ∈ dom(σ) and L(role)(u1, λ) = {u}

⊥ , otherwise

• IJrole(expr1)K((σ, λ), β) :=

{

L(role)(u1, λ) , if u1 ∈ dom(σ)

⊥ , otherwise

where

L(role)(u, λ) = {(u1, . . . , un) ∈ λ(r) | u ∈ {u1, . . . , un}} ↓ i

if
〈r : 〈role1 : _, _, _, _, _, _〉, . . . 〈rolen : _, _, _, _, _, _〉, 〉, role = rolei.

Given a set of n-tuples A,
A ↓ i denotes the element-wise projection onto the i-th component.

OCL and Associations Semantics: Example

–
8

–
2

0
16

-1
1-

2
4

–
S

as
so

co
cl

–

22/34

IJrole(expr
1
)K((σ, λ), β) :=

{

u , if u1 ∈ dom(σ) and L(role)(u1, λ) = {u}

⊥ , otherwise

IJrole(expr
1
)K((σ, λ), β) :=

{

L(role)(u1, λ) , if u1 ∈ dom(σ) L(role)(u, λ) = {(u1, . . . , un)

⊥ , otherwise ∈ λ(r) | u ∈ {u1, . . . , un}} ↓ i

Student
leader

1

l2

0..1

l3 0..1

workgroup

allInstancesStudent->

Exists(s | s.l2 = s.l3 )
λ(workgroup) = {(1S , 2S , 3S),

(1S , 3S , 4S),
(5S , 1S , 1S)}



Associations: The Rest

–
8

–
2

0
16

-1
1-

2
4

–
m

ai
n

–

23/34

The Rest

–
8

–
2

0
16

-1
1-

2
4

–
S

as
so

cr
e

st
–

24/34

Recapitulation: Consider the following association:

〈r : 〈role1 : C1, µ1, P1, ξ1, ν1, o1〉, . . . , 〈rolen : Cn, µn, Pn, ξn, νn, on〉〉

• Association name r and role names / types
rolei / Ci induce extended system states (σ, λ).

• Multiplicity µ is considered in OCL syntax.

• Visibility ξ / Navigability ν : well-typedness (in a minute).

Now the rest:

• Multiplicity µ: we propose to view them as constraints.

• Properties Pi: even more typing.

• Ownership o: getting closer to pointers/references.

• Diamonds: exercise.



Navigability

–
8

–
2

0
16

-1
1-

2
4

–
S

as
so

cr
e

st
–

25/34

Navigability is treated similar to visibility:

Using names of non-navigable association ends (ν = ×) are forbidden.

Example: Given

C
x : Int D×

role

the following OCL expression is not well-typed wrt. navigability,

context D inv : role.x > 0

The standard says: navigation is...

• ’−’: ...possible • ’×’: ...not possible • ’>’: ...efficient

So: In general, UML associations are different from pointers / references in general!

But: Pointers / references can faithfully be modelled by UML associations.

Multiplicities as Constraints

–
8

–
2

0
16

-1
1-

2
4

–
S

as
so

cr
e

st
–

26/34

Recall: Multiplicity is a term of the form N1..N2, . . . , N2k−1..N2k

where Ni ≤ Ni+1 for 1 ≤ i ≤ 2k, N1, . . . , N2k−1 ∈ N, N2k ∈ N ∪ {∗}.

Define µC
OCL(role) :=

context C inv : (N1 ≤ role -> size() ≤ N2) or . . . or (N2k−1 ≤ role -> size()≤ N2k
︸ ︷︷ ︸

omit if N2k = ∗

)

for each 〈r : . . . , 〈role : D,µ,_, _, _, _〉, . . . , 〈role ′ : C, _, _, _, _, _〉, . . . 〉 ∈ V or

〈r : . . . , 〈role′ : C, _, _, _, _, _〉, . . . , 〈role : D,µ, _, _, _, _〉, . . . 〉 ∈ V,

with role 6= role ′, if µ 6= 0..1, µ 6= 1..1, and

µ
C
OCL(role) := context C inv : not(oclIsUndefined(role))

if µ = 1..1.

Note: in n-ary associations with n > 2, there is redundancy.



Multiplicities as Constraints Example

–
8

–
2

0
16

-1
1-

2
4

–
S

as
so

cr
e

st
–

27/34

µC
OCL(role) = context C inv :

(N1 ≤ role -> size() ≤ N2) or . . . or (N2k−1 ≤ role -> size() ≤ N2k)

CD :
C

v : Int

role1

0..1

role2

4, 17

role3 3..∗

• {context C inv : 4 ≤ role2 -> size() ≤ 4 or 17 ≤ role2 -> size() ≤ 17}
= {context C inv : role2 -> size() = 4 or role2 -> size() = 17}

• ∪ {context C inv : 3 ≤ role3 -> size()}

Properties

–
8

–
2

0
16

-1
1-

2
4

–
S

as
so

cr
e

st
–

28/34

We don’t want to cover association properties in detail,
only some observations (assume binary associations):

Property Intuition Semantical Effect

unique one object has at most one r-link to a single
other object current setting

bag one object may have multiple r-links to a sin-
gle other object

have λ(r) yield multi-
sets

ordered,
sequence

an r-link is a sequence of object identities
(possibly including duplicates)

have λ(r) yield se-
quences

Property OCL Typing of expression role(expr)

unique TD → Set(TC)

bag TD → Bag(TC)

ordered, sequence TD → Seq(TC)

For subsets, redefines, union, etc. see (?, 127).



Ownership

–
8

–
2

0
16

-1
1-

2
4

–
S

as
so

cr
e

st
–

29/34

C D•
role

r
×

Intuitively it says:

Association r is not a “thing on its own” (i.e. provided by λ),
but association end ‘role ’ is owned by C (!).
(That is, it’s stored inside C object and provided by σ).

So: if multiplicity of role is 0..1 or 1..1, then the picture above is very close to concepts of
pointers/references.

Actually, ownership is seldom seen in UML diagrams. Again: if target platform is clear, one may
well live without (cf. (OMG, 2011b, 42) for more details).

Not clear to me:

C1 C2

...

Cn

role
•⋄

r

Back to the Main Track

–
8

–
2

0
16

-1
1-

2
4

–
m

ai
n

–

30/34



Back to the main track:

–
8

–
2

0
16

-1
1-

2
4

–
S

b
ac

k
–

31/34

Recall: on some earlier slides we said, the extension of the signature is only to study
associations in “full beauty”.
For the remainder of the course, we should look for something simpler...

Proposal:

• from now on, we only use associations of the form

(i) C D•
0..1

role

×

(ii) C D•
∗

role

×

(And we may omit the non-navigability and ownership symbols.)

• Form (i) introduces role : C0,1, and form (ii) introduces role : C∗ in V .

• In both cases, role ∈ atr(C).

• We drop λ and go back to our nice σ with σ(u)(role) ⊆ D(D).

Tell Them What You’ve Told Them. . .

–
8

–
2

0
16

-1
1-

2
4

–
S

tt
w

y
tt

–

32/34

• From class diagrams with (general) associations,
we obtain extended signatures.

• Links (instances of associations) “live on their own”
in the λ in extended system states (σ, λ).

• OCL considers role names,
the semantics is (more or less) straightforward.

• The Rest:

• navigability is treated like visibility,

• view multiplicities as shorthand for constraints,

• properties, ownership, “diamonds”: exist

• Back to the main track:

For simplicity, let’s restrict the following discussion to C0,1 and C∗

as before (now viewed as abbreviations for particular associations).



References

–
8

–
2

0
16

-1
1-

2
4

–
m

ai
n

–

33/34

References

–
8

–
2

0
16

-1
1-

2
4

–
m

ai
n

–

34/34

OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report formal/2011-08-05.

OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report formal/2011-08-06.


