Software Design, Modelling and Analysis in UML

Lecture 14: Hierarchical State Machines [
2016-12-22

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Initial States

Recall: a labelled transi
We have

» S: system configurations (o, =)

n system is (S5, A, —, So).

o —»: labelled transition relation (o <) 5%, (o7 /)

Wanted: ial states S.

Proposal:
Require a (finite) set of object diagrams &7 as part of a UML model

(€9, 5,69). E\M&m

T

And set
So=1{(0,e) |c € GT1(OD), OD€ 62, cempty}.

Other Approach: (used by Rhapsody tool) multiplicity of classes (plus
We can read that as an abbreviation for an object diagram.

Content

issing Pieces: Create and Destroy Trans-
formers

o Putting It All Together (Again)

v]. Initial States

' Consistency wrt. OCL Constraints

o Hierarchical State Machines
* Overview
© Abstract Syntax: States

Lo pseudo-states. regions..

e (Legal) System Configurations
« Abstract Syntax: Transitions
Lie Enabledness of Fork/Join Tran

e scope, priority, maximaliy. ...

242

Semantics of UML Model (So Far)

The semantics of the UML model
M= (6D, 5M,07)

where

« some classes in 6’7 are stereotyped as ‘signal (standard),
some signals and attributes are stereotyped as ‘external (non-standard),

« thereis a1-to-1 relation between classes and state machines,
« 07 isaset of object diagrams over €7,

is the tran:

on system (S, A, —. Sy) constructed on the previous slide(s).

The computations of M are the computations of (S, A, —, Sp).

542

Putting It All Together

£

OCL Constraints and Behaviour

o Let M = (%

', 67) be a UML model. oo D b MMHH feply o0
14
* We call M consistent iff, for each OCL constraint expr € Inv(¢'%), °
o |= expr for each “reasonable point” (7, =) of computations of M.

(Cf. tutorial for discussion of “reasonable point”)

Note: we could define Inv(.##) similar to Inv(%¢ 7).

o)l

oo & vt &20) | ‘
(alerl Cinv ok (0) ® .
Codif 4 v i R20 | ,
Conete & v ¢ X7 -1

Last Missing Piece: Create and Destroy Transformer

7142

How To Choose New Identities?

© Re-use: choose any identity that is not alive now, i.e. not in dom(a).

« Doesnt depend on history.
« May “undangle’ dangling references - may happen on some platforms.

o Fresh: choose any identity that has not been alive ever,
i.e. notin dom (o) and any predecessor in current run.

« Depends on history.
« Dangling references remain dangling - could mask “dirty” effects of platform.

Y2

Transformer: Create

abstract syntax
create(

concrete syntax
oy = o &

intuitive semantics
Create an object of class C' and assign it to attribute v of the
object denoted by expression expr.
well-typedness
expr: Tp, v € atr(D),
atr(C) = {(vi : Ti, eapr?) | 1< i < n}
semantics

observables

(error) cond

I[expr](c. 3) not defined.

= Gt O+ foew D)2
@ be wile as

bug, = e €]

bogy = v D}

X= Ak

Transformer: Create

]

.

abstract syntax
create(C, expr,v)
intuitive semantics
Create an object of class C' and assign it to attribute v of the
object denoted by expression expr.
well-typedness

concrete syntax

expr: Tp,v € atr(D),
atr(C) = {(vy : Ty, expr?) | 1 < i <n}

semantics
((9,€),(0",€")) € tereata(Crezprin)[ta]
inls to wpele iff Sodas o sond
—_—r o i
o = alug > o(ug)[v - ul] U {u s {v; > di |1 < i <n}},
! = [ul(e); ue Z(C)fresh,ie u ¢ dom(o);
g = I[expr](o, us); di = I[expr?](o,0) if expr? #¥and
arbitrary value from %(T;) otherwise.
observables S
Obscreate|uz] = {(%,u)}
e
S«MQES uz) not defined.

(error) conditions

10742

Transformer: Create

abstract syntax concrete syntax

Create an object of class C' and assign it to attribute v of the
object denoted by expression expr.
well-typedness
expr: Tp, v € atr(D),
atr(C) = {1 : Ty, eapr®) |1 < i < n}
‘semantics

observables

(error) conditions

I[eapr] (o, B) not defined.

+ We use an “and assign™action for simplicity - it doesrit add or remove expressive power,
but moving creation to the expression language raises all kinds of other problems since
then expressions would need to modify the system state.

« Also for simplicity: no to ion (~
Adding them is straightforward (but somewhat tedious).

Create Transformer Example v Int

SMp: /= newC

y:lnt=0

create(C, eapr, v)

tereate(Cieapra) [Ua(0,€) = ...

eDe)\sed
T v
. ((«2).0)
7 D "
n="0
Gy
stable = 0 <a)
u\Z,)
% =
O =
w7y i
[

842

a2

Transformer: Destroy

abstract syntax concrete syntax
destroy(eapr)
intuitive semantics
Destroy the object denoted by expression expr.
well-typedness
expr : Te, C €€
semantics

observables
Obsaestroy[uz] = {(uz, L, (+,0),u)}

(error) conditions

I[expr](a, B) not defined.

Destroy Transformer Example

Jdelete n

destroy(expr)

taastroy(eapr) (U] (0,€) = -

[LD}eC] (5w
o

e

What to Do With the Remaining Objects?

Assume object u is destroyed.

 object u; may still refer to it via association r:
« allow dangling references?
« or remove ug from o (uy)(r)?
« object uy may have been the last one linking to object us:
« leave u, alone?
© or remove u; also? (garbage collection)

« Plus: (temporal extensions of) OCL may have dangling references.

Our choice: Dangling references and no garbage collection!

T ine with “expect the worst’, because there are target platforms which don't provide
garbage collection — and models shall (in general) be correct without assumptions on target
platform.

But: the more “dirty” effects we see in the model, the more expensive it often is to analyse.
Valid proposal for simple analysis: monotone frame semantics, no destruction at all.

13742

Hierarchical State-Machines

16/42

Transformer: Destroy

destroy(e
intuitive semantics
Destroy the object denoted by expression expr.
well-typedness

expr: Te,C € €
semantics Fetins potection

taestroy(eapf)[U)(0,€) = {(0", &)} €= L16)

where 0’ = 0| dom(o)\ {u} With u = I[eazpr] (o, uz).

7 observables
ObSaestroy(eapr)[ttz] = {(+,u) }
ons
I[expr] (o, uz) not defined.

(error) con

abstract syntax concrete syntax

14/42
The Full Story
UML distinguishes the following kinds of states:
example example
pseudo-state
initial
simple state (shallow) history
deep history
final state fork/join
composite state o X
junction, choice
OR
entry point
exit point
AND terminate
submachine state
17142

Blessing or Curse...?

18/42

Representing All Kinds of States

* Sofar:
(S50, =), s0€S, — CSx(EU{_})x Ezpry x Acty x S
« From now on: (hierarchical) state machines

(S, kind, region, =, 1), annot)

where
« § D {top} isafinite set of states (new:
o kind : § — {st, init, fin, shist, dhist, fork, join, junc, choi, ent, exi, term}

is a function which labels states with their kind, (new)
o region : S — 22° is a function which characterises the regions of a state, (new)
« “isa'set of transitions, (changed)
o ¥ (43} 25 x 2% is an incidence function, and (new)
o annot : () = (6 U{_}) x Bapr, x Acts

jon. (new)

provides an annotation for each tran:

(so is then redundant - replaced by proper state () of kind
d 19/42

Blessing or Curse.

States / Syntax:

« Whatis the abstract
syntax of a diagram?

States / Semantics:

« whatis the type of the
implicit st attribute?

« whatare legal system
configurations?

Transitions / Syntax:

« whatare legal /
well-formed transitions?

Transitions / Semantics:

on

Plan: .

Forexample: From s1, 55,

what may happen on £?
what may happen on £, 2

Representing All Kinds of States

« whenis a legal tran: « can E, G kil the object?

enabled?
« which effects do N
* | transitions have?
18/42
Well-Formedness: Regions
| €S kind region C25,8,CS childC S
final state s fin [
pseudo-state s (]
simple state s st (]
composite state s st {S1,...,Sa}n>1
cit top state | top st {s1}
» Final and pseudo states must not comprise regions.
« States s € S with kind(s) = st may comprise regions.
Naming conventions can be defined based on regions:
» No region: simple state.
* One region: OR-state.
« Two or more regions: AND-state
o REERR
« Each state (except for top) must lie in exactly one region. .
» Note: The region function induces a child function.
= o Note: Diagramming tools hapsody) can ensure well-f ine: “
- 202

wh s T g gt e &

/ /) | !

[
Am:,s.ﬂr s0€S, — CSx(EU{_}) x Bwpry, x Acty x S
/
oo oL
Lieel: i

- TE T d e
| { {550 50, 9,
18, % | 155,
, fen (103, fo,58) -]
[‘ ten (6he, g
|

 Sofar:

(
seof fsd I3 f
- - - — - Y2

doperf o5 54l w

19702
From UML to Hierarchical State Machine: By Example
i (S, kind, region, —, , annot) i
example eS| kind region
simple state s B st a
final state @w 3 fin 7
composite state
OR s < Sfsissidf
S
W?
AND . o | Fsss tuss,
£5.5333
submachine state (later)
g pseudo-state
B 2w

From UML to Hierarchical State Machine: By Example

! =
. \
[I
| 5 SON
N -/

... denotes (S, kind, region, —, v, annot) with

o S ={top,s1,s, 52}

o kind = {top v st, sy — init, s+ st, sy > fin}

o or (S, kind) = {(top,st), (s1,init), (s, st), (s, fin)}

o region = {top = {{s1,s,50}},s1 =0 s—=0 L0}

e —, 1, annot: in a minute.

2

Recall

Plan: o

States / Syntax:
« Whatis the abstract ,\
syntax of a diagram?

States / Semantics:

« whatis the type of the
it st attribute?

« whatare legal system
configurations?

Transitions / Syntax:

« whatare legal /

o For example: From s1., 53,

ions?
. ?

Transitions / Semantics: what may happen on £
N ot « what may happen on 2, F?

N M;H__Mw egal transition can E, G kill the object?
which effects do

transitions have?

d 25142

Recall

Plan: o/
States / Syntax:

.Erw._m,._mmvu.mn
syntax of a ma_.%\

States / Semantics:
« whatis the type of the
implicit st attribute?

« whatare legal system

configurations?

« whatare legal /
well-formed transitions?

For example: From s, s5.
« what may happen on £?

Transitions / Semantics:

« what may happen on £, 2

« when is a legal transition * can E, G kill the object?

| enabled?
= | » which effects do o
H ions have?
d 23/0
Transitions Syntax: Fork/Join
« For simplicity, we consider transitions with (possibly) multiple sources and targets,
ie
P (=) = (25\0) x (2°\0)
o Forinstance,
translates to
(S, kind, region, {t1}, {t1 = ({s2, 53}, {s5,s6})}, {t1 = (tr, gd, act)})
~
R i annot
~ « Naming convention: ¥(t) = (source(t), target(t)).
. 26142

Semantics: State Configuration

» The type of (implicit attribute) s is from now on a set of states, i.e. Z(Sy.) = 2°
o Aset S, C Sis called (legal) state configuration if and only if
o top € Si,and

« for each region R of astatein Sy,
exactly one (non pseudo-state) element of R is in S

L.
Vs € 51V R € region(s) e |{s € R | kind(s) € {st,fin}} 1 1| = 1.

o Examples:

5= fi0) X So= {5, kel ¥ Se=fs 5,55 X
R e Se =150, bg, 53,503 X =185 49,50, %, 585V
so={a, fp, 55/ Sp=Ete S0, Sy 2] X

= 24/22

Orthogonal States

« Two states s, s, € S are called orthogonal, denoted s, L s, if and only if

« they “live” i different regions of one AND-state, ie.

s, region(s) = {S1,....Su}, 1 S i #j <n:si € child(S) Asy € child(S)),

) 2742

Legal Transitions

A hierarchical state-machine (S, kind, region, —, ¥, annot)
is called well-formed if and only if for all transitions ¢ €—,

« source (and destination) states are pairwise orthogonal, i.e.

o Vs, s’ € source(t) (€ target(t)) o s L

« the top state is neither source nor destination, i.e.

o top & source(t) U source(t).

Recall: final states are not sources of transitions.

Example:

28/42

References

Plan example
Peeudo-state
initial .
simple state (shallow) history ®
deep history
fork/join

state

composite state
junction, choice

ORr
entry point
exit point

AND terminate

submachine state

« Transitions involving non-pseudo states.
ial pseudostate, final state.
 Entry/do/exit actions, internal transitions.
« History and other pseudostates, the rest.

References

‘OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report
formal/2011-08-05.

OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report
formal/2011-08-06

29/42

4Un

Tell Them What You've Told Them. ..

For the Create Action, we have two main choices:

« re-use identities (“nasty semantics”),
o use fresh identities (“clean semantics’, depends on history).

Similar for Destroy.

Hierarchical State Machines introduce Regions.

« Thereby, states can lie within states as children.

« The implicit variable st becomes set-valued.

Transitions may now have
« multiple source states, multiple de:

\ation states,
« but need to adhere to well-formedness conditions.

Enabledness of a set (!) of transitions
is a bit tricky to define (— scope, priority, maximality).

Steps are a proper generalisation of core state machines.

40/42

